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PREFACE 

Soil-Structure Interaction (SSI) is an important phenomenon that one has to take into 
account in building design. Structures resting on shallow strip foundations behave 
differently than structures constructed on piles. Several approaches exist to take this 
interaction into account: the “macro element” approach is one of particular interest. The 
macro element studied in this report is a 3D model of a circular and rigid foundation 
adequate for static, cyclic or dynamic loading. It takes into account the plasticity of the 
soil and the rocking of the foundation. 

The model is very easy to use, requires low computational power and therefore it is well 
suited for structural design. It is implemented into FedeasLab, a finite element toolbox of 
Matlab developed at UC Berkeley [Filippou et al., 2004]. 

Comparisons with experimental results under, static [Gottardy et al., 1999], cyclic 
[TRISEE, 1998] and dynamic loading [CAMUS, 1997] show the good performance of the 
3D macro element for simulating SSI phenomena. 

At the last part of this report the 3D macro element is used to reproduce the behaviour 
of base isolators and dissipative devices. Comparison with experimental results shows 
once again the advantages of the approach. 
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1. INTRODUCTION 

In structural engineering, Soil-Structure Interaction (SSI) is an important phenomenon 
that has to be taken into account. Before proceeding to the design of slender structures 
like buildings or bridge piers, it is necessary to define the characteristics of the soil, of the 
structure itself as well as the nature of the connection between them. It is evident that the 
behaviour of a structure is different if it is embedded in the soil or just connected with a 
knee joint. 

Different experimental results [CAMUS, 1997] showed that non linearities at the soil level 
(plasticity) and between the soil and the foundation (rocking and uplift of the foundation) 
result often to an isolation of the structure and thus to a reduction of the forces and the 
moments developed at its base during an earthquake. Maximum values of stresses are 
limited because of larger energy dissipation but more important displacements are 
generated at the top. 

In order to study the SSI, three kinds of methods can be found in the literature [Pecker, 
1984]:

“Sub structuring” that aims at decomposing the problem into simpler problems 
(Kausel’s superposition principle: kinematics interaction, inertial interaction). This 
method is valid only for linear problems. 

“Direct methods” that use a classical finite element approach. They provide very 
good results but require numerical expertise, good knowledge of the constitutive laws 
and are costly in terms of computational power. 

“Hybrid methods” that are a combination of the two previous methods and therefore 
more attractive on the numerical level. The “macro element” approach belongs to 
this last category and consists in condensing all non linearities into a finite domain, 
thus allows working with global variables. 

Several 2D macro elements exist in the literature [Nova et al. 1991], [Cassidy et al. 2002], 
[Crémer 2001], [Crémer et al. 2001], [Crémer et al. 2002].  They allow simulating in a very 
simple way the behaviour of shallow foundations using only forces and displacements. 
The macro element developed by Crémer is able to reproduce the behaviour of a slender 
structure under static/cyclic but also dynamic loading (i.e. earthquake) applied in the 
horizontal direction, considering the plasticity of the soil and the rocking and uplift of the 
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foundation.

Inspired by her work, a new 3D macro element is developed and presented in this report. 
The goal is to compute the 3D behaviour of a shallow and rigid foundation, lying on an 
infinite space under an earthquake applied in the 2 horizontal directions. The macro 
element takes into account the plasticity of the soil (resulting from the thermodynamics 
of irreversible processes), and the rocking of the structure. It is implemented into 
FedeasLab, a finite element Matlab toolbox developed by Pr. F. Filippou and his co-
workers in UC Berkeley [Filippou et al., 2004]. 

At the beginning of this report we discuss the geometrical characteristics of the studied 
foundation and its behaviour under a cyclic loading, if rocking and uplift of its centre are 
permitted. Then the mathematical description of the 3D macro element is presented 
followed by the presentation of numerical results compared with experimental data found 
in the literature.  

At the last part of this report, an adaptation of the 3D macro element is presented in 
order to reproduce the non linear behaviour of different base isolators and dissipation 
devices. Again, comparison with experimental results shows the good performance of the 
approach.



2. SHAPE OF THE FOUNDATION AND ASSOCIATED 
KINEMATIC VARIABLES 

In order to simplify the problem, the foundation studied hereafter is considered circular. 
The horizontal loads in the directions x and y are therefore computed in a similar way. It 
is also easier to reproduce the interaction between horizontal forces and moments. The 
foundation is also considered shallow and rigid (Figure 2.1). Torsional moment (Mz) is 
not taken into account by the model. 

(a) (b)

x

Figure 2.1. Shape of the foundation and generalized variables: (a) forces and (b) displacements. 

The macro element concept consists in condensing the global behaviour of the 
foundation (or in general the structural element studied) in a representative point. One 
distinguishes the close field, located at the vicinity of the foundation, where all non-
linearities and their couplings are concentrated [Crémer, 2001] and the far field, where all 
the sources of radiative damping are assumed. The far field is considered linear. In that 
framework it is appropriate to work with global variables (forces and displacements). The 
movement of the foundation, supposed hereafter infinitely rigid, is therefore entirely 
described by a system of global variables defined in the foundation centre: the vertical 
force V, horizontal forces Hx, Hy, and moments Mx My but also the corresponding 
displacements: vertical settlement uz, horizontal displacements ux, uy, and rotations x, y.

In order to simplify the equations and to be able to compare the results, an adimensional 
notation of variables is used as follows: 

Reduced horizontal forces: ,
xH ' yH '

V

z

y

Hx

Hy

My

Mx

ux

uy

uz

y

x

x

z

y
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Reduced vertical force: 'V

Reduced moments: ,
xM ' yM '

With    

D

M

H
D

M
H

V

q
D

M

H

M

H

V

F

x

y

y

x

x

y

y

x

max

2

4

1

'

'

'

'

'

    (1.1) 

In a similar way we get for the displacements: 

Reduced horizontal displacements: ,
xu ' yu'

Reduced vertical displacement: 
zu'

Reduced rotations: 
x' ,

y'

x

y

y

x

z

x

y

y

x

z

D

u

D

u

u

D
u

u

u

u
1

'

'

'

'

'

     (1.2) 

With: qmax being the ultimate stress of the soil and D the diameter of the foundation.



3. BEHAVIOUR OF THE FOUNDATION UNDER CYCLIC 
LOADING 

This 3D macro element aims to reproduce the behaviour of a shallow circular infinite 
rigid foundation lying on an infinite space under cyclic and dynamic loadings. The 
fundamental characteristics of the cyclic behaviour of the foundation have been 
presented in detail in [Crémer, 2001]. Only the main features are recalled hereafter. 

A non symmetrical plasticity is created due to the rocking (rotation) and uplift (vertical 
negative displacement of the centre) of the foundation (Figure 3.1). Indeed, when the 
foundation undergoes a loading in the right direction (dM<0), it is considered that only 
the soil under the right part of the foundation is plastified, no stresses are developed 
under the left part. When the sign of the loading is reversed (dM>0), only the soil under 
the left part of the foundation is assumed plastified. The soil under the right part remains 
in the same plastic state reached during the previous phase. If a third loading is applied 
(dM<0), the soil under the right part of the foundation is again plastified but starting 
from the plastic state obtained during the first phase (dM<0). This is clearly shown in the 
Figure 3.1

Figure 3.1. Behaviour of the foundation under a cyclic loading when rocking and uplift are 
permitted.

uplift 

z

x

dM

uplift

<0

d

x

z

M

x

z

uplift 

M>0

dM<0
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The choices for the failure criterion and for the nature and evolution of the loading 
surfaces are driven by this specific behaviour. It will be shown that the failure criterion 
chosen is appropriate for a mechanism of rocking with uplift. The hardening laws are 
isotropic and kinematic using independent variables for each direction of solicitation. The 
isotropic and kinematic hardenings are linked with a specific relation also provided in this 
report.



4. DESCRIPTION OF THE 3D MACRO ELEMENT 

The 3D macro element developed hereafter is able to reproduce the behaviour of a 
shallow circular and rigid foundation under cyclic and dynamic loadings considering 
plasticity in the soil and rocking of the foundation. 

The plasticity model is obtained within the framework of classical thermodynamics laws 
of irreversible processes. The load surface and the failure criterion come from the work 
of [Crémer, 2001] and are written in generalized variables V, Hx, Mx, Hy, My. Plasticity is 
coupled with uplift as the failure surface is defined for an overturning mechanism with 
uplift.

There are described hereafter: 

The elastic behaviour 

The plastic behaviour (the failure criterion, the loading surfaces, the kinematic and 
isotropic hardening rules, the tangency rule, the flow rule) 

4.1 ELASTIC BEHAVIOUR

Thanks to the circular shape of the foundation, the stiffnesses corresponding to both 
horizontal displacements are the same. The same stands for the rotations. Using the 
adimensional notation presented previously, the following stiffness matrix is found 
(Equation (1.3)): 
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max

max

max

max

max

0000

0000

0000

0000

0000

'0000

0'000

00'00

000'0

0000'

DSq

K

Sq

DK

DSq

K

Sq

DK

Sq

DK

K

K

K

K

K

K

el

el
hh

el

el
hh

el
zz

el

el
hh

el

el
hh

el
zz

el

   (1.3) 

As was the case for the 2D macro element [Crémer, 2001], this stiffness matrix is 
calculated using the real part of the static impedances of the foundation [Gazetas, 1991]. 

4.2 PLASTIC BEHAVIOUR

4.2.1 Failure criterion 

The failure criterion is defined for an overturning mechanism with uplift. It comes from 
the works of [Pecker, 1997] and it has been used already in the 2D macro element 
[Crémer, 2001]. This criterion was initially developed for a shallow strip and rigid 
foundation in 2D lying on a half space of homogeneous cohesion. However, [Gottardy et 
al., 1999] showed that the shapes of the load and failure surfaces for a circular footing are 
very similar.

The adaptation of the previous criterion in 3D is feasible because the foundation studied 
presents symmetry of revolution. Therefore, the horizontal forces 

x
 and 

y
 on the 

one hand and the moments
x
,

y
on the other hand are treated in a similar manner, 

i.e. the interactions between the two horizontal forces or the two moments are described 
by circles. At the end, a 5D surface is obtained by adding to the original criterion two 
terms, the first dealing with the horizontal force  and the second with the moment 

 (Equation (1.4)). 

H ' H '

M ' M '

yH '

xM '



Sub-Project 8 – Displacement-based Design Methodologies 9

The equation of the failure criterion is the following: 

01
'1'

'

'1'

'

'1'

'

'1'

'

22

22

fe

x
dc

y

fe

y

dc

x

VbV

M

VaV

H

VaV

M

VaV

H
f

  (1.4)

With the coefficients: 

a, b defining the size of the surface in the planes ( 'H - )'M

c, d, e and f defining the parabolic shape of the surface in the planes ( - ) and 
( -

'V 'M

'V 'H )

Theses parameters can be fitted in order to reproduce different experimental results 
found in the literature (see for example the numerical simulations in paragraph 5). 

4.2.2 Loading surfaces 

The loading surfaces must be able to treat independently the vertical force on the one 
hand and the horizontal forces and moments on the other hand. This is clearly 
understood looking at the failure criterion (Equation (1.4)): the interaction between 'H

and is a perfect ellipse centred on the origin of the space, whereas the interaction 
between 

'M

'H and  is a curve passing by the origin of the space and defined only 
for .

'V

0'V

A variable is chosen to parameterize the second intersection point of the curve with the 
 axis (the other point is the origin of the space) and the evolution of the loading 

surface according to this axis. This hardening variable gives the maximum vertical load 
that the structure supported throughout the whole history of the loading (most of the 
time it is equal to the weight of the structure). 

'V

In order to parameterize the size of the ellipse in the hyper plane ( ,
y
,

y
,

x
),

two kinds of hardening laws - one kinematic ( ) and one isotropic ( ) - are used. This 
description is essential in order to reproduce the cyclic behaviour seen before.  

xH ' M ' H ' M '

The analytical expression of the loading surface - represented in Figure 4.1 as a 3D 
projection in a space ( , , ) - takes finally the following form: 'V 'M 'V
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01
''

'

''

'

''

'

''

'
),,(

22

22

fe

x

dc

y

fe

y

dc

x
c

VbV

M

VaV

H

VaV

M

VaV

H
Ff

 (1.5) 

Where ,,,  are the kinematic hardening variables and  the isotropic hardening 
variable. The relationships driving the evolution of theses hardening variables are given in 
the following paragraphs. 

Figure 4.1. Failure criterion and evolution of the loading surfaces projected in a 3D space 

( 'H , , ) [Crémer, 2001]. 'M 'V

4.2.3 Kinematic hardening rule 

Kinematic variables ,,,  permit to determine the centre of the ellipse in the hyper 
plane. The evolution of theses variables has been obtained by studying the experimental 
and numerical behaviour of a foundation under a monotonic static loading. More 
specifically, [Gottardy et al., 1999] provide the relations for a circular footing and for 
different kinds of soils (obtained from experimental tests) and [Crémer, 2001] uses similar 
curves (obtained with FEM simulations) to fit her model. Figure 4.2 shows for example 
the relation between the moment  and the rotation'M ' .
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FEM simulations

exponential relation

Figure 4.2. Relationship between moment and rocking angle using numerical simulations with the 
code Dynaflow [Crémer, 2001]. 

It comes out that the different relationships between forces/moments and associated 
displacements/rotations can be approached using exponential relations, driven by a 1st

order differential equation. For example, the relationship between  and 
yM ' y' can be 

approached as follows: 

y

y

el
el

y

y

M

K
K

d

dM
'

'

'
exp'

'

'
    (1.6) 

Where is the limit of the curve yM ' yyM ''  when y'  tends to infinity. If (.) is the sign 
of the derivative with respect to time then Equation (1.6) is the solution of the following 
1st order differential equation: 

y

y

yel
y

M

M
KM '

'

'
1''     (1.7) 

Assuming the classical partition of the total displacement u into an elastic part uel and a 
plastic part upl ( ), and considering that , it is easy to link the 
increment of force with the increment of the associated plastic displacement (Equation 
(1.8)):

plel uuu
el
y

el
y KM '''
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pl
y

y

yel
y

M

M
KM '1

'

'
''     (1.8) 

Moreover, as 
y
can be represented in the same space asM '

fe VbV ''  (in Equation 
(1.5) - the two terms have the same size), the evolution of the kinematic hardening 
variable  is driven by the following relation: 

pl
y

yel

fe

M
K

VbV
'1'

''

1
*

   (1.9) 

Where is the limit of the curve *
yM pl

y'  when tends to infinity. It is clear at this 
point that the evolutions of the other kinematic hardening variables are driven by similar 
relations.  

pl
y'

As the behaviour is different for dF>0 and for dF<0, two families of kinematic hardening 
laws and variables are used to describe the evolution of each force. 8 relations and 
variables are therefore used in the model for the 8 forces 

xdH >0,
x
<0,

y
>0, 

y
<0,

x
>0,

x
<0,

y
>0,

y
<0. For example for a radial loading, each 

kinematic hardening variable has the following expression (the case of 

' dH ' dH '

dH ' dM ' dM ' dM ' dM '

 is only 
presented for simplicity): 

pl

y

yel

fe

pl

y

yel

fe

M
K

VbV

M
K

VbV

'1'
''

1

'1'
''

1

*

*

   (1.10) 

The first equation of system (Equation (1.10)) is activated when  (corresponding 
to the sign ), the second equation when  (corresponding to the sign ). Finally, 
at each step 

0' pl
y

0' pl
y

 is calculated following .

For a non radial loading (i.e. when relations between forces and moments are not linear), 
the evolution is more complicated. Indeed, in many cases lim can decrease whereas 

 (0' ydM lim being the limit value of ). In other words even if 
y
 increases and 

,  needs to be activated. This is the reason why for a non radial loading, the 
evolution of the kinematic hardening variables is driven by relations of the form: 

M '

0' pl
y
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The first equation of the system (Equation (1.11)) is activated when 0d  while the 
second equation when 0d . The sign of d  is identical to the sign of lim . The 
tangency rule explained in the next paragraph provides us with lim, as for it is the one 
calculated during the previous step. 

In order to use Equation (1.11), the value of is also needed. It is evaluated as 
follows:

*
yM

0

0

lim
*

lim
*

difM

difM

y

y
    (1.12) 

Note: the limit is always positive, less or equal to 1. *
yM

4.2.4 Tangency rule 

In case of a non radial loading, the final loading point isn’t known as it can be anywhere 
on the failure criterion. Moreover, the evolution of the loading surfaces has to be 
specified, as there is a risk of interpenetration with the failure criterion (even if the 
loading point has not yet reached it).  

Consequently, the tangency rule has two functions: first, it permits to determine the final 
loading point and the limits of the kinematic hardening variables and second, it ensures 
that the loading surface is tangent to the failure criterion at the final loading point. In 
other words, the loading surface never interpenetrates the failure criterion: failure occurs 
the first time the loading point intercepts it. 

This rule is described in the space E*=(H*
x, M*

y, H*
y, M*

y) where: 



LESSLOSS – Risk Mitigation for Earthquakes and Landslides 14

fe

x
x

dc

y

y

fe

y

y

dc

x
x

VbV

M
M

VaV

H
H

VbV

M
M

VaV

H
H

''

'
''

'
''

'
''

'

    (1.13) 

From Equation (1.13) it is obvious that in this space the loading surfaces are circles with 
centre at the extremity of the vector t  and radius . They evolve inside 
the failure criterion which is also a circle when =1 (Figure 4.3).

The tangency rule adopted is based on the assumption that the final loading point ( )
is given by the projection of the current loading point (F

F
*) on the failure criterion in the 

direction of the current increment of force (dF*). Thus the centre of the final circle is the 
extremity of the vector limlimlimlimlim

t  and it is a point on the radius of 
the failure criterion (when 1). lim  is predicted considering the evolution of the size of 
the loading surface of the next step. The radius of the circle increases in a similar manner 
with the movement of the centre of the loading surface. Several iterations are necessary 
to predict lim .

Figure 4.3. Non interpenetration criterion (projection in a 2D plane (H*, M*) ) – determination of the 
final loading point. 

dF*

F*

*F

lim

M*
x , H*

x,y ,y f

fpredicted

fcurrent

M*
x,y , H*

x,y 
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4.2.5 Isotropic hardening rule 

The independence of the directions (for dM>0 and dM<0) is taken into account using the 
specific kinematic hardening laws described in the previous paragraphs. However, 
another property of the behaviour of the foundation under cyclic loading permits to link 
the isotropic with the kinematical hardening laws [Crémer, 2001]. Indeed, when a plastic 
state is reached during a new cycle, plastic behaviour is recovered at the same state (and 
with the same slope) as before. The evolution of the loading surfaces describing this 
property is given in Figure 4.4.

M ’

 ’

M ’

H ’

F
1

F
4

F
2

F
4

F
2

F
1

F
3

F
5

F
5

F
3

Figure 4.4. Evolution of the loading surfaces considering a radial loading [Crémer, 2001]. 

This property is translated into the mathematical relation: 

    (1.14) 

With:    (1.15) 
2222

Note: the influence of rocking/uplift can be reduced or cancelled by choosing an 
arbitrary evolution of the isotropic hardening variable as follows: 

k (1.16)

Where 10 k
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4.2.6 Evolution of 

The parameter characterizes the second root of the loading surface on the axis and 
represents the maximum vertical load the structure has supported during the whole 
loading history. It is equal, most of the time, to the weight of the structure. Its evolution 
is therefore closely dependant on the evolution of the vertical force , at least for the 
initialisation phase, where the foundation is submitted only to the weight of the structure. 
During this phase = .

'V

'V

'V

The evolution of  is driven by the empirical relationship linking vertical force and 
vertical displacement given by [Nova and Montrasio, 1991]:  

Thus for a monotonic loading: z
el
zz uK '1'exp1

Which can be written as a 1st order differential equation: 

1'elzzK      (1.17) 

Nevertheless, the other plastic displacements (horizontal displacements and rotations) can 
also increase the size of the loading surfaces in the direction of . Consequently, the 
evolution of  depends also on them and  is driven by the following expression. 

'V

1'''''' 54321
pl
z

pl
y

pl
z

pl
x

pl
z

el
zz auaauauaK   (1.18) 

Where a1, a2, a3, a4 and a5 are parameters which permit to adjust the influence of each 
component of the plastic displacement array. 

4.2.7 Flow rule 

In the 4D space defining by the hyper plane ( x , y , y , x ), plasticity develops 
according to the normal at the loading surface, i.e. if the projection of the normal on a 
given axis ( x ) is positive, the associated plasticity ( ) is also positive (

H ' M ' H ' M '

H ' pl
xu ' Figure 4.5).

The loading surface fc is thus sufficient to describe the direction of the plasticity velocity 
and the flow rule in this hyper plane is associated. 
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M’
nf=ngdupl

fc=gElastic zone

H’

Figure 4.5. Representation of the flow rule in (  – 'M 'H ) plane 

In the other 4 planes where the vertical force interferes (i.e. (
x

, ), (
y
, ), 

(
y
, ), (

x
, )), the loading surface cannot be used to determine the direction of 

the plasticity velocity. Indeed, there are cases where the normal at this surface is of a 
negative value whereas the plasticity velocity is always positive or equal to zero 
(

'V H ' 'V M ' 'V

H ' 'V M ' 'V

pl
zu

Figure 4.6).

V’

H’x

nf

Elastic zone 

fc

Figure 4.6. Representation of the loading surface in ( 'H  – ) plane – projection of n'V f on  axis 

can be negative 
'V

This is the reason why a non-associated flow rule is used in theses 4 planes. The 
expression of g is the following:
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Where 
0
 is the current vertical force used in order to assure that the flow rule g and the 

loading surface f
'V

c have their intersection on the loading point F.

fc et g are therefore identical in the planes (
xH ,

y
), (

xH ,
x
), (

xH ,
y
), ( , ),

( ,
y
), ( , ) (i.e. ellipse), whereas f

' M ' ' M ' ' H ' yM ' xM '

yM ' H ' xM ' yH ' c and g are non associated in ( , ),
( , ), ( , ), ( , ).

xH ' 'V

yM ' 'V yH ' 'V xM ' 'V

The representation of g in the plane ( - ) is given in the 
yM ' 'V Figure 4.7.
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Figure 4.7. Representation of the computed flow rule and the loading surface for a given loading 

point F in the planes ( - ) and ('M 'V 'H - ).'V

The horizontal tangent of the flow rule can be adjusted using 2 parameters  and  in 
order to modify the evolutions of plastic displacements in the hyper plane 
(

x
,

yu ' ' ,
y
,

xu' ' ) compared to the vertical plastic displacement. In the general case, the 
horizontal tangent in ( - ) planes is located on 'M 'V 2/1'V  and the horizontal 
tangent in ( 'H - ) planes is located on'V 2/1'V . In Figure 4.7 theses parameters 
are taken as default equal to 1 to obtain always an horizontal tangency for =0.'V

4.3 IMPLEMENTATION OF THE PLASTICITY MODEL

In this part, some details about the specific implementation of the plasticity model are 
given. Particularly tools and formulations needed to program the Return Mapping 
algorithm are recalled [Simo et al., 1998]. 

4.3.1 Normality rule 

Following the classical plasticity theory, the direction of the plasticity velocity is given by 
the normality rule defined hereafter: 
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    (1.20) 

Where 0

The hardening function  is defined as:h qFhq , . This function is essential to the 
Return Mapping algorithm. 
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Variables and  permit to impose the zero value at variables or , according 
to the current mode (d 0 or d 0).

v v

Hardening variables are now linked with the normal at the flow rule and the plasticity 
multiplier . This multiplier is calculated thanks to the consistency rule described 
hereafter.
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4.3.2 Consistency rule 

The consistency rule translates the fact that the load point (the extremity of the vector 
force) is always on the load surface. It permits also to determine the plasticity multiplier 

as follows: 

At each step and iteration both conditions 0f and have to be respected. The 
first condition can be written as: 

0f

h
q

f

F
F

f

h
q

f
F

F

f

q
q

f
F

F

f
f

0

00

   (1.22) 

This relation permits to introduce h
q

f
H  as the plastic modulus.  

The Return Mapping algorithm is finally used as follows: 

4.3.3 Return Mapping Algorithm [Simo et al., 1998]. 

After dete g an elastic prediction (for step n and iteration i rmining a force usin
niplnielni uuKF ,  ) the load point is out of the load surface. The Return Mapping 

Algorithm permits to bring back the force to the surface by increasing the hardening 
variables (implying an increase of the size of the surface and a displacement of its centre) 
and by reducing the elastic prediction till the solution points on the surface (the index of 
the return mapping is k). 
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Where:    

H
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K

F

f
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el

ni
k      (1.25) 

The macro element is implemented in the Matlab toolbox FedeasLab [Filippou et al., 
2004]. Numerical simulations are presented hereafter to evaluate the efficiency of this 
new tool. 





5. NUMERICAL SIMULATIONS 

The simulations are divided into 3 parts: 

To see whether the macro element is able to give good results under a static loading, 
numerical simulations are compared to experimental results coming from the works 
of [Gottardy et al., 1999].

The performance of the macro element under a cyclic loading is then tested using the 
experimental results coming from the European program [TRISEE, 1998].  

Finally, in order to evaluate the efficiency of the macro element to predict the 
dynamic behaviour of a slender structure, the simulation of the Camus 4 experiment 
[Combescure et al., 2000] is carried out. 

5.1 MONOTONIC STATIC BEHAVIOUR

Detailed presentation of the tests is presented in [Gottardy et al., 1999]. They concern a 
circular footing of diameter 2R=D=0.1m lying on a sand of a known density. 

At the beginning, a vertical displacement is applied at the foundation until a given vertical 
force is reached. Then, this vertical displacement is kept constant while another 
displacement (horizontal displacements or rotations or a combined displacement) is 
increasing.  The test is thus completely displacement controlled. The response of the 
foundation is represented in the space of forces. The curve described in the space 
(

x
,

y
,

y
,

x
) is an approximation of the yield surface (H ' M ' H ' M ' Figure 5.1 - that’s why the 

test is called “swipe test”).  

Figure 5.1.  Schematic diagram of load paths followed in swipe tests [Gottardy et al., 1999] projected 
in a (H - M/2R - V) space. 
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Among all the tests realised by [Gottardy et al., 1999], 4 of them are studied and 
reproduced hereafter numerically with the new macro element (GG03, GG04, GG06 and 
GG07).

The test GG03 consists in applying a vertical displacement until a vertical force of 
V0=1600N is reached. After that, the vertical displacement is kept constant while an 
increasing horizontal displacement is applied to the foundation (Figure 5.2).

Figure 5.2. Swipe test GG03: Step 1. a constant vertical displacement is applied, Step 2. an increasing 
horizontal displacement is applied. 

The test GG07 consists in applying a vertical displacement until V=1600N is reached (in 
order to develop isotropic hardening in the soil) and then the vertical displacement 
decreases to obtain an initial vertical force of V0=200N. After that, the vertical 
displacement is - as before - kept constant while an increasing horizontal displacement is 
applied to the foundation (Figure 5.3).
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Figure 5.3. Swipe test GG07: Step 1. a constant vertical displacement is applied, Step 2. an increasing 
horizontal displacement is applied. 

Figure 5.4 and Figure 5.5 show the load path in the planes (Hx -V) and (Hx-ux) for the 
experimental test and the numerical test. 
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Figure 5.4. Experimental results for the swipe tests GG03 and GG07 in planes Hx-ux and Hx-V

Figure 5.5. Numerical results for the swipe tests GG03 and GG07 in planes Hx-ux and Hx-V.

Swipe test GG04 is realised in a similar way with the GG03 test. The only difference with 
GG03 is that after the initial vertical force of V0=1600N is reached, an increasing 
rotation is applied to the foundation. Results are presented in Figure 5.6 and Figure 5.7.
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Figure 5.6. Experimental results for swipe test GG04 in planes My/2R-2R y and My/2R –V. 

Figure 5.7. Numerical results for swipe test GG04 in planes My/2R-2R y and My/2R –V.

Finally, swipe tests GG06 and GG29 deal with a simultaneous horizontal displacement 
and rotation applied at the centre of the foundation with a constant ratio of: 

126/tan 1 duDd  for GG06 and 157/tan 1 duDd for GG29. This loading is 
applied again once the initial vertical load of V0=1600N is reached imposing a constant 
vertical displacement. Figure 5.8 shows the experimental and numerical load paths in the 
plane (h=H’x/V0; m=M’y/(2RV0) ): 
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(b)(a)

Figure 5.8. (a) Experimental results, (b) Numerical results for swipe tests GG06 and GG29 in plane 
h-m.

The parameters of the model are calibrated using the tests GG03 and GG04. Numerical 
results concerning the other tests are calculated without any further calibration. The 
previous diagrams show that the macro element is able to reproduce the trends of the 
behaviour of a circular footing under static loading when different combinations of 
displacements are imposed. 

The horizontal displacement imposed during the test GG03 leads to a decrease of the 
vertical force. The explication is the following: the horizontal loading creates an isotropic 
hardening which develops plasticity in all directions, particularly in the  direction. If 
the vertical load was an imposed vertical force, this increasing hardening in the direction 

 would imply a plastic vertical displacement. Here however, the displacement is kept 
constant. This results to a decrease of the vertical force. V decreases from the initial value 
V

'V

'V

0=1600N to a constant value due to the fact that the sand was glued under the 
foundation implying a residual friction that can be computed through correct tuning of 
the flow rule parameters. The 3D macro element reproduces correctly this behaviour. It 
is interesting to notice that the load path follows particularly well the failure criterion of 
the experiment. 

During the test GG07, the initial vertical loading of 1600N implies an increase of the size 
of the surface (isotropic hardening) before the horizontal displacement is applied. Then, 
while the horizontal displacement is increasing, the behaviour is quasi linear until the 
foundation reaches the stage of plasticity.  

Test GG04 is also reproduced correctly by the macro element. Some differences 
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concerning the peak of the curve on the (M/2R, 2R diagram are however noticeable. 

Finally, for the tests GG06 and GG29, the loop is well simulated even if some differences 
exist. Theses differences come from the definition of the flow rule i.e. the relationship 
between the plastic displacement according to and . Calibrating the parameters of 
the model could lead to better numerical results. 

yM ' xH '

In order to show the behaviour of the macro element under a 3D loading, the following 
numerical 3D swipe test is performed. Figure 5.9 shows the load path in the (Mx/2R-
My/2R-V) space. At the beginning, a vertical displacement is imposed till a constant value 
and then the foundation is driven with an increasing rotation 

y' until moment 
y

reaches a given value. At this stage this rotation is halted and kept constant, and a new 
increasing rotation 

x

M '

'  is applied to the foundation. Moments in the 2 directions are 
clearly developed and at the end the load path is very close to the failure surface. 

(a) (b)

(c)

Figure 5.9. Numerical simulations of 3D swipe test: representation of the load path (curve in red) (a)
in planes My/2R- Mx/2R, (b) My/2R-V, (c) in space My/2R- Mx/2R-V.
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One has to remember that the philosophy of the 3D macro element and of the swipe 
tests is different. The swipe tests provide a loading surface for a given penetration which 
has the form of a “rugby” balloon. For a given penetration the loading surface of the 3D 
macro element is just a line. Once horizontal displacements or rotations are applied, the 
loading surface grows till embracing the failure criterion. 

5.2 CYCLIC STATIC BEHAVIOUR

5.2.1 Virtual structure 

To show that the model is able to reproduce the principal characteristics of a foundation 
submitted to a cyclic loading, a cyclic radial displacement is imposed at the top of a virtual 
slender structure embedded on a foundation. The slender structure is simulated using a 
3D elastic beam and the foundation with the macro element (Figure 5.10).

Ucyclic

x

y

z

Figure 5.10. Representation of the virtual structure. 

Figure 5.11 shows the evolution of the different forces compared to the associated 
displacements.
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Mx x Hy-Uy

(a) (b)

Figure 5.11. Cyclic behaviour considering rocking of the foundation. 

The results are satisfactory as the macro element reproduces the two principal 
behaviours, mainly: 

The independence of the directions of loading (dM>0 and dM<0) 

The curve starts with the same slope when plasticity is recovered.  

5.2.2 Cyclic behaviour of a foundation without rocking or uplift 

By imposing 0  (k=0) - in other words by adjusting the evolution of isotropic 
hardening compared to kinematic hardening -, it is possible to simulate the behaviour of a 
foundation lying on a low density soil or with low mechanical characteristics. In that case 
the behaviour of the foundation is without rocking or uplift. 

Within the European program TRISEE, experimental tests are performed on a shallow 
1m x 1m rectangular foundation lying on “Low density” sand [TRISEE, 1998]. Sine-
shaped horizontal displacement cycles of increasing amplitude are applied at the top of a 
vertical beam embedded on the foundation (Figure 5.12).
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Figure 5.12. TRISEE: Scheme of the experimental mock-up (dimensions in m). 

The macro element is developed to reproduce the 3D behaviour of a circular footing. 
The cyclic loading applied during the TRISSE test is a 2D one, thus the axisymmetric 
character of the macro element is not a limitation. The diameter of the numerical footing 
is calculated to have the same area with the experimental one. This leads to a diameter D
equal to 1.128m.

Figure 5.13 shows the relationship between the horizontal force and the horizontal 
displacement reproduced numerically and during the experiment. Results are satisfactory 
in terms of the maximum horizontal forces. Nevertheless, the experimental loops move 
towards the negative direction of the horizontal displacements although the loading and 
the geometry of the mock-up are completely symmetric. A local failure could be the 
explanation of this behaviour. Numerical loops are completely symmetric because the 
macro element is not able to reproduce this local phenomenon.  

(a) (b) 

Figure 5.13. TRISEE: Comparison between (a) Experimental results and (b) Numerical results 
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Horizontal force vs. horizontal displacement. 

Figure 5.14 shows the relationship between the moment and the rocking angle. Results 
are again very satisfactory. The main differences are that the moment reaches an 
asymptote (Mlim=40kNm) more quickly with the macro element that during the 
experiments. Once again the experimental curves are not symmetric but the phenomenon 
is less pronounced this time. 

(a) (b)

Figure 5.14. TRISEE: Comparison between (a) Experimental results and (b) Numerical results 
Moment vs. rocking angle. 

Finally, Figure 5.15 presents the vertical settlement of the structure measured during the 
test and reproduced by the macro element. The different plateaus of the experimental 
curves are well simulated by the model, thanks to the good description of the plastic 
displacements by the flow rule. Nevertheless, experimental results show that the centre of 
the foundation rises from time to time slightly. Of course, the macro element cannot 
reproduce this behaviour because during the numerical simulation uplift and rocking are 
prohibited. 

(b)(a)

Figure 5.15. TRISEE: Comparison between (a) Experimental results and (b) Numerical results 
vertical settlement vs. time. 
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5.3 DYNAMIC BEHAVIOUR – CAMUS 4 TEST

o element to predict the behaviour of a 
on of the Camus 4 

e line of a series of tests performed on seismic table 
ed out within the framework of the European research 

ilding on a 1/3 scale. It is 5,1m high, and is made 
up of 2 reinforced concrete walls and 2 strip foundations of 0,8m x 2,1m (Figure 5.16).

In order to evaluate the efficiency of the macr
slender structure submitted to a dynamic loading, the simulati
experiment [Combescure et al., 2000] is carried out. 

5.3.1 Camus 4 test description 

Camus 4 is an experiment in th
realized in CEA Saclay. It is carri
projects ICONS-TMR

1
, ECOEST II. 

The mock-up represents a 5 storey bu

The mass of the structure equals 36.2t and the mass of the foundations is 2,3t (38.5t for 
the total). Camus 4 lies on a sand box of 4m x 4m (Figure 5.17). The mock-up is 
subjected to the Nice 0.33g earthquake motion applied in the direction of the walls. 

Figure 5.16. Camus 4 -  Mock-up. 

Figure 5.17. Camus 4 - Sand box. 

                                                     

1 Innovative design COncept for New and existing Structures - Training and Mobility of Researchers 
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5.3.2 Finite element mesh 

A simple finite element mesh is used for the spatial discretization of the structure. The 
masses are concentrated at each floor and multifiber Timoshenko beam elements are 
used for the storeys (see Figure 5.18). Details about the masses and the elastic properties 
of the beam elements are presented in [Grange, 2004]. In order to simplify, the 
foundation is modelled using the macro element with a diameter D=2.1m. 

Figure 5.18. Camus 4 - Finite element mesh 

Note: At the end of the experiment the structure underwent very little damage. That is 
the reason why the behaviour of the Timoshenko beams element is considered linear for 
the simulations presented hereafter. 

5.3.3 Results 

In all the graphs presented hereafter the red dotted lines correspond to the experimental 
results and the blue continuous ones to the numeri  The structure is submitted to the 
earthquake motion Nice 0,3

cal.
3g. 
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(a) (b)

Figure 5.19. Camus 4 - Evolution of (a) moment and (b) rocking angle vs. time 

Figure 5.19 shows the evolution of the moment at the base of the structure and the 
evolution of the rotation.  

5.3.4 Comments 

The main trends of the behaviour of the structure are quite well predicted: 

Experimental and numerical curves are relatively in phase. 

The values of the moment as well as the rotation at the base are well respected. 

Nevertheless, some differences appear between the experimental and the numerical 
results. One has to remind that the macro element is initially developed to simulate a 
foundation lying on an infinite space. In the experimental test, the height of the sand box 
doesn’t exceed 40cm. This experiment is beyond the domain of validity of the model.  
The elastic constant stiffness taking into account in the model could also explain the 
differences between experimental and numerical results. Indeed, actual stiffness is not a 
constant value but depends on the frequency of the waves in the soil. 

It is interesting to notice that the macro element reproduces correctly the global 
behaviour of the Camus 4 specimen with a very small computational cost (only a couple 
of minutes are needed!) and with very simple finite element mesh (21 degrees of 
freedom).



6. BASE ISOLATORS AND DAMPERS 

An important advantage of the macro element developed throughout this report is that 
by adjusting the parameters and by introducing different kinematic hardening laws it is 
relatively easy to reproduce the behaviour of different base isolators or dissipations 
devices. It is therefore possible to model the dynamic behaviour of structures where these 
kinds of isolators are introduced. 

Classical base isolators dissipate energy only through shear deformation. This is the 
reason why only horizontal forces and displacements need to be computed and so the 3D 
macro element can be greatly simplified. Indeed, moments and vertical components are 
transmitted to the structure relatively unchanged. Moreover, the 2 horizontal directions x
and y for the displacements and forces can now be considered totally uncoupled. The 
non-interpenetration criterion (or tangency rule) is also highly simplified. Stiffness 
parameters and parameters of the failure criterion can be easily fitted using experimental 
results (horizontal forces - horizontal displacements) for different kind of isolators. 

3 kinds of isolators are presented hereafter. The first one is an elastomeric bearing base 
isolator which can be placed at the base of a structure. The 2 others are dissipation 
devices placed for example in a diagonal bracing mechanism. 

6.1 BASE ISOLATOR DEVICE

The base isolator studied hereafter is composed of laminated rubber bearings. Details of 
the specimen are shown in Figure 6.1 and Figure 6.2, [Chung et al., 1999]. 

Figure 6.1. Cross-section of base isolator. 
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Figure 6.2.Details of the base isolator [Chung et al., 1999] 

A particularity of this type of isolator is that the experimental restoring force does not 
seem to attend a plateau even for high displacements. In other words, kinematic 
hardening always increases even for high displacements (Figure 6.3, [Chung et al., 1999]). 
That’s why the kinematic hardening evolution used in the macro element is modified by 
the addition of a term in order to obtain an oblique asymptote [Lemaitre et al., 1988] 
(instead of the horizontal asymptote for the initial 3D macro element). A new parameter 
is thus introduced to parameterize the slope of this asymptote. Numerical results 
compared to experimental simulations are presented in Figure 6.3.

(a) (b)

Figure 6.3. Base isolator - Relationship between horizontal force and displacement: (a) 
Experimental results, and (b) numerical results. 

Numerical results are very close to the experimental results. In particular, the size of the 
loop is well described, permitting to have a good approximation of the hysteretic 
damping behaviour of the isolator. 
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6.2 DISSIPATION DEVICES

6.2.1 Metallic dampers 

Placed into the skeleton of a structure, metallic dampers dissipate energy trough 
hysteretic behaviour of metals when they behave plastically. Figure 6.4 shows the 
Triangular Added Damping And Stiffness (TADAS) device which is made of triangular 
steel plates [Chopra, 1995]. 

Figure 6.4. TADAS device [Chopra, 1995] 

The loops described by this type of dampers are stable (Figure 6.5), and present a 
horizontal asymptote. This behaviour is well predicted by the 3D macro element when 
uplift and rocking are cancelled. As was the case for the base isolator, parameters of the 
model are easy to fit (parameters of the loading surface permit to adjust the plateau of the 
curve and the elastic stiffness permit to adjust the slope at the origin). 

(a) (b) 

Figure 6.5. TADAS device - Relationship between force and displacement: (a) Experimental results 
[Chopra, 1995], and (b) numerical results. 

6.2.2 Friction dampers 

Adopting a similar philosophy with the metallic dampers, friction dampers permit to 
dissipate the energy by friction between several plates. A schematic diagram of this kind 
of damper is given in Figure 6.6 [Chopra, 1995]. Again, behaviour is well predicted using 
the macro element when uplift and rocking are cancelled. Here the elastic stiffness is 
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chosen with a very high value to obtain the rectangular loops (see Figure 6.7).

Figure 6.6. Friction damper device [Chopra, 1995]. 

(b)(a)

Figure 6.7. Friction dampers - Relationship between force and displacement: (a) Experimental 
results [Chopra, 1995], and (b) numerical results. 

As a conclusion the 3D macro element can be adapted to simulate the behaviour of 
different base isolators and dissipative devices. Adapting the model is a very simple 
procedure consisting for example in modifying the kinematic hardening in order to obtain 
an oblique asymptote.  Uncoupling of the different directions is also possible, thus 
computation is simplified.  



7. CONCLUSION AND WAY FORWARD 

The 3D macro element developed within this work gives satisfactory results for 
simulating the non linear behaviour of a circular rigid foundation lying on an infinite 
space submitted to a monotonic static but also cyclic or dynamic loading. Using global 
variables it presents the advantage of inducing low computation costs. This first version 
of the 3D macro element is implemented in the Matlab toolbox FedeasLab.  

Nevertheless, different improvements could be done, in particularly concerning the fitting 
of the parameters (stiffness, shape of the loading surface) and the different rules (flow 
rule, tangency rule). The difficulty to develop a macro element in 3D lies in the fact that it 
has to be capable of simulating a non radial loading. Indeed, in 3D, forces and moments 
in the 2 horizontal directions x and y are coupled with a non linear relation (whereas the 
2D original version of the macro element was developed by considering linearity between 
the horizontal force 

x
and the moment 

y
). The tangency rule, function that manages 

the evolution of the load surface is thus complicate and need to be improved. 
H ' M '

The new Deliverable D8-2 of the LESSLOSS program (deliverable under preparation) 
has the objective of presenting extensive validations of the 3D macro element with 
further experimental and numerical results. 
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