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Abstract

We investigate properties of locally finite languages introduced by
J-P. Ressayre in [Res88]. These languages are defined by locally fi-

nite sentences and generalize languages recognized by automata or
defined by monadic second order sentences. We give many examples,
showing that numerous context free languages are locally finite.
Then we study closure properties of the family LOC of locally fi-
nite languages, and show that most undecidability results that hold
for context free languages may be extended to locally finite languages.
In a second part, we consider an extension of these languages to infi-

nite and transfinite length words. We prove that each α-language
which is recognized by a Büchi automaton ( where α is an ordinal
and ω ≤ α < ωω ) is defined by a locally finite sentence. This result,
combined with a preceding one of [FR96], provides a generalization of
Büchi’s result about decidability of monadic second order theory of
the structure (α, <).

1 Introduction

In the sixties J.R. Büchi established some ties between monadic second order
logic and finite automata, [Büc60]. When a word over a finite alphabet is
considered as a structure in a natural manner, a finitary language is recog-
nized by a finite automaton if and only if it is the class of finite models of a
monadic second order sentence. And the distinction between first order and
second order sentences is here very significant: first order sentences define
the important class of star free languages, [Pin96] [Par83].
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In 1974 R. Fagin proved that the class NP is characterized by existential
second order formulas, [Fag93]. Since then, many complexity classes like P,
PSPACE, LogSPACE, NLogSPACE, have been proved to be character-
ized by different versions of second order logic with the use of, for example,
fixed point operators or transitive closure operators [Tho96]. This led to
the now called descriptive complexity theory, (see [Tho96], [Fag93], [Imm87],
[EF95] for more results and references). A logical characterization of context
free languages has been recently found by C. Lauteman, T. Schwentick and
D. Therien, involving second order quantifications over some special binary
relations called matchings, [LST94]. A logical characterization for Petri Net
languages had been found by M. Parigot and E. Pelz, [PP85].

To prove the decidability of the monadic second order theory of one successor
over the integers, and further over the structure (α, <), for α a countable
ordinal, J.R. Büchi and D. Siefkes studied ω-languages ( and α-languages )
which are recognized by finite automata reading infinite ( and transfinite )
length words. An α-language is shown to be accepted by a finite automaton
iff it is defined by a monadic second order formula, [Büc62] ,[BS73]. Since
then the expressive power of other logics, such as temporal logics, over infinite
words has been studied, and many results have been stated. See [Tho90],
[Tho96], [Pin96], [PP98], [Sta97], [LT94] for more results and references.

The case of transfinite length word languages appear in the theory of traces
for the modelization of concurrency [DR95] and in the work about timed
automata when one consider that an infinite number of actions may happen
during a finite period of time [AD94], [BP97]. The languages of transfinite
length words which are recognized by finite automata have been recently
studied by N. Bedon in [Bed96], [Bed98] where the extension of the equiva-
lence between first order sentences and star free languages is shown.

To extend these results, J-P. Ressayre, in order to apply ideas and machinery
of model theory to the study of formal languages, introduced in [Res88] the
locally finite sentences and the locally finite and free locally finite languages.
He showed that these latter languages may be seen as a class of finite struc-
tures satisfying a strong finitary analogue to the properties of a universal and
complete class of first order structures equipped with elementary embeddings.

Locally finite sentences are first order, but they define locally finite languages,
via existential quantifications over relations and functions which appear in
the locally finite sentence. And these second order quantifications are much
more general than the monadic ones as the following results show:
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• Each rational language is locally finite, [Res88].

• Each quasirational language is locally finite, Theorem 2.21 below.

• Each ω-language which is accepted by a Büchi automaton is a locally
finite ω-language, [Fin89] and Theorem 5.7 below.

• And there exist much more locally finite (ω-)languages, see section 2
below and [Fin89],[Fin99].

But syntaxic and semantic restrictions (a locally finite sentence is equivalent
to a universal one and its models satisfy simple structural properties) make
locally finite ω-languages keep important properties of rational ω-languages.
The pumping lemma of [Res88] is an analogue for each locally finite ω-
language of the property : ” A rational ω-language is non empty if and
only if it contains an ultimately periodic word ”. And this lemma implies in
a similar manner the decidability of the emptiness problem for locally finite
ω-languages. And similar results exist for α-languages, where α is an ordinal
< ωω, [FR96].
And other pumping lemmas based on the existence of indiscernables in a
model imply decidability of problems like: is a finitary locally finite language
infinite?

We study here first the finitary locally finite languages.
In section 2, we give many examples. The question to know whether every
context free language is locally finite remains open contrary to that is asserted
in [Res88]. But Dyck languages and quasirational languages as many other
context free languages are locally finite. We then study two hierarchies which
are located between context free and context sensitive languages: there are
locally finite languages at each level of these hierarchies.

In section 3, classical closure properties are investigated. Locally finite lan-
guages are closed under union, concatenation product and star operation
[Res88]. We show that the class LOC of locally finite languages is closed
under substitution, morphism, alphabetic inverse morphism, but not under
intersection, complementation, intersection with a rational language, inverse
morphism. These latest results are obtained by the use of the notion of
rational cone.

In section 4, numerous undecidable problems for context free languages are
shown to remain undecidable when locally finite languages are considered.
In particular, given an alphabet Σ containing more than two letters, it is
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undecidable to determine, for arbitrary given locally finite languages L(ϕ)
and L(ψ) over Σ, whether L(ϕ) ∩ L(ψ) is empty, infinite, rational, context
free or locally finite, whether L(ϕ) ⊆ L(ψ), whether

L(ϕ) = L(ψ), whether L(ϕ) is rational, whether cL(ϕ), the complement
of L(ϕ), is empty, infinite, rational, or locally finite.

In section 5 and 6, we consider an extension of locally finite languages to
infinite and transfinite length words. We show that every α-language which
is recognized by a Büchi finite automata, (with ω ≤ α < ωω), is a locally finite
α-language. This gives a new decision algorithm for the emptiness problem
for Büchi α-languages. And this permits us to consider other new decidability
results based on the use of indiscernables in a model. This shows also that
the expressive power of the formulas ∃R1...Rkϕ(R1...Rk), where ϕ(R1...Rk)
is locally finite in the signature {<,R1, ..., Rk}, is stronger than that of the
monadic second order formulas while keeping decidability properties for the
structure (α, <), ω ≤ α < ωω. Hence this provides a generalization of Büchi’s
result.

2 Examples of locally finite languages

2.1 First definitions

We briefly indicates now some basic facts about first order logic and model
theory. More information may be found in textbooks, like [CK73] or [Sch67].

We consider here formulas of first order logic. The language of first order
logic contains (first order) variables x, y, z, ... ranging over elements of a
structure, logical symbols: the connectives ∧ (and), ∨ (or), → (implication),
¬ (negation), and the quantifiers ∀ (for all), and ∃ (there exists), and also
the binary predicate symbol of identity =.
A signature is a set of constant, relation ( different from = ) and function
symbols. we will consider here only finite signatures.

Let Sig a finite signature. We define first the set of terms in the signature
Sig which is built inductively as follows:

1. A variable is a term.

2. A constant symbol is a term.

3. If F is a m-ary function symbol and t1, t2, ..., tm are terms, then F (t1, ..., tm)
is a term.
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We then define the set of atomic formulas which are in the form given below:

1. If t1 and t2 are terms, then t1 = t2 is an atomic formula.

2. If t1, t2, ..., tm are terms and R is a m-ary relation symbol, then R(t1, ..., tm)
is an atomic formula.

Finally the set of formulas is built inductively from atomic formulas as fol-
lows:

1. An atomic formula is a formula.

2. If ϕ and ψ are formulas, then ϕ∧ψ, ϕ∨ψ, ϕ → ψ and ¬ϕ are formulas.

3. If x is a variable and ϕ is a formula, then ∀xϕ and ∃xϕ are formulas.

An open formula is a formula with no quantifier.
We assume the reader to know the notion of free and bound occurrences of
a variable in a formula. Then a sentence is a formula with no free variable.
A sentence in prenex normal form is in the form ϕ = Q1x1...Qnxnϕ0(x1, ..., xn),
where each Qi is either the quantifier ∀ or the quantifier ∃ and the formula
ϕ0 is an open formula.
It is well known that every sentence is equivalent to a sentence written

in prenex normal form.
A sentence is said to be universal if it is in prenex normal form and each
quantifier is the universal quantifier ∀.

We then recall the notion of a structure in a signature Sig: A structure is in
the form:

M = (|M |, (aM)a∈Sig)

Where |M | is a set called the universe of the structure, and for a ∈ Sig, aM

is the interpretation of a in M :
If f is a m-ary function symbol in Sig, then fM is a function: Mm → M .
If R is a m-ary relation symbol in Sig, then RM is a relation: RM ⊆ Mm.
If a is a constant symbol in Sig, then aM is a distinguished element in M .

When M is a structure and ϕ is a sentence in the same signature Sig, we
write M |= ϕ for ” M is a model of ϕ ”, which means that ϕ is satisfied in
the structure M . More details about these notions may be found in [CK73]
or [Sch67].

When M is a structure in the signature Sig and Sig1 is another signature such
that Sig1 ⊆ Sig, then the reduction of M to the signature Sig1 is denoted
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M |Sig1. It is a structure in the signature Sig1 which has same universe
|M | as M , and the same interpretations for symbols in Sig1. Conversely
an expansion of a structure M in the signature Sig1 to a structure in the
signature Sig has same universe as M and same interpretations for symbols
in Sig1.

When M is a structure in a signature Sig and X ⊆ |M |, we define:
cl1(X, M) = X ∪

⋃
{f n−ary function of Sig } fM(Xn) ∪

⋃
{a constant of Sig } aM

cln+1(X, M) = cl1(cln(X,M),M) for an integer n ≥ 1
and cl(X, M) =

⋃
n≥1 cln(X,M) is the closure of X in M .

Let us now define locally finite sentences:

Definition 2.1 A first order sentence ϕ ( in the signature S(ϕ)= non logic
symbols appearing in ϕ ) is locally finite if and only if (iff):

a) M |= ϕ and X ⊆ |M | imply cl(X,M) |= ϕ

b) ∃n ∈ N such that ∀M , if M |= ϕ and X ⊆ |M |, then cl(X, M) =
cln(X, M), where cl(X, M) is the closure of X in M and cln(X, M) is
the subset obtained from X applying at most n times the functions of
S(ϕ). (closure in models of ϕ takes less than n steps).

Notation. For a locally finite sentence ϕ, let nϕ be the smallest integer
n ≥ 1 verifying b) of the above definition.

Remark 2.2 Because of a) of Definition 2.1, a locally finite sentence ϕ is
always equivalent to a universal sentence, So we may assume that we are still
in that case.

Let us now introduce basic notations for words.
Let Σ be a finite alphabet whose elements are called letters. A finite word
over Σ is a finite sequence of letters: x = a0...an where ∀i ∈ [0; n] ai ∈ Σ.
We’ ll denote x(i) = ai the i + 1th letter of x. The length of x is |x| = n + 1.
The empty word will be denoted by λ and has 0 letter. Its length is 0. The
set of finite words over Σ is denoted Σ⋆. Σ+ = Σ⋆ − {λ} is the set of non
empty words over Σ. A (finitary) language L over Σ is a subset of Σ⋆. Its
complement ( in Σ⋆ ) is cL = Σ⋆ − L. When x = a0...an is a word over Σ
and the ai are letters, we denote xR = an...a0 the word obtained from x by
the reverse operation. The usual concatenation product of u and v will be
denoted by u.v or uv. N will be the set of non negative integers. For V ⊆ Σ⋆,
we denote V ⋆ = {v1...vn/n ∈ N and vi ∈ V ∀i ∈ [1; n]}.
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A word over Σ may be considered as a structure in the following usual man-
ner:

Let Σ be a finite alphabet. We denote Pa a unary predicate for each letter
a ∈ Σ and ΛΣ the signature {<, (Pa)a∈Σ}. Let σ be a word over the alphabet
Σ, |σ| is the length of the word σ. We may write that |σ| = {0, 1, ...., |σ|−1}.
σ is identified to the structure (|σ|, <σ, (P σ

a )a∈Σ) of signature ΛΣ where
P σ

a = {i < |σ|/ the i + 1th letter of σ is an a }.

Definition 2.3 Let Σ be a finite alphabet and L be a language of finite words
over the alphabet Σ, L ⊆ Σ⋆.
Then L is a locally finite language ←→ there exists a locally finite sentence
ϕ in a signature Λ ⊇ ΛΣ such that σ ∈ L iff ∃M,M |= ϕ and M |ΛΣ = σ.
( where M |ΛΣ is the reduction of M to the signature ΛΣ).
We then denote L = LΣ(ϕ) , and to simplify, when there is no ambiguity,
L = L(ϕ) the locally finite language defined by ϕ.
The class of locally finite languages will be denoted LOC.

The empty word λ has 0 letter. It is represented by the empty structure.

Remark 2.4 The most natural convention concerning the possibility for a
structure to have an empty domain is that an empty structure of signature
Λ exists if Λ does not contain any constant symbol. A sentence of Λ is then
true in the empty structure if under prenex form it begins by ∀ and false if
it begins by ∃.
Let then L(ϕ) be a locally finite language. If λ ∈ L(ϕ), let d /∈ S(ϕ) and
ϕ′ = ϕ ∧ (d = d), then ϕ′ is locally finite, S(ϕ′) = S(ϕ) ∪ {d} where d is a
new constant symbol. And it holds that L(ϕ′) = L(ϕ) − {λ}.
Conversely assume that λ /∈ L(ϕ). We then replace each constant symbol
c of ϕ by a unary function symbol c(u), each occurrence of c in ϕ by c(u)
for each constant c, we place ∀u in front of ϕ and we add to ϕ the sentence
∀uv

∧
c c(u) = c(v).

The resulting sentence ϕ′ is locally finite and verifies L(ϕ′) = L(ϕ) ∪ {λ}.

Remark 2.5 We call locally finite sentences the above defined sentences by
analogy with the notion of a locally finite group. Each finite subset of a
locally finite group generates a finite subgroup. Here each finite subset of a
model of a locally finite sentence generates a finite submodel and moreover
with a uniform upper bound over the iteration number which is necessary to
obtain the generated submodel.
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The notion of locally finite language seemingly looses its initial signification
because a subword of a finite word always generates a finite word.
Nevertheless, there is moreover a uniform bound, and we may also consider
words of infinite and even transfinite length of which each finite subword
generates a finite subword. We’ ll then keep the notion of language defined
by a locally finite sentence.
The notion of locally finite language is very different of the usual notion of
local language which represents a subclass of the class of rational languages.
But whenever the things are well defined and precised, in a precise context
and when there will be no ambiguity, we’ll always call local languages the
locally finite languages. So in the course of this paper.

2.2 First properties

Proposition 2.6 a) The set of local sentences is recursively enumerable.

b) It is undecidable to determine whether an arbitrary sentence ϕ is a local
one.

Proof of a). Let Tn(ϕ) be the set of terms obtained by applying at most n
times the functions of S(ϕ) and T (ϕ) = ∪n≥1Tn(ϕ).
We express by a first order formula the statement ” Tn(ϕ) generate T (ϕ) ” :

∧

{ffunction∈S(ϕ),t1,...,tk∈Tn(ϕ)}

∀ū
∨

t∈Tn(ϕ)

∃(sequence v̄ of points of ū)f(t1(ū)...tk(ū)) = t(v̄)

Then we enumerate all the proofs, checking whether they prove that:

ϕ ⊢ [Tn(ϕ) generate T (ϕ)], for some n ∈ N

.
If ϕ is local we obtain such a proof for some n ≥ nϕ.

For an exact definition of a proof, see for example [CK73].

Proof of b). By Church’s Theorem, it is undecidable to determine whether
an arbitrary sentence ϕ is consistent, (recalling that a first order sentence is
said to be consistent if it has at least one model, otherwise the sentence is said
to be inconsistent). From this result we can deduce b): Indeed otherwise,
admitting that a non consistent sentence is local, two cases may happen:
First case: ϕ is not local, then ϕ is consistent.
Second case: ϕ is local. As in the proof of a), we can find an integer n ≥ nϕ
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and therefore, if there exists a model of ϕ, we find one such model which
cardinal is finite and bounded by an integer m obtained from n. Otherwise
ϕ is not consistent.

In each case the algorithm determines whether ϕ is consistent, But ” ϕ is
consistent ” is undecidable, then a contradiction would appear.

This negative result does not depend on the convention we have chosen:
” a non consistent sentence is local ”. Indeed:

Proposition 2.7 There does not exist any algorithm A which, for every
sentence ψ, decide whether ψ is local and consistent.

Proof. Otherwise let p be a propositional variable an let ψ0 be a consistent
local sentence . Using A, here is an algorithm which, for every sentence ψ,
decide whether ψ is consistant.
We put (¬p ∧ ψ) ∨ (ψ0 ∧ p) = θ as entry for A.

–If A answers that θ is local and consistent, we find n ≥ nθ as in the preceding
proof, then we look for a model of ψ which cardinal is bounded by a bound
depending on n. If we find such a model, then ψ is consistent, otherwise ψ
is not.
– If A answers that θ is not ” local and consistent ”, then ψ is consistent
(because θ being consistent as ψ0 is, the answer of A means that ψ is not
local, then ψ is consistent).

In a similar manner, we obtain:

Proposition 2.8 There does not exist any algorithm A which, for every
consistent sentence ψ, decide whether ψ is local.

Per contra to these negative results, there exists a ”recursive presentation”
up to logical equivalence of all local sentences ( two sentences ϕ and ψ in the
same signature are said to be equivalent iff they have the same models, we
then write ϕ ≡ ψ ):

Theorem 2.9 There exists a recursive set L of local sentences and a recur-
sive function F such that:

1) ψ local ←→ ∃ψ′ ∈ L such that ψ ≡ ψ′.

2) ψ′ ∈ L −→ nψ′ = F (ψ′).
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Proof. The elements of L are the ψ ∧ Cn, where ψ run over the universal
formulas and Cn run over the universal formulas in the signature S(ψ) which
express that closure in a model takes at most n steps.
ψ ∧ Cn is local and nψ∧Cn

≤ n. Then we can compute nψ∧Cn
, considering

only finite models of cardinal ≤ m, where m is an integer depending on
n. And each local sentence ψ is equivalent to a universal formula θ, hence
ψ ≡ θ ∧ Cnψ

.

These results are due to J-P. Ressayre.

From now on, in the sequel of this paper, we’ ll assume that the local sen-
tences, whenever they are not explicit, belong to this recursive set L.

2.3 Examples of locally finite languages

Remark that in the following examples, to prove that a language is local, we
sometimes use the closure properties of the class LOC which will be shown
in the next section.

Example 2.10 Rational languages. Recall that every rational language
is a local language. This result is proved in [Res88] by induction on the
complexity of a regular expression defining a rational language. It is clear
that each language containing only one word of length 1, a ∈ Σ, is defined
by the local sentence ∀x[x = A∧Pa(A)] in the signature {<, Pa, A}, where A
is a constant symbol. Then each rational language is local because LOC is
closed under union, concatenation product and star operation ( see Theorem
3.1 below ).

Example 2.11 Dyck and Antidyck Languages.

Recall the following:

Definition 2.12 The Antidyck language over two sorts of parentheses is
the following language: Q′⋆

2 = {v ∈ (Y ∪ Ȳ )⋆/v →⋆ λ}, where Y = {y1, y2},
Ȳ = {ȳ1, ȳ2} and →⋆ is the transitive closure of → defined in (Y ∪ Ȳ )⋆ by
∀y ∈ Y, yv1ȳv2 → v1v2 if and only if (iff) v1 ∈ Y ⋆.

Remark 2.13 This language may be seen as constituted by words with two
sorts of parentheses, such that: ” the first parenthesis to be opened is the first
to be closed”

Definition 2.14 The Dyck language D′⋆
2 is defined in a similar manner but

with v1yȳv2 → v1v2, ∀v1, v2 ∈ (Y ∪ Ȳ )⋆.
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Remark 2.15 This time we have: ” the first opened parenthesis is the last
to be closed”.

These definitions are generalized to Dyck and Antidyck languages D′⋆
n and

Q′⋆
n with n sorts of parentheses , n ≥ 1. Then we show the:

Proposition 2.16 These languages D′⋆
n and Q′⋆

n are local.

Proof. Let us show that D′⋆
n is a local language. D′⋆

n is a language over the
alphabet Σ = {y1, ..., yn, ȳ1, ..., ȳn}. The letters yi

represent here the open parentheses, and the letters ȳi represent the closed
parentheses corresponding to the yi.
We give a sentence ϕn in the signature S(ϕn) = {(Pa)a∈Σ, <, s}, where s is a
unary function symbol.
ϕn is the conjunction of the following sentences:

• ∀xyz[(x ≤ y ∨ y ≤ x) ∧ (x ≤ y ∧ y ≤ x ↔ x = y) ∧ (x ≤ y ∧ y ≤ z →
x ≤ z)]
(this means: “ < is a linear order ”),

• ∀x[(
∨

a∈Σ Pa(x)) ∧ (
∧

(a,a′)∈Σ2,a 6=a′ ¬(Pa(x) ∧ Pa′(x)))]

( this means: (Pa)a∈Σ form a partition ),

• ∀x[Pyi
(x) → x < s(x)], for each i ∈ [1, n],

• ∀xz[(Pyi
(x) ∧ Pyj

(z) ∧ x < z) → s(z) < s(x)], for all i, j ∈ [1, n],

• ∀x[Pyi
(x) ↔ Pȳi

(s(x))], for each i ∈ [1, n],

• ∀x[s(s(x)) = x].

ϕn is equivalent to a universal formula and closure in its models takes only
one step because ∀x[s(s(x)) = x]. Then ϕn is a local sentence and we easily
verify that L(ϕn) = D′⋆

n .

Remark 2.17 In the sequel, (< is a linear order) and ((Pa)a∈Σ form a par-
tition) are abreviations for the corresponding first order sentences written
above.

Example 2.18 L = {an1ban2b...anpbanp+1c...an2pc/ni ≥ 0, p ≥ 1} is local.

Proof. This context free language is given by the local sentence ϕ which is
the conjunction of:
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• (< is a linear order ),

• (Pa, Pb, Pc, form a partition ),

• ∀xy[(Pb(x) ∧ Pc(y)) → x < y],

• ∀x[Pc(x) ↔ Pb(s(x))],

• ∀x[s(s(x)) = x].

• ∀x[Pa(x) → s(x) = x],

• ∀x[x ≤ d ∧ Pc(d)].

ϕ is given in the signature S(ϕ) = {<,Pa, Pb, Pc, s, d}, where s is unary
function symbol and d is a constant symbol.
ϕ is equivalent to a universal formula and closure in its models takes only
two steps because it suffices to add the element which interprets d and then
to take the closure by s in one step to obtain the closure in a model of ϕ.

Example 2.19 The language L = {0n1p/0 ≤ n, p ≤ 2n} is local over the
alphabet Σ = {0, 1}, while its complement cL = {u10v/u, v ∈ Σ⋆}∪{0n1p/0 ≤
n, p > 2n} is not local.

The language L is local: let ϕ be the following sentence which signature
is {<,P0, P1,∈ f}, where f is a binary function symbol and ∈ is a binary
relation symbol.
ϕ is the the conjunction of:

• (< is a linear order ),

• (P0, P1, form a partition ),

• ∀xy[(P0(x) ∧ P1(y)) → x < y],

• ∀xy[(x ∈ y) → (P0(x) ∧ P1(y))],

• ∀x[f(xx) ∈ x ↔ P1(x)],

• ∀xy[(x 6= y ∧ P1(x) ∧ P1(y)) → ((f(xy) ∈ x ∧ f(xy) /∈ y) ∨ (f(xy) ∈
y ∧ f(xy) /∈ x))],

• ∀xy[P0(x) ∨ P0(y) → f(xy) = min(xy)].
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A model M of ϕ is formed by two successive and disjoint segments PM
0 and

PM
1 . One may consider that PM

1 is a subset of the set of nonempty subsets
of PM

0 . In fact, there is an injection j : PM
1 → 2P M

0 − { emptyset }, defined
by j(x) = {z ∈ M/z ∈M x}.
This property in particular implies that card(PM

1 )≤ 2card(P M
0

). The function
fM defined by ϕ is then a choice function which permits to see that j is
injective.
ϕ is equivalent to a universal formula and closure in its models takes only one
step. And we easily see that L = L(ϕ)∪L(ϕ).1 and so L is a local language.
But if cL was local, for sufficiently large integer n, the word 0n12n+1 of cL
would have a strict subword containing 0n and also being in cL (because the
closure of 0n in 0n12n+1 would take at most nϕ steps, where nϕ does not
depend on n).
This example is due to J-P. Ressayre.

Example 2.20 Quasirational languages.

The quasirational languages, also called non expansive, finite index, super-
linear, have given rise to a great interest. With its two subfamilies of ul-
tralinear and bounded languages, the family of quasirational languages has
been more or less the subject of a large part of the work done about context
free languages. The main advantage of these languages is the richness of
their algebraic structures. Their various characterizations, using some very
diverse concepts, like automata, grammars, closure under operators, alge-
braic expressions, provide efficacious investigation tools which generally fail
in language theory. More, quasirational languages take a fundamental place
into the context free languages general theory.
The family of quasirational languages is the closure under substitution of
the cone of linear languages. It is also the family of languages which are
generated by finite index context free grammars [Cre73].
Then we shall prove the following:

Theorem 2.21 Every quasirational language is local.

Proof. First state a lemma:

Lemma 2.22 Every linear context free language is local.

Proof. Let L(G) be a linear context free language, over a finite alphabet Σ,
which is generated by the linear grammar G of which production rules are:
Ai → uiBivi for 1 ≤ i ≤ n, and Ci → wi for 1 ≤ i ≤ k, where ∀i,
ui, vi, wi ∈ Σ⋆. The variables Ai, Bi, Ci not necessarily are distinct, but are
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variables taken in a finite set given by G.
Let us now associate to L(G) another linear language over the alphabet
Γ = {c1, ...cn, d1, ..., dn, e1, ..., ek}. This new language is generated by the
grammar G′ of which the production rules are:
Ai → ciBidi for 1 ≤ i ≤ n, and Ci → ei for 1 ≤ i ≤ k.
This language L(G′) is the set of words in the form ci1 ...cijeidij ...di1 , where
1 ≤ i ≤ k and i1, ..., ij are integers in [1, n], n ≥ 1.
The set {ci1 ...cijei/ci1 ...cijeidij ...di1 ∈ L(G′)} is a rational language, gener-
ated by the grammar of which production rules are Ai → ciBi , 1 ≤ i ≤ n,
and Ci → ei , 1 ≤ i ≤ k.
Therefore this language is local, defined by a local sentence ϕ. It is now easy
to see that L(G′) is defined by a local sentence ψ, associating a word of L(ψ)
with each word of L(ϕ):

Let S(ψ) = {P, a, s}∪S(ϕ)∪{Pdi
/1 ≤ i ≤ n} , where P is a unary predicate

symbol, a is a constant symbol and s is a unary function symbol.
Then ψ is the conjunction of the following sentences:

• (< is a linear order ),

• ((Pci
)1≤i≤n, (Pdi

)1≤i≤n, (Pei
)1≤i≤k) form a partition,

• ∀xy[P (x) ∧ ¬P (y) → x < y],

• ∀x1...xj ∈ P [ϕ0(x1, ..., xj)], where ϕ = ∀x1...xjϕ0(x1, ..., xj) with ϕ0 an
open formula,

• ∀x1...xm ∈ P [f(x1, ..., xm) ∈ P ], for each m-ary function f of S(ϕ),

• ∀x1...xm[
∨

1≤i≤m ¬P (xi) → f(x1, ..., xm) = min(x1, ..., xm)], for each
m-ary function f of S(ϕ),

• P (c), for each constant c of S(ϕ),

• P (a) ∧ ∀x(P (x) → x ≤ a),

• s(a) = a,

• ∀x ∈ P [x 6= a → ¬P (s(x))],

• ∀xy[P (x) ∧ P (y) ∧ x < y → s(y) < s(x)],

• ∀x[s(s(x)) = x],

• ∀x[P (x) ∧ Pci
(x) ↔ Pdi

(s(x))], for each integer i ∈ [1, n].
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ψ is equivalent to a universal formula and closure in its models takes at most
nϕ + 2 steps: one takes closure under s then by the functions of S(ϕ), and
then again by s. One can check that L(ψ) = L(G′) holds by construction.
Let now the morphism h : Γ⋆ → Σ⋆ defined by h(ci) = ui, h(di) = vi, for
1 ≤ i ≤ n, and h(ei) = wi for 1 ≤ i ≤ k. Then h(L(G′)) = L(G) hence L(G)
is the image of the local language L(ψ) by the morphism h and, using the
fact that LOC is closed under morphism (proved in next section), we can
infer that L(G) is local.
Then each linear context free language is local.

To end the proof of the Theorem, recall that the family of quasirational
languages is the closure under substitution of the family of linear languages.
LOC being closed under substitution, ( result proved in next section ), the
preceding lemma implies that quasirational languages are local.

Remark that context free languages L such that each word in L is in the
form xca|x|, where a ∈ Σ, c /∈ Σ, Σ is a finite alphabet and x ∈ Σ⋆, are
important languages for the syntax of many programming languages. The
set {x/xca|x| ∈ L} is in that case rational hence local, and this permits to
easily prove that L is local.
In a similar manner, the context free languages of which each word is in the
form xcxR, important for programming, are local.

Example 2.23 Denote CF the class of context free languages, and OC the
class of one counter languages. Then RAT ( OC ( CF [Ber79].
RAT ⊆ LOC.
{anbn/n ≥ 1} is in LOC and in OC − RAT .
The Dyck language with two sorts of parentheses is in CF −OC and in LOC.

Then many context free languages are in LOC, but it is an open question to
know whether every context free language is local.

Example 2.24 The cone of Greibach languages is the closure under substi-
tution of the family LIN ∪OC, where LIN is the family of linear languages
and OC is the family of one counter languages. We have seen that there are
local languages which are generators of the family of context free languages,
like the Dyck languages D′⋆

n , for n ≥ 2.
There are local languages in NGE − GRE, the family of context free lan-
guages which are neither generator nor Greibach languages.
An example is given by the following language:
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Let Ẑn = {z1, ..., zn, z̄1, ..., z̄n} = Zn ∪ Z̄n

Where Zn = {z1, ..., zn} and Z̄n = {z̄1, ..., z̄n}.
Let us define the substitution s over Ẑn by:
s(zi) = zi and s(z̄i) = z̄iZ̄

⋆
n for 1 ≤ i ≤ n.

The image δn of the Dyck language over the alphabet Ẑn (with n sorts of
parentheses) by the substitution s is then context free and, for n ≥ 2, δn ∈
NGE − GRE holds.
This language is local, because the Dyck languages and the languages z̄iZ̄

⋆
n

are local, and LOC is closed under substitution by the Theorem 3.3 of next
section.

The question is open to know whether OC ⊂ LOC, which would imply that
GRE ⊂ LOC.

Example 2.25 The Hardest Context Free Language or the non deter-
ministic version of the Dyck language.

This language is defined over the alphabet Σn = Ẑn ∪ {[, ], +}; A block is
a word in the form [u1 + u2 + ... + up]; So the set of blocks is the rational

language [(Ẑn ∪ {+})⋆].
A factor u in a block ( maximal factor over Ẑn ) is called a choice in this
block. Then f ∈ Hn iff f = f1f2...fr where: each fi is a block and there
exists a choice ui in every block fi such that u1u2...ur ∈ D′⋆

n .

All these languages Hn are context free and, for n ≥ 2, Hn is a generator
of the rational cone CF . These languages have been studied because they
generate the family CF without using direct morphisms. Indeed Shamir-
Greibach Theorem states that:
A language L is context free iff there exists a morphism h such that:
L − {λ} = h−1(H2).
Let us show that Hn is local.
Consider first the sentence ψn which is the conjunction of:

• (< is a linear order),

• ((Pa)a∈Σn
form a partition),

• ∀xy(P[(x) → x ≤ y),

• ∀xy(P](x) → y ≤ x),

• ∀x(P (x) →
∨

a∈Ẑn
Pa(x)),
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• ∀x(P (x) ↔ b1 < x < b2),

• P[(b1) ∨ P+(b1),

• P[(a1) ∧ P](a2),

• P](b2) ∨ P+(b2),

The signature of ψn is S(ψn) = {(Pa)a∈Σn
, <, P, b1, b2, a1, a2} , where P is a

unary predicate symbol and b1, b2, a1, a2 are constant symbols.
A model M of ψn provides a block M |ΛΣn

and PM |ΛΣn
gives a choice in this

block.

Let then the signature S(ϕn) = {(Pa)a∈Σn
, <, P, I, s, b1, b2, a1, a2}, where P

is a unary predicate symbol and I, s, b1, b2, a1, a2 are unary function symbols.
Let ϕ = ∀xyzϕ0(xyz) a local sentence defining D′⋆

n with ϕ0 an open formula,
S(ϕ) = {(Pa)a∈Ẑn

, < s}, s a unary function. (See Example 2.11 )
Now define :

ϕn = ψ⋆
n ∧ [∀xyz ∈ P ϕ0(xyz)] ∧ ∀x(¬P (x) → s(x) = x),

where ψ⋆
n is the conjunction of:

• (< is a linear order),

• ((Pa)a∈Σn
form a partition),

• ∀xy[(I(y) ≤ y) ∧ (y ≤ x → I(y) ≤ I(x)) ∧ (I(y) ≤ x ≤ y → I(x) =
I(y))],

• ∀xy[I(x) = I(y) → e(x) = e(y)], for e ∈ {b1, b2, a1, a2},

• ∀xψx
n,

where ψx
n is the local sentence ψn in which the constants b1, b2, a1, a2

are replaced by the terms b1(x), b2(x), a1(x), a2(x) and each quantifier
is relativized to the set {y/I(y) = I(x)}.

ϕn is equivalent to a universal formula and closure in each of its models takes
at most two steps: (take first closure under s, then by b1, b2, a1, a2 and I.
Hence ϕn is local and, by construction LΣn(ϕn) = Hn holds.
We’ll see in next section that LOC is not closed under inverse morphism;
Then we cannot use this result in order to prove, by Shamir-Greibach The-
orem, that CF ⊂ LOC.
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Example 2.26 Languages of bigger complexity than that of context free
languages.

Let NEST be the family of languages which are recognized by a non erasing
stack automata, ST be the family of languages which are recognized by a
stack automata, and CS be the family of context sensitive languages which
are generated by a context sensitive grammar.
It holds that: CF ( NEST ( ST ( CS. [Ogd69].
There are local languages in each family of this hierarchy.

{an2

bn/n ≥ 1} is in NEST − CF .
{bnan2

/n ≥ 1} is in ST − NEST .
{an2

bn2

cn2

/n ≥ 1} is in CS − ST . [Ogd69].

Proof. We shall prove that the language {bnan2

/n ≥ 1} is local; some
analogous methods proving that {an2

bn/n ≥ 1} and {an2

bn2

cn2

/n ≥ 1} are
local.
Let S(ψ) = {Pa, Pb, <, d, f, p1, p2} where f is a 2-ary function symbol, p1 and
p2 are unary function symbols and d is a constant symbol.
The sentence ψ is the conjunction of:

• (< is a linear order ),

• (Pa, Pb form a partition ),

• ∀xy[(Pb(x) ∧ Pa(y)) → x < y],

• ∀xyzt[(Pb(x) ∧ Pb(y) ∧ Pb(z) ∧ Pb(t) ∧ (x 6= z ∨ y 6= t)) → (f(xy) 6=
f(zt) ∧ Pa(f(xy)))],

• ∀xy[(Pa(x) ∨ Pa(y)) → f(xy) = x],

• ∀x[Pa(x) → Pb(p1(x)) ∧ Pb(p2(x)) ∧ f(p1(x)p2(x)) = x],

• ∀x[Pb(x) → p1(x) = p2(x) = x],

• ∀x[x ≤ d].

ψ is equivalent to a universal formula and closure in each of its models takes
at most three steps: ( one first takes first closure under d, then under p1 and
p2, and then under f ).
Hence ψ is local and L(ψ) = {bnan2

/n ≥ 1} holds by construction.

Example 2.27 In comparison with Kasai Hierarchy
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We investigate here another hierarchy of families of languages which are
located betweeen CF and CS, introduced by Takumi Kasai, [Kas70].

Many programming languages cannot be represented by context free lan-
guages, hence he studied grammars which are more powerful than the context
free ones: the state grammars. Making restrictions over these grammars, Ka-
sai obtained an infinity of AFL ( Abstract Family of Languages ), families of
state languages which are closed under rational operations ∪, ., +, and under
rational transductions.

Definition 2.28 ([Kas70]) A state grammar is a sextuple G = (K,V, Σ, P, p0, σ)
where:
(1) K is a non empty finite set (of states).
(2) V is a finite set of symbols and Σ ⊆ V .
(3) σ is an element of V − Σ.
(4) p0 is an element of K.
(5) P is a finite subset of K × (V − Σ) × K × V + where V + = ∪∞

i=1V
i.

An element (p, ξ, q, u) of P is called a production and is usually written
(p, ξ) → (q, u). V − Σ is the set of variables and a variable ξ is said to be
applicable under a state p if (p, ξ) → (q, u) is in P for some q ∈ K and u in
V +. Let G = (K, V, Σ, P, p0, σ) be a state grammar, and let ⇒ be a relation
on K × V + defined as follows:
Let p ∈ K and w = xξy ∈ V +. If this ξ is the leftmost occurrence of
applicable variables in w under p and (p, ξ) → (q, u) is in P , then we write
(p, xξy) ⇒ (q, xuy).

If this ξ is the j-th variable in w, then we sometimes write
j
⇒ instead of ⇒.

For α and β in K ×V + , write α
⋆
⇒ β if either α = β or there exist α0, ..., αr

such that α0 = α, αr = β, and αi ⇒ αi+1 for each i. The sequence α0, ..., αr

is called a derivation (of length r) and is denoted α0 ⇒ ... ⇒ αr.

The subset of Σ+, L(G) = {w ∈ Σ+/(p0, σ)
⋆
⇒ (q, w) for some q ∈ K} is

called a state language, generated by the grammar G.

Definition 2.29 ([Kas70]) Let G = (K, V, Σ, P, p0, σ) be a state grammar
and let n be a positive integer. A n-limited derivation is a derivation:

α0
j(1)
⇒ α1

j(2)
⇒ ...

j(r)
⇒ αr such that j(i) ≤ n for each i.

In this case we sometimes write α0
n⋆

⇒ αr instead of α0
⋆
⇒ αr, in order to

indicate that it is realized by a n-limited derivation.

Then L(G, n) = {w ∈ Σ+/(p0, σ)
n⋆

⇒ (q, w) for some q ∈ K}
G is said to be a state grammar of degree n iff L(G) = L(G, n).
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A state language is said to be of degree n iff it is generated by a state grammar
of degree n. Otherwise this state language is of infinite degree.

L1 is the family of context free languages which do not contain the empty
word.
Ln is the family of state languages of degree n.
L∞ = ∪n≥1Ln is the family of state languages of finite degree.
Lω is the family of state languages which is equal to the family of context
sensitive languages.
T. Kasai proved that all the following inclusions are strict:
L1 ( L2 ( ... ( Ln ( Ln+1 ( ... ( L∞ ( Lω.
Let us cite a property of finite degree state languages:
If L ∈ Ln for some n ≥ 1, then {|w|/w ∈ L} is an ultimately periodic set of
integers. In comparison with local languages, it holds that:

Proposition 2.30 There exist local languages at each level of this hierarchy;
more precisely, ∀n ≥ 1, there exists a local language L(ϕn) in Ln+1 −Ln and
there exists a local language in Lω − L∞ i.e. a (context sensitive) state
language of infinite degree.

Proof. The language {ak
1a

k
2...a

k
4n+2/k ≥ 1} over the alphabet Σn = {a1, ..., a4n+2}

is in Ln+1 − Ln , for n ≥ 1.
And the language {bnan2

/n ≥ 1} over the alphabet Σ = {a, b} is in Lω but
not in L∞ ,[Kas70].
Now it is easy to check that these languages are local.

Example 2.31 There exist NP-complete languages in LOC.

This result is stated in [Res88].
For example the NP-complete language CLIQUE is a local language:
For a finite graph G and an integer n ≥ 1, (G, n) ∈ CLIQUE iff G contains
a clique of cardinal n (i.e. a set C of vertices of cardinal n such that every
edge between two vertices of C is in G ).

A graph G = (V, E) is defined by the set V of its vertices and the set
E ⊆ V × V of its edges, with ∀(u, v) ∈ V 2[(u, v) ∈ E → (v, u) ∈ E] and
[(u, u) /∈ E].
We code a word in CLIQUE in the following manner:
card(V ) zeros followed by an a followed by (cardV )2 letters in {0, 1} coding
E followed by a b followed by n times the letter 1.
If V = {v1, ..., vp}, we obtain the following word:
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0pa[v1v1][v1v2]...[v1vp][v2v1][v2v2]...[v2vp]...[vpv1][vpv2]...[vpvp]b1
n

where [vivj] = 0 if (vi, vj) ∈ E and [vivj] = 1 if (vi, vj) /∈ E.

Let then ϕ the following sentence, conjunction of:

• (< is a linear order),

• (P0, P1, Pa, Pb) form a partition,

• (P, Q,R, Pa, Pb) form a partition,

• ∀xyz[P (x) ∧ Q(y) ∧ R(z) → x < A < y < B < z],

• Pa(A) ∧ ∀x(Pa(x) ↔ x = A),

• Pb(B) ∧ ∀x(Pb(x) ↔ x = B),

• ∀xyz ∈ P [y < z → f(xy) < f(xz)],

• ∀xyzt ∈ P [y < z → f(yt) < f(zx)],

• ∀xy ∈ P [Q(f(xy))],

• p1(A) = p2(A) = A,

• p1(B) = p2(B) = B,

• ∀xy[¬P (x) ∨ ¬P (y) → f(xy) = min(xy)],

• ∀x[P (x) ∨ R(x) → p1(x) = p2(x) = x],

• ∀x[Q(x) → f(p1(x)p2(x)) = x],

• ∀x[Q(x) → P (p1(x)) ∧ P (p2(x))],

• ∀x[P (x) → P0(x)],

• ∀x ∈ Q[P0(x) ∨ P1(x)],

• ∀x ∈ R[P1(x)],

• ∀x[¬R(x) → i(x) = x],

• ∀x[R(x) → P (i(x))],

• ∀xy[R(x) ∧ R(y) ∧ x 6= y → i(x) 6= i(y)],

• ∀xy[R(x) ∧ R(y) ∧ x 6= y → P0(f(i(x)i(y)))],
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• ∀xy[P (x) ∧ P (y) → (P0(f(xy)) ↔ P0(f(yx)))],

• ∀x ∈ P [P1(f(xx))].

The signature of ϕ is S(ϕ) = {<,P0, P1, Pa, Pb, P,Q, R, f, A, B, i, p1, p2} ,
where P, Q, R are unary predicate symbols, A,B are constant symbols, f is
a binary function symbol and i, p1, p2 are unary function symbols.
ϕ is equivalent to a universal formula and closure in each of its models takes
at most two steps: one takes the closure under A,B, p1, p2, i and then under
f . Hence ϕ is a local sentence .
We then check that L(ϕ){a,b,0,1} = CLIQUE.

Another example of NP-complete language: The language which is connected
with the problem V C: ” Vertex Cover ”.
Let G = (V, E) be a graph and let k be a non negative integer ≤ card(V ).
(G, k) ∈ V C ↔ ∃V ′ ⊆ V such that card(V ′) ≤ k and V ′ covers the graph,
i.e. for each edge (u, v) ∈ E, {u, v} ∩ V ′ is not empty.

We code a word of V C in the same manner as for CLIQUE.
Let then S(ψ) = {<,P0, P1, Pa, Pb, P, Q, R, V ′, f, A, B, s, p1, p2} , where V ′, P, Q, R
are unary predicate symbols, A,B are constant symbols, f is a binary func-
tion symbol and s, p1, p2 are unary function symbols.

Let then ψ the following sentence, conjunction of:

• (< is a linear order),

• (P0, P1, Pa, Pb) form a partition,

• (P, Q,R, Pa, Pb) form a partition,

• ∀x[Pa(x) ↔ x = A],

• ∀x[Pb(x) ↔ x = B],

• ∀xyz[P (x) ∧ Q(y) ∧ R(z) → x < A < y < B < z],

• ∀xyz ∈ P [y < z → f(xy) < f(xz)],

• ∀xyzt ∈ P [y < z → f(yt) < f(zx)],

• ∀xy ∈ P [Q(f(xy))],

• ∀x[Q(x) → f(p1(x)p2(x)) = x],
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• ∀x[Q(x) → P (p1(x)) ∧ P (p2(x))],

• ∀x[¬Q(x) → p1(x) = p2(x) = x],

• ∀x[P (x) → P0(x)],

• ∀x[Q(x) → P0(x) ∨ P1(x)],

• ∀x[R(x) → P1(x)],

• ∀xy[P (x) ∧ P (y) → (P0(f(xy)) ↔ P0(f(yx)))],

• ∀x ∈ P [P1(f(xx))].

• ∀x[V ′(x) → P (x)],

• ∀x[V ′(x) → R(s(x)) ∧ s(s(x)) = x],

• ∀x[R(x) → P (s(x))],

• ∀xy[R(x) ∧ R(y) ∧ x 6= y → s(x) 6= s(y)],

• ∀x[¬R(x) ∧ ¬V ′(x) → s(x) = x],

• ∀xy[P (x) ∧ P (y) ∧ P0(f(xy)) → V ′(x) ∨ V ′(y)].

ψ is equivalent to a universal formula and closure in each of its models takes
at most three steps: one takes the closure under A,B, p1, p2 and then under
s, then under f . Hence ψ is a local sentence .
By construction we can check that in a model M of ψ, V ′M represents a
subset of PM of cardinal ≤ k ≤ card(PM), k = card(RM), which covers the
graph. Then it holds that L(ψ){a,b,0,1} = V C.

Example 2.32 There exists a set of integers in P which is not the spectrum
of any local language, as {2n/n ≥ 1}. (Result of J-P. Ressayre)

Recall that the spectrum of a first order sentence ϕ is the subset of N defined
by: Sp(ϕ) = {n ∈ N / ∃M |= ϕ such that card(M) = n}.

Example 2.33 By methods which are similar to those used in example 2.26,
we easily show that p(N) is a spectrum of a local language for every poly-
nomial p with coefficients in N. And more generally if A is the spectrum of
a local language, then p(A) is the spectrum of a local language, for every
polynomial p with coefficients in N.
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Let us show that L = {an/n is a non prime integer ≥ 0} is a local language.

Let S(ϕ) = {<,Pa, P, b, c, f, p1, p2} , where P is a unary predicate symbol,
b, c are constant symbols, f is a binary function symbol and p1, p2 are unary
function symbols.

Let then ϕ the following sentence, conjunction of:

• (< is a linear order),

• ∀xPa(x),

• ∀xy[P (x) ∧ ¬P (y) → x < y],

• P (b) ∧ P (c) ∧ c < b,

• ∀xy[P (x) ∧ P (y) ∧ y < b → ¬P (f(xy))],

• ∀xyzt[P (x) ∧ P (y) ∧ P (z) ∧ P (t) ∧ y < b ∧ t < b ∧ (x 6= z ∨ y 6= t) →
f(xy) 6= f(zt)],

• ∀xy[¬P (x) ∨ b ≤ y → f(xy) = x],

• ∀x[P (x) → p1(x) = p2(x) = x],

• ∀x[¬P (x) → f(p1(x)p2(x)) = x ∧ p2(x) < b ∧ P (p1(x))].

We then check that this sentence ϕ is local because it is equivalent to a uni-
versal formula and closure in each of its models takes at most two steps: one
takes the closure under p1, p2 and then under f .
If M |= ϕ and card(PM) = m, then card(M) = m + nm with 1 ≤ n < m.
Hence card(M) = m(n + 1) with 2 ≤ n + 1 ≤ m. Conversely we check that
for every non prime integer in the form m(n + 1) with 2 ≤ n + 1 ≤ m, there
exists a model of ϕ of cardinal m(n + 1). Therefore the spectrum of ϕ is
{n ≥ 4 /n is a non prime integer }. ¿From what we easily deduce that the
language L = {an / n is a non prime integer ≥ 0} = {λ, a} ∪ L(ϕ) is a local
language.
So the spectrum {n ∈ N /n is non prime } is the spectrum of a local lan-
guage.
Its complement, {n ∈ N /n is prime } is not the spectrum of a local lan-
guage, because the spectrum of an infinite local language always contains a
set in the form p(N), where p is a polynomial with positive integers as coef-
ficients, [Fin99]. Indeed a result of number theory states that a polynomial
with coefficients in N cannot take only prime number values over N.
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Remark that the question to know whether the complement of a spectrum is a
spectrum is connected with the algorithmic complexity problem NP = co − NP.
This problem has a negative answer when it is restricted to spectra of local
sentences. See [Fag93] for more results and references about spectra of first
order sentences.

3 Closure properties

Recall the following:

Theorem 3.1 ([Res88]) Loc is closed under union, catenation product, and
operation ⋆.

Proof. the proof of closure under union and catenation product is easy.
To prove closure under star operation, J-P. Ressayre defined a new operation
over local sentences:
For each local sentence ϕ, ϕ⋆ is a local sentence in the signature S(ϕ⋆) which
is the signature of ϕ to which is added a unary function symbol I and in
which every constant symbol e is replaced by a unary function symbol e(x).

For a local sentence ϕ, ϕ⋆ is the sentence defined by the conjunction of:

• ( < is a linear order ),

• ∀yz[I(y) ≤ y and (y ≤ z → I(y) ≤ I(z)) and (I(y) ≤ z ≤ y → I(z) =
I(y))],

• ∀xy[I(x) = I(y) → e(x) = e(y)], for each constant e of the signature
S(ϕ) of ϕ,

• ∀x1...xn[(
∨

i,j≤n I(xi) 6= I(xj)) → f(x1...xn) = min(x1...xn)] , for each
n-ary function f of S(ϕ),

• ∀x1...xn[(
∧

i,j≤n I(xi) = I(xj)) → I(f(x1...xn)) = I(x1)], for each n-ary
function f of S(ϕ),

• ∀xϕx, where ϕx is the local sentence ϕ in which every constant e is
replaced by the term e(x) and each quantifier is relativized to the set
{y \ I(y) = I(x)}.

Remark 3.2 The models of ϕ⋆ are essentially direct sums of models of ϕ,
and LΣ(ϕ⋆) = (LΣ(ϕ))⋆.
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We shall prove the following:

Theorem 3.3 The class LOC of local languages is closed under substitution,
morphism, inverse alphabetic morphism. LOC is not closed under intersec-
tion, intersection with a rational language, complementation, inverse mor-
phism.
LOC is neither closed under quotient, nor under quotient by a context free
language, but LOC is closed under quotient by a finite language.

Proof.

a) Closure under substitution.
Let then Σ = {a1, ..., an} be a finite alphabet and let f be a substitution:
Σ → P (Γ⋆), ai → Li where ∀i ∈ [1; n], Li is a local language defined by
the sentence ϕi, over the alphabet Γ. More assume that the empty word
is not in Li. We may also assume that the signatures of the sentences ϕi

verify S(ϕi) ∩ S(ϕj) = {<, (Pa)a∈Γ} for i 6= j. Let now L ⊆ Σ⋆ be a local
language defined by a local sentence ϕ. We’ll denote by Qai

the unary
predicate of S(ϕ) which indicates the places of the letters ai in a word of L,
so as that if ai ∈ Γ∩Σ for an indice i, there will be two distinct predicates Qai

and Pai
. We’ ll also assume, possibly differently naming function, constant,

and other predicate symbols of S(ϕ), that ∀i ∈ [1, ..., n], S(ϕi)∩S(ϕ) = {<}.
Then we now construct a local sentence ψ which defines the language f(L):
ψ is the conjunction of the following sentences, which meaning is explained
below:

• “ < is a linear order ”,

• ∀xy[(I(y) ≤ y) ∧ (y ≤ x → I(y) ≤ I(x)) ∧ (I(y) ≤ x ≤ y → I(x) =
I(y))],

• ∀x[I(x) = x ↔ P (x)],

• P (c), for each constant c of S(ϕ),

• ∀x1...xk[R(x1...xk) → P (x1)∧ ....∧P (xk)], for each predicate R(x1...xk)
of S(ϕ),

• ∀x1...xj[(P (x1) ∧ ... ∧ P (xj)) → P (f(x1...xj))], for each j-ary function
symbol f of S(ϕ),

• ∀x1...xj[(
∨

1≤i≤j ¬P (xi)) → f(x1...xj) = min(x1...xj)], for each j-ary
function symbol f of S(ϕ),
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• ∀x1...xm[(P (x1)∧...∧P (xm)) → ϕ0(x1...xm)], where ϕ = ∀x1...xmϕ0(x1...xm)
with ϕ0 an open formula,

• ∀x1...xj[
∨

i,k≤j(I(xi) 6= I(xk)) → f(x1...xj) = min(x1...xj)], for every
function f of S(ϕl) for an integer l ≤ n,

• ∀xy1...yj[(
∧

1≤l≤j I(yl) = I(x)) → I(f(y1...yj)) = I(x)], for each j-ary
function symbol f of S(ϕi) for an integer i ≤ n,

Finally, for each i ≤ n:

• ∀xy1...yp[(
∧

1≤l≤p I(yl) = I(x) ∧ Qai
(I(x))) → ϕ0

i (y1...yp) ∧ {(ej(y1) =
I(x)∧fj(y1...yp) = y1∧¬Rj(y1...yp)∧

∧
ei∈S(ϕi)

ei(y1) = ei(x); where n ≥
j 6= i, and ej, fj, Rj run over the constants, functions, and predicates
of S(ϕj)}],

Above , 1) to each constant el of S(ϕl) is associated a new unary function
el(y) and 2) whenever ϕi = ∀y1...ypψi(y1...yp) with ψi an open formula, ϕ0

i is
ψi in which every constant ei has been replaced by the function ei(y).

Construction of ψ :
Using the function I which marks the first letters of the subwords, we divide
a word into subwords. In every model M of ψ, the set of the ”first letters of
subwords” , PM , grows richer in a model of ϕ ( therefore will constitute a
word of L ).
Then we ”substitute” : for each letter ai in PM , we substitute a word of Li,
using for that the formula ϕi.
Then if closure takes at most m(ϕ) (respectively m(ϕi) ) steps in every model
of ϕ (respectively of ϕi), then closure takes at most [m(ϕ) + 2supi(m(ϕi))]
steps in each model of ψ.
Therefore ψ is a local sentence and by construction ψ defines the language
f(L).

When the languages Li may contain the empty word λ,
consider a substitution f : Σ → P (Γ⋆), ai → Li as above and let c /∈ Σ ∪ Γ.
Define f c by: f c : Σ → P ((Γ∪{c})⋆), ai → Li if λ /∈ Li and ai → Li−{λ}∪{c}
otherwise. By the preceding proof, the language f c(L) is local. The local
sentence defining f c(L) contains the unary predicate Pc which marks the
places of the letters c in every word. The ”projection” of the models of
this sentence on the predicate ¬Pc gives the local language f(L). Indeed
according to a result of J-P. Ressayre: if L(ϕ) is a local language over an
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alphabet Σ and P is a unary predicate of S(ϕ), then {σ ∈ Σ⋆/∃M |= ϕ and
M |PM |ΛΣ = σ} is a local language.

b) Closure under morphism.
This is a particular case of the preceding one.

b) Closure under inverse alphabetic morphism.
Let f be an alphabetic morphism: Σ → Γ ∪ {λ}, where Σ and Γ are finite
alphabets.
Let Σ′ = {a ∈ Σ/f(a) = λ}.
Let L(ϕ) ⊆ Γ⋆ be a local language.
We first replace in ϕ the letter predicates (Pa)a∈Γ by (Qa)a∈Γ.
Then ψ is the conjunction of the following sentences:

• (< is a linear order),

• ((Pa)a∈Σ form a partition),

• ∀x1...xn ∈ P [ϕ0(x1...xn) ∧
∧

a∈Γ(Qa(x1) ↔
∨

c∈f−1(a) Pc(x1))], where

ϕ = ∀x1...xnϕ0(x1...xn) with ϕ0 an open formula,

• ((Pa)a∈Σ′ form a partition of ¬P ),

• ∀x1...xj[(
∨

1≤i≤j ¬P (xi)) → f(x1...xj) = x1], for each j-ary function
symbol f of S(ϕ),

The sentence ψ is equivalent to a universal sentence, and it is local because
in its models closure takes at most nψ = nϕ steps. And L(ψ) = f−1(L(ϕ))
holds by construction.

d) Closure under inverse morphism, intersection, complementa-
tion.
The proof uses the notion of rational cone of which we now recall the defini-
tion:

Definition 3.4 A rational cone is a class of languages which is closed under
morphism, inverse morphism, and intersection with a rational language. (Or,
equivalently to these three properties, closed under rational transduction).

Then recall the following:

Proposition 3.5 ([HU69], exercise) A class of languages closed under
morphism, inverse morphism, union and concatenation product, is a rational
cone.
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Now we can state the next Proposition:

Proposition 3.6 The class LOC is not a rational cone.

Proof. It uses the following result:

Proposition 3.7 ([FZV80]) The Antidyck language Q
′⋆
2 is a generator of

the rational cone of the recursively enumerable languages.

But we have seen that the Antidyck language Q
′⋆
2 is local, but there ex-

ist many recursively enumerable languages which are not local, for example
{a2n

/n ≥ 1}, or the language cL of the above example 2.19.

Then from Propositions 3.5 and 3.6, we infer that LOC is not closed under
inverse morphism. Now recall the following:

Theorem 3.8 (Nivat [Ber79]) A class of languages which is closed under
alphabetic morphism, inverse alphabetic morphism, and intersection with a
rational language, is a rational cone.

LOC is a class which is closed under alphabetic morphism, inverse alphabetic
morphism but which is not a rational cone, therefore it is not closed under
intersection with a rational language, and it is also neither closed under
intersection, nor under complementation.

d) Closure under quotient.
Recall that the left quotient of L1 by L2 is L2\L1 = {w/yw ∈ L1 for an
y ∈ L2}.
And the right quotient of L1 by L2 is L1/L2 = {w/wy ∈ L1 for an y ∈ L2}.

Let then R = a{biai/i > 0}⋆ and L = {aib2i/i > 0}⋆.
R and L are local and context free languages and it holds that:
R\L ∩ b+ = {b2n

/n > 0} then R\L is not local. Because if R\L = L(ϕ) was
local, the formula ϕ ∧ ∀xPb(x) would be local and would define R\L ∩ b+,
but {b2n

/n > 0} cannot be defined by a local sentence .
The proof is similar for the right quotient.

e) Closure under quotient by a finite language.
whenever the language is finite and contains a single word a of length 1, the
language {a}\L(ϕ) is local, by projection of the models of ϕ on a predicate.
Furthermore we then use the formulas:
L1L2\L = L2\(L1\L) and (L1 ∪ L2)\L = (L1\L) ∪ (L2\L).
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4 UNDECIDABLE PROBLEMS

Return to Chapter 4 of [Gin66] about undecidable problems for context
free languages . Showing that languages which appear there are local, we
can prove the following undecidability results about local languages.

Theorem 4.1 Let Σ be an alphabet containing at least two letters. It is
undecidable to determine for arbitrary local languages L(ϕ) and L(ψ) over Σ
whether :

1. L(ϕ) ∩ L(ψ) is empty.

2. L(ϕ) ∩ L(ψ) is infinite.

3. L(ϕ) ∩ L(ψ) is rational.

4. L(ϕ) ∩ L(ψ) is context free.

5. L(ϕ)∩L(ψ) is local: more precisely, there does not exist any algorithm
which answers , either L(ϕ)∩L(ψ) is not local, or L(ϕ)∩L(ψ) is local,
giving θ local and nθ such that L(ϕ) ∩ L(ψ) = L(θ). (closure taking at
most nθ steps in the models of θ).

6. L(ϕ) ⊆ L(ψ).

7. L(ϕ) = L(ψ).

8. L(ϕ) = Σ⋆.

9. L(ϕ) is rational.

10. cL(ϕ), is empty . ( cL(ϕ) = Σ⋆ − L(ϕ) being the complement of L(ϕ)
in Σ⋆ ).

11. cL(ϕ) is rational.

12. cL(ϕ) is context free.

13. cL(ϕ) is infinite.

14. cL(ϕ) is local . ( with the same precision as for 5) ).

15. L(ϕ) is a linear context free language . ( Σ has here

at least three letters ).
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16. L(ϕ) contains an infinite rational language.

For arbitrary local sentence ϕ and rational language R:

17. L(ϕ) ⊇ R.

18. L(ϕ) = R.

Proof. We return to the Post correspondance Theorem :

Theorem 4.2 Let Σ be an alphabet with at least two elements . Then it is
undecidable to determine for arbitrary n-tuples (w1, .., wn) and (y1, ....yn) of
nonempty words in Σ⋆ whether there exists a nonempty sequence of indices
i1, ..., ik such that wi1 ....wik = yi1 ...yik .

Let Σ = {a, b, c}. For all n-tuples x = (x1, ...xn) and y = (y1, ..yn) of
nonempty words of {a, b}⋆ , let:
L(x) = {baik ...bai1cxi1 ...xik/k ≥ 1, 1 ≤ ij ≤ n} and L(x, y) = L(x)cL(y)R,
where for a language L, LR = {uR/u ∈ L} and uR = un...u2u1 whenever
u = u1u2...un, ui being a letter ∀i.

Let Γ = {c, a1, ...an, c1, ...cn} a new alphabet. And let h be the morphism
Γ⋆ → Σ⋆ defined by : c → c, aj → xj, cj → baj. And let:
L = {cik ...ci1cai1 ...aik/k ≥ 1, 1 ≤ ij ≤ n} . L is a local language defined by
the following sentence ψ of signature S(ψ) = {<, (Pai

)1≤i≤n, Pc, (Pci
)1≤i≤n, d, s},

where Pai
, Pc, Pci

are unary predicate symbols, d is a constant symbol and s
is a unary function symbol.

ψ is the conjunction of :

• (< is a linear order)

• (Pai
, Pc, Pci

, 1 ≤ i ≤ n) form a partition,

• ∀x(P (x) ↔
∨

1≤i≤n Pci
(x)),

• ∀x(Q(x) ↔
∨

1≤i≤n Pai
(x)),

• ∀xyz(P (x) ∧ Q(y) ∧ Pc(z) → x < z < y),

• ∀xy(Pc(x) ∧ Pc(y) → x = y),

• ∀x(s(s(x)) = x),

• ∀x(Pai
(x) ↔ Pci

(s(x))), 1 ≤ i ≤ n,
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• ∀x(Pc(x) → s(x) = x),

• Pc(d),

• ∀xy(P (x) ∧ P (y) ∧ x < y → s(y) < s(x)).

Then the language L is local, and L(x) = h(L) is also local because the image
of a local language by a morphism is local. L(x, y) is a local language: We
easily see that A local implies AR local from what we deduce that L(y)R is
local and by concatenation product that L(x).c.L(y)R is local

Define now Ls = {w1cw2cw
R
2 cwR

1 /w1 and w2 ∈ {a, b}⋆} , Σ = {a, b, c}.

Let us prove that Ls is a local language: The language {a, b}⋆c{a, b}⋆ is
rational then local and it is defined by the sentence τ = [∀x(Pc(x) → x =
d)]∧ [Pc(d)]∧ [Pa, Pb, Pc form a partition ]∧ [< is a linear order ], where d is
a constant symbol.

The language Ls is defined by ψs which is the conjunction of :

• (< is a linear order),

• (Pa, Pb, Pc, form a partition),

• (P, Q,R, form a partition) ,

• ∀xy(R(x) ∧ R(y) → x = y ∧ Pc(x)),

• ∀xyz(P (x) ∧ Q(y) ∧ R(z) → x < z < y),

• P (d),

• ∀x(s(s(x)) = x),

• ∀x(P (x) → Q(s(x))),

• ∀x(R(x) → s(x) = x),

• ∀x ∈ P (Pc(x) ↔ x = d),

• ∀xy(P (x) ∧ P (y) ∧ x < y → s(y) < s(x))

• ∀x(Pa(x) ↔ Pa(s(x))),

• ∀x(Pb(x) ↔ Pb(s(x))),
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• ∀x(Pc(x) ↔ Pc(s(x))).

With S(ψs) = S(τ)∪{P, Q,R, s}, where P, Q,R are unary predicate symbols
and s is a unary function symbol. ψs is equivalent to a universal sentence
and closure takes at most two steps in every model of it, hence ψs is local.

L(x, y) ∩ Ls consists of all words in the following form:
baik ...bai1cxi1 ...xikcy

R
ik
...yR

i1
cai1b...aikb where:

k ≥ 1, 1 ≤ ij ≤ n and xi1 ...xik = yi1 ...yik

Then L(x, y) ∩ Ls is empty if and only if there is not any solution to Post
Correspondence Problem for x, y. In the other case L(x, y) ∩ Ls is infinite.
From this fact we can deduce a), b), and c):

It is undecidable to determine , for arbitrary L(x, y):

a) Whether L(x, y) ∩ Ls is empty.

b) Whether L(x, y) ∩ Ls is infinite.

c) Whether τ(L(x, y))∩τ(Ls) is empty, where τ is the morphism {a, b, c}⋆ →
{a, b}⋆ defined by : a → bab, b → ba2b, c → ba3b.

c) results from the fact that τ(L(x, y)) ∩ τ(Ls) is empty iff L(x, y) ∩ Ls is
empty.

Lemma 4.3 τ(L(x, y))∩ τ(Ls) doesn’t contain any infinite context free lan-
guage.

Proof. In [Gin66]

So we can deduce that τ(L(x, y))∩ τ(Ls) is context free iff it is rational iff it
is empty iff it is not infinite.
L(x, y) and Ls being local languages, and the image of a local language by
a morphism being a local language, τ(L(x, y)) and τ(Ls) are local languages
over the alphabet {a, b}. ¿From this we deduce 1),2), 3), and 4) of our
Theorem , because one cannot decide whether τ(L(x, y)) ∩ τ(Ls) is empty,
infinite, rational or context free.

Let us show 5):
Suppose there exists an algorithm which, for any arbitrary given local lan-
guages L(ϕ) and L(ψ) over an alphabet Σ = {a, b}, answers: either L(ϕ) ∩
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L(ψ) is not local , either L(ϕ) ∩ L(ψ) = L(θ) giving a local sentence θ and
nθ.

Then there are two cases:

1. First case. L(ϕ) ∩ L(ψ) is not local, and then L(ϕ) ∩ L(ψ) is not
empty because the emptyset is a local language.

2. Second case. L(ϕ) ∩ L(ψ) = L(θ), and then following [Res88] we
could decide whether L(θ) is empty so whether L(ϕ) ∩ L(ψ) is empty.
The proof of 1) shows there would be a contradiction, so 5) is proved.

Let us prove 6) –14).
First show that {a, b, c}⋆ − L(x, y) is a local language. It is the union of six
languages Mi, 1 ≤ i ≤ 6. Let x = (x1, ..., xn) and y = (y1, ..., yn) and let:

M1 = {a, b}⋆ ∪ {a, b}⋆c{a, b}⋆ ∪ [{a, b}⋆c]2{a, b}⋆ ∪ [{a, b}⋆c]4{a, b, c, }⋆

{a, b, c, }⋆ − M1 consists of all the words of {a, b, c, }⋆ with exactly three
occurrences of c.

Let M2 = {a, c}{a, b, c}⋆ ∪ {a, b, c}⋆{a, c} ∪ {a, b, c}⋆c2{a, b, c}⋆.

Then M2 consists of all the words beginning by a or c or finishing by a or c
or containing c2 as a subword.

Let M3 = {a, b}⋆b2{a, b}⋆c{a, b, c}⋆∪{a, b, c}⋆c{a, b}⋆b2{a, b}⋆∪{a, b}⋆bc{a, b, c}⋆∪
{a, b, c}⋆cb{a, b}⋆.

M3 consists of all the words with either b2 before the first c, either b2 after
the last c , either b immediately on the left of the first c , either immediately
on the right of the last c.

Let M4 = {a, b}⋆an+1{a, b}⋆c{a, b, c}⋆ ∪ {a, b, c}⋆c{a, b}⋆an+1{a, b}⋆.

M4 consists of all the words with some ah, h ≥ n + 1, either before the first
c or after the last c.

Each language Mi, 1 ≤ i ≤ 4, is rational, hence local.

Let H = {a, b, c}⋆ − ∪4
i=1Mi.

H consists of all the words in the following form: baik ...bai1cucvcaj1b...ajmb,
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where u and v are nonempty words of {a, b}⋆, k ≥ 1,m ≥ 1, 1 ≤ ir ≤ n, 1 ≤
js ≤ n.

{a, b, c}⋆ − H = ∪4
i=1Mi is rational then it is local.

We are going to add two languages M5 and M6 to {a, b, c}⋆−H in order that
the resulting union be {a, b, c}⋆ − L(x, y).

Define for every nonempty word w of {a, b}⋆:
D(w) = {u 6= λ/u ∈ {a, b}⋆, |u| < |w|} and
J(w) = {u 6= λ/u ∈ {a, b}⋆, u 6= w, |u| = |w|}
Next for each n-tuple w = (w1, ...wn) of nonempty words wi, we define:
M(w) = c{a, b}⋆{a, b} ∪ b{a, b}⋆c ∪ ∪1≤i≤n ∪u∈D(wi) (baicu ∪ baib{a, b}⋆cu) ∪
∪1≤i≤n ∪u∈J(wi) (baic{a, b}⋆u ∪ baib{a, b}⋆c{a, b}⋆u).

M(x) is a rational language (because for each i, D(wi) and J(wi) are finite
sets ), hence local and generated by a grammar G = (V, Σ, P, σ). Let G′ =
(V ′, Σ, P ′, σ′), where σ′ is not in V and P ′ = P ∪ {σ′ → σ, σ′ → baiσ′xi/1 ≤
i ≤ n}.

It holds that M5 = L(G′).c.{a, b, c}⋆.
Remark that if h is the substitution {a, b, c}⋆ → P ({a, b, c}⋆) defined by
a → {a}, b → {b}, and c → M(x) then h(L(x)) = L(G′). But L(x) and
M(x) being local, and local languages being closed under substitution, we
can infer that L(G′) is local and then by concatenation product that M5 is
a local language.

Each word of L(G′) contains exactly one occurrence of c, L(G′) ∩ L(x) is
empty and L(G′) contains the set of words {baik ...bai1cw/w 6= xi1 ...xik , w ∈
{a, b}⋆}.

M5 ∩ H consists of all the words of H in the form baik ...bai1cucvcaj1b...ajmb
with u ∈ {a, b}⋆ and u 6= xi1 ...xik .

In a similar manner , let G1 = (V1, Σ, P1, σ1) be a grammar generating M(y)R.
Let G2 = (V ′

1 , Σ, P ′
1, σ

′
1) , where σ′

1 is a new symbol not in V1 and P ′
1 =

P1 ∪ {σ′
1 → σ, σ′

1 → yR
i σ′

1a
ib/1 ≤ i ≤ n}. Then M6 = {a, b, c}⋆.c.L(G2).

And if h′ is the substitution {a, b, c}⋆ → P ({a, b, c}⋆) defined by a → {a},
b → {b}, and c → M(y)R , then L(G2) = h′(L(y)R).
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L(y)R and M(y)R are local languages therefore L(G2) is local by substitution
and we deduce by concatenation product that M6 is a local language.

M6 ∩ H consists of all the words of H in the form baik ...bai1cucvcaj1b...ajmb
with vR 6= yj1 ...yjm

.

Therefore [{a, b, c}⋆ −H]∪M5 ∪M6 = ∪6
i=1Mi = {a, b, c}⋆ −L(x, y) is a local

language.

Then considering the previous morphism τ , τ [{a, b, c}⋆ − L(x, y)] is a local
language, which is equal to τ [{a, b, c}⋆] − τ [L(x, y)].
The language {a, b}⋆ − τ [{a, b, c}⋆] is a rational language hence it is also a
local one. But local languages are closed under union, then {a, b}⋆−τ [L(x, y)]
is also a local language. And if Σ contains at least two elements, then Σ⋆ −
[L(x, y)] is a local language.

Let us show now that {a, b}⋆ − τ [Ls] is a local language:

{a, b, c}⋆ − Ls = M ′
1 ∪ M ′

2 ∪ M ′
4, Where:

M ′
1 is the set words of {a, b, c}⋆ with less than three or more than three

occurrences of c. M ′
1 is rational then local.

M ′
2 is the set of words w1cw2cw3cw4 where each wi ∈ {a, b}⋆ and where

w4 6= wR
1 . This language is the union of the following languages :

• M2,1 = {w1cw2cw3cw4/wi ∈ {a, b}⋆ and |w1| < |w4|},

• M2,2 = {w1cw2cw3cw4/wi ∈ {a, b}⋆ and |w4| < |w1|},

• M2,3 = {w1cw2cw3cw4/wi ∈ {a, b}⋆ and |w1| = |w4| and w4 6= wR
1 }.

M2,1 is defined by the following local sentence ψ2,1, conjunction of:

• (< is a linear order)

• (Pa, Pb, Pc, form a partition),

• (P, Q,R, form a partition) ,

• ∀xyz(P (x) ∧ Q(y) ∧ R(z) → x < z < y),

• ∀x(P (x) → Pa(x) ∨ Pb(x)),
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• ∀x(Q(x) → Pa(x) ∨ Pb(x)),

• ∀x(R(x) → c1 ≤ x ≤ c3),

• R(c1) ∧ R(c2) ∧ R(c3) ∧ c1 6= c2 ∧ c1 6= c3 ∧ c2 6= c3,

• ∀x(Pc(x) ↔ x = c1 ∨ x = c2 ∨ x = c3),

• ∀xy((P (x) ∧ P (y) ∧ x 6= y) → i(x) 6= i(y)),

• ∀x(P (x) → Q(i(x))),

• ∀x(R(x) ∨ Q(x) → i(x) = x),

• Q(d) ∧ ∀x(P (x) → i(x) 6= d).

This sentence is equivalent to a universal sentence, its signature is
S(ψ2,1) = {<,Pa, Pb, Pc, P, Q, R, i, c1, c2, c3, d} where P,Q, R, are unary

predicate symbols, i is a unary function symbol, and c1, c2, c3, d , are constant
symbols. And if M |= ψ2,1 and X ⊆ |M | then cl(X, M) = cl1(X,M).Therefore
ψ2,1 is local and the language L(ψ2,1) = M2,1 is local.

In a similar manner, M2,2 = MR
2,1 is a local language.

M2,3 is defined by the following local sentence ψ2,3, conjunction of:

• (< is a linear order),

• (Pa, Pb, Pc, form a partition),

• (P, Q,R, form a partition ),

• ∀xyz(P (x) ∧ Q(y) ∧ R(z) → x < z < y),

• ∀x(P (x) → Pa(x) ∨ Pb(x)),

• ∀x(Q(x) → Pa(x) ∨ Pb(x)),

• ∀x(R(x) → c1 ≤ x ≤ c3),

• R(c1) ∧ R(c2) ∧ R(c3) ∧ c1 6= c2 ∧ c1 6= c3 ∧ c2 6= c3,

• ∀x(Pc(x) ↔ x = c1 ∨ x = c2 ∨ x = c3),

• ∀x(i(i(x)) = x),

• ∀x(P (x) ↔ Q(i(x))),
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• ∀x(R(x) → i(x) = x),

• ∀xy(P (x) ∧ P (y) ∧ x < y → i(y) < i(x)),

• Pa(d) ∧ Pb(i(d)).

the signature of ψ2,3 is the same as S(ψ2,1). ψ2,3 is equivalent to a universal
sentence and closure takes at most two steps in each of its models. So this
sentence is local and the language L(ψ2,3) = M2,3 is local.

Then by union the language M ′
2 is local.

Then M ′
4 = {a, b}⋆.c.M ′

3.c.{a, b}⋆, where M ′
3 is the set of words w2cw3 , where

w2 and w3 ∈ {a, b}⋆ and w3 6= wR
2 . By analogous methods as in the case of

M ′
2, We show that M ′

3 is local , then by concatenation we can deduce that
M ′

4 is local.

Therefore, as the union of the local languages M ′
1, M ′

2 and M ′
4, the lan-

guage {a, b, c}⋆ −Ls is local. Then by an analogous reasoning as in the case
of {a, b}⋆−τ [L(x, y)], we show that {a, b}⋆−τ [Ls] is a local language, Where
τ is the above morphism.

Now , For Σ an alphabet containing at least two elements a and b, let:
M1(x, y) = Σ⋆ − (τ [L(x, y)] ∩ τ [Ls]) = (Σ⋆ − τ [L(x, y)]) ∪ (Σ⋆ − τ [Ls]).

M1(x, y) is a local language as the union of two local languages, and
Σ⋆ − M1(x, y) = τ [L(x, y)] ∩ τ [Ls]

Then from our proof of 1), 2), 3), and 4), we can deduce 8), 10), 11), 12) and 13)
because τ [L(x, y)] ∩ τ [Ls] is context free iff it is rational iff it is empty iff it
is not infinite, and this is undecidable.

And M1(x, y) is a rational language iff Σ⋆ − M1(x, y) is a rational lan-
guage because the class of rational languages is closed under complementa-
tion, and this implies 9).

For 14) we reason as for 5).

8) implies 7) which implies 6).

8) implies also 17) and 18).
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To prove 15) we follow [Gin66, exercise 16, p.128].
Let Σ containing at least three elements and let c ∈ Σ. For an arbitrary
context free language L ⊆ (Σ − {c})⋆, LcL is a linear language iff L is
rational. Then when M1(x, y) = {a, b}⋆ − (τ [L(x, y)] ∩ τ [Ls]) it is undecid-
able to determine whether the local language M1(x, y)cM1(x, y) is a linear
language.

To prove 16) let us utilize Lemma 4.3.4. of [Gin66] :
For some n-tuples of nonempty words of {a, b}⋆ : y = (y1, ..., yn) and z =
(z1, ..., zn), consider the language M(y, z) = ∪1≤r<∞[dL(y)]r[dL(z)]r.
It is undecidable to determine whether the language M(y, z), ( over an
alphabet containing at least four elements a, b, c, d) , contains an infinite
rational language.
Then by Lemma 4.3.4. of [Gin66] , if τ ′ is the morphism {a, b, c, d}⋆ →
{a, b}⋆ defined by τ ′(a) = bab , τ ′(b) = ba2b, τ ′(c) = ba3b, τ ′(d) = ba4b ,
it is undecidable to determine whether the language τ ′[M(y, z)] over {a, b}
contains an infinite rational language.
Then it suffices to show that τ ′[M(y, z)] is a local language and, because the
image of a local language by a morphism is local, that M(y, z) is local.
The language L = {enfn/1 ≤ n} is local . And if k is the substitution
{e, f}⋆ → P ({a, b, c, d}⋆) defined by e → dL(y) and f → dL(z) , then
k(L) = M(y, z). Therefore M(y, z) is local because L is local and local
languages are closed under substitution.

5 Definitions and review of transfinite length

word languages

5.1 words of infinite and transfinite length

We shall assume the reader to be familiar with the elementary theory of
countable ordinals, which may be found in [Sie65].
Let Σ be a finite alphabet, and α be an ordinal. A word of length α (an
α-word) over the alphabet Σ is an α-sequence (or sequence of length α)
of letters in Σ. In a similar manner as in the case of finite words, we’ ll
identify a word σ of length α over Σ with the structure (α, <σ, (P σ

a )a∈Σ) which
signature is ΛΣ = {<, (Pa)a∈Σ} where the unary predicate Pa is interpreted
by P σ

a = {i < α such that the i + 1th letter of σ is an a}.
Let then α be an ordinal ≥ ω. We’ ll denote Σα the set of α-words over the
alphabet Σ. And we define an α-language over Σ as a subset of Σα. We can
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now set the following definition:

Definition 5.1 Let L be an α-language over the alphabet Σ. L is a locally
finite α-language iff there exists a local sentence ϕ in a signature Λ ⊇ ΛΣ

such that: (σ ∈ L) ←→ (∃M, M |= ϕ,M of order type α and M |ΛΣ = σ).
(where M |ΛΣ is the reduction of M to the signature ΛΣ).

Notation. Let us denote LΣ
α(ϕ) ( or Lα(ϕ) if there is no ambiguity about

the alphabet Σ ) the α-language defined by the local sentence ϕ. And we’ ll
note L≥α(ϕ) = ∪β≥αLβ(ϕ) and L>α(ϕ) = ∪β>αLβ(ϕ).

5.2 Automata over words of length ω

Recall first the notion of Büchi automaton reading words of length ω, [Eil74],
[Tho90], [PP98].
Intuitively a Büchi automaton is a finite automaton which reads infinite
words, the acceptation condition for an ω-word being that during its reading
( or during one of its readings, in the non deterministic case ), one of the
“final” states appears infinitely often.

Definition 5.2 A Büchi automaton over the alphabet Σ is of the form Aut =
(Q, q0, ∆, F ) where Q is a finite set of states, q0 is the initial state ∈ Q , ∆
is the transition relation ( ∆ ⊆ Q × Σ × Q ) and F is a subset of Q called
the set of final states.
A run of Aut reading an ω-word σ = σ(0)σ(1)...σ(n)... of Σω is an ω-sequence
α = α(0)α(1)...α(n)... such that α(0) = q0 and (α(i), σ(i), α(i + 1)) ∈ ∆ for
i ≥ 0.
The run is called successful if Inf(α) ∩ F 6= ∅ ,where Inf(α) is the set
of elements of Q which appear infinitely often in the ω-sequence α. The
automaton Aut accepts the ω-word σ if there exists a successful run of Aut
over σ.We denote Lω(Aut) = {σ ∈ Σω \ Aut accepts σ} the ω-language
recognized by Aut. If L = Lω(Aut) for a Büchi automaton Aut, L is called
a Büchi ω-language .

Recall now some of the essential results about Büchi ω-languages:

Theorem 5.3 The class of Büchi ω-languages is the omega-Kleene closure
of the set of rational languages , i.e. the class of languages in the form
∪n

i=1Ui.V
ω
i ,where n is a non negative integer, and for each i∈[1,n], Ui and

Vi are rational languages.
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Theorem 5.4 ([Tho90]) The emptiness problem for Büchi ω-languages is
decidable. (this means that: “For an arbitrary Büchi automaton Aut, is
Lω(Aut) empty? “ is a decidable problem. )

Remark 5.5 Muller defined another class of automata reading words of
length ω. the difference between Büchi and Müller automata is the notion
of acceptation of an ω-word . A Muller automata is in the form Aut =
(Q, q0, ∆, F ) where Q, q0, ∆ are defined in a similar manner as in the Büchi
case and where F ⊆ P (Q), (F is a subset of the power set of Q). A run of
the automata is defined as above but a run α of Aut over σ is successful if
Inf(α) ∈ F .

Theorem 5.6 (Mac Naughton). An ω-language over the alphabet Σ is Muller
recognizable iff it is Büchi recognizable.

The advantage of Muller automata is that the deterministic version has the
same expressive power as the non deterministic version, while this is false for
Büchi automata.

5.3 Büchi ω-languages are local ω-languages

We shall show the following result:

Theorem 5.7 Every Büchi ω-language is a local ω-language and, if B is a
Büchi ω-language, there exists a local sentence ϕ such that Lω(ϕ) = B and
L>ω(ϕ) = ∅.

Proof. We shall use the characterization of Büchi ω-languages by ω-regular
expresssions. Let B be a Büchi ω-language over the alphabet Σ. Then there
exist some rational languages (Ui) and (Vi) over Σ, where 1 ≤ i ≤ n, such
that B = ∪n

i=1Ui.V
ω
i . Recall that for V ⊆ Σ⋆, we denote V ω = {α ∈ Σω \α =

α1α2α3...αn..... with αi ∈ V, ∀i ≥ 1}.

Recall The following Lemma [Fin89]: If U is a rational language over Σ,
Then there exists a local sentence ϕ such that U = LΣ(ϕ) and LΣ

α(ϕ) = ∅ for
α ordinal ≥ ω.
This is proved by induction on the complexity of a regular expression defining
a rational language.

Let then some local sentences ϕi and ψi, 1 ≤ i ≤ n, such that
∀i ∈ [1, n], L(ϕi) = Ui, L(ψi) = Vi and L≥ω(ϕi) = ∅ and L≥ω(ψi) = ∅.
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Recall also that for two local sentences ϕ1 and ϕ2 defining local languages
L(ϕ1) and L(ϕ2), we can easily define the local sentences ϕ1.ϕ2 and ϕ1 ∪ ϕ2

such that L(ϕ1.ϕ2) = L(ϕ1).L(ϕ2) and L(ϕ1 ∪ ϕ2) = L(ϕ1) ∪ L(ϕ2).

Remark that for words of transfinite length, we get:

Lα(ϕ1.ϕ2) = ∪(β1+β2=α)Lβ1
(ϕ1).Lβ2

(ϕ2)

Lα(ϕ1 ∪ ϕ2) = Lα(ϕ1) ∪ Lα(ϕ2).

Recall also (see proof of Theorem 3.1) that for any local sentence ϕ,
ϕ⋆ is defined in the signature S(ϕ⋆) which is the signature of ϕ to which

is added a unary function symbol I and in which every constant symbol e is
replaced by a unary function symbol.

ϕ⋆ is the sentence defined by the conjunction of:

• (< is a linear order),

• ∀yz[I(y) ≤ y and (y ≤ z → I(y) ≤ I(z)) and (I(y) ≤ z ≤ y → I(z) =
I(y))],

• ∀xy[I(x) = I(y) → e(x) = e(y)], for each constant e of the signature
S(ϕ) of ϕ,

• ∀x1...xn[(
∨

i,j≤n I(xi) 6= I(xj)) → f(x1...xn) = min(x1...xn)] , for each
n-ary function f of S(ϕ),

• ∀x1...xn[(
∧

i,j≤n I(xi) = I(xj)) → I(f(x1...xn)) = I(x1)], for each n-ary
function f of S(ϕ),

• ∀xϕx, where ϕx is the local sentence ϕ in which every constant e is
replaced by the term e(x) and each quantifier is relativized to the set
{y \ I(y) = I(x)}.

Remark 5.8 The models of ϕ⋆ are essentially direct sums of models of ϕ ,
and LΣ(ϕ⋆) = (LΣ(ϕ))⋆.

Remark 5.9 These three operations over local sentences : ϕ, ψ → ϕ.ψ then
ϕ, ψ → ϕ∪ψ and ϕ → ϕ⋆, already permit us to construct a sentence defining
the Büchi language B.
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We have B = ∪n
i=1Ui.V

ω
i and Ui = L(ϕi), Vi = L(ψi) for 1 ≤ i ≤ n. Let

then the local sentence ∪n
i=1ϕi.(ψ

⋆
i ) = ϕ. We easily verify that Lω(ϕ) =

∪n
i=1L(ϕi).Lω(ψ⋆

i ), i.e. Lω(ϕ) = ∪n
i=1L(ϕi).L(ψi)

ω = ∪n
i=1Ui.V

ω
i = B.

Remark 5.10 The hypothesis L≥ω(ϕi) = ∅ and L≥ω(ψi) = ∅ was necessary
to state that Lω(ψ⋆

i ) = L(ψi)
ω and that Lω(ϕ) = ∪n

i=1L(ϕi).Lω(ψ⋆
i ).

Remark 5.11 Every Büchi ω-language is then a local ω-language. For the
continuation, we’ll show that we can obtain ϕ such that Lω(ϕ) = B and
L>ω(ϕ) = ∅. for that, let us define a new operation over local sentences.

Definition 5.12 Let ϕ and ψ local sentences such that S(ϕ⋆)∩S(ψ) = {<}.
We define the sentence ϕ(⋆ψ) in the signature S(ϕ⋆) ∪ S(ψ) ∪ {P}, where P
is a new unary predicate symbol . ϕ(⋆ψ) is the conjunction of :

• ϕ⋆,

• ∀x[P (x) ↔ I(x) = x],

• ∀x1...xn[(
∧n

i=1 P (xi)) → ψ1(x1...xn)], where ψ = ∀x1...xnψ1(x1...xn)
and ψ1 is an open formula,

• ∀x1...xk[(
∧k

i=1 P (xi)) → P (t(x1...xk))], for each k-ary function t of
S(ψ),

• ∀x1...xk[Q(x1...xk) → P (x1) ∧ ... ∧ P (xk)], for each k-ary predicate
symbol Q of S(ψ)

• P (a), for each constant a of S(ψ),

• ∀x1...xn[(
∨n

i=1 ¬P (xi)) → t(x1...xn) = min(x1...xn)], for each n-ary
function t in S(ψ).

Remark 5.13 The models of ϕ(⋆ψ) essentially are direct sums of models of
ϕ , these models being ordered by the order type of a model of ψ.

Recall now the following result:

Lemma 5.14 ([FR96]) There exists a local sentence ϕω, with <∈ S(ϕω),
which has a model of order type ω (for <) and no model of order type an
ordinal α > ω.
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We can then modify the expression of ϕ we are looking for: Let ϕ =
∪n

i=1ϕi.ψ
(⋆ϕω)
i . We have then Lω(ϕ) = ∪n

i=1Ui.V
ω
i = B , and this time ϕ

has not any model of order type > ω.

Remark 5.15 The same proof shows that every ω-language in the form
∪n

i=1Ui.V
ω
i where Ui and Vi are local languages , is a local ω-language.

then the ω-Kleene closure of the set of local languages is included in the set
of local ω-languages. We have shown that local languages extend far beyond
rational languages , that many context free languages are local, and many non
context free also. So the above proof implies that local ω-languages extend far
beyond Büchi ω-languages [Fin89] [Fin99].

6 Automata over words of transfinite length

So as an automata to be able to read words of length ≥ ω, we must add
to the automaton a transition relation for limit steps: after the reading of a
word which length is a limit ordinal, the state of the automaton will depend
on the set of states which cofinally appeared during the run of the automaton
[BS73], [Hem92], [Bed96].

6.1 First definitions

Definition 6.1 A generalized Büchi automaton is a sextuple (Σ, Q, q0, ∆, γ, F )
where: Σ is a finite alphabet , Q is a finite set of states, q0 is a state in Q
called initial state, ∆ ⊂ Q×Σ×Q, is the transition relation, γ ⊂ P (Q)×Q.

Σ, Q, q0, ∆ and F keep the same signification as before, the signification of γ
is given by the :

Definition 6.2 A run of the generalized Büchi automaton
Aut = (Σ, Q, q0, ∆, γ, F ) reading the word σ of length α, is an (α+1)-sequence
of states x defined by : x(0) = q0 and for i < α , (x(i), σ(i), x(i+1)) ∈ ∆ and
for i a limit ordinal, (Inf(x, i), x(i)) ∈ γ, where Inf(x, i) = {q ∈ Q \ ∀µ <
i,∃ν < i such that µ < ν and x(ν) = q}.
Inf(x, i) is the set of states which cofinally appear during the reading of the
i first letters of σ.
A run x of the automaton Aut over the word σ of length α is called successful
if x(α) ∈ F . A word σ of length α is accepted by Aut if there exists a success-
ful run of Aut over σ. We denote Lα(Aut) the set of words of length α which
are accepted by Aut. An α-language L is a (generalized) Büchi α-language if
there exists a generalized Büchi automaton A such that L = Lα(A).
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Remark 6.3 When we consider only finite words, the language accepted by
a generalized Büchi automaton is a rational language. And the notion of
ω-language accepted by generalized Büchi automaton corresponds to that of
ω-language accepted by Muller automaton and then also by Büchi automaton.

6.2 ω2-languages accepted by generalized Büchi automata
are local ω2-languages

Let Aut = (Σ, Q, q0, ∆, γ, F ) be a generalized Büchi automaton, and let
Lω2(Aut) be the ω2-language recognized by Aut.
We shall decompose the reading of an ω2-word by Aut into blocks of length
ω.
Let σ be an ω2-word. Aut reads the word σ: after the reading of the first ω
letters, Aut is in state x(ω), after the reading of ω.2 letters, Aut is in state
x(ω.2) and so on...
Define now the following ω-languages :
For qi ∈ Q, qj ∈ Q and E ⊆ Q, L(qi, qj, E) is the ω-language of words u
such that there exists a reading of u by Aut such that Aut reads the word
u, beginning in state qi, it is in state qj after the reading of u and the set of
states in which the automaton has been (qi and qj comprised) is the set E.
We easily see that these ω-languages are recognized by Muller automata
therefore also by Büchi automata.

Consider now a new alphabet: Γ = {(qi, qj, E) \ qi ∈ Q, qj ∈ Q,E ⊆ Q} =
Q×Q×P (Q) and consider the ω-language over Γ of the ω-words such that:
The first letter is in the form (q0, q, E) and each letter (qi, qj, E) is followed
by a letter (qj, q, G) with q ∈ Q,G ⊆ Q. And such that X = {q ∈ Q\ there
exists a letter (qi, qj, G) which appears infinitely often with q ∈ G} satisfies
(X, qf ) ∈ γ for a qf ∈ F .
This ω-language over Γ is a Büchi ω-language. Denote it by LΓ

Aut. Re-
mark that if we substitute in LΓ

Aut the ω-language L(qi, qj, E) for each letter
(qi, qj, E) , we obtain the ω2-language recognized by Aut, i.e. Lω2(Aut).
From the preceding results, there exists a local sentence ϕΓ such that LΓ

ω(ϕΓ) =
LΓ

Aut and L>ω(ϕΓ) = ∅. In the same way there exist local sentences ϕ(qi,qj ,E)

such that LΣ
ω(ϕ(qi,qj ,E)) = L(qi, qj, E) and L>ω(ϕ(qi,qj ,E)) = ∅.

We then use the substitution method established in the above section :” clo-
sure properties of local languages ”.
We’ll now assume that the signatures of the sentences ϕ(qi,qj ,E) satisfy:
S(ϕ(qi,qj ,E)) ∩ S(ϕ(q′i,q

′

j ,E′)) = {<, (Pa)a∈Σ} for (qi, qj, E) 6= (q′i, q
′
j, E

′).
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Let Qa be the unary predicate in S(ϕΓ), which indicates the place of the
letter a ∈ Γ. We also assume, possibly differently naming the function, con-
stant and other predicate symbols of S(ϕΓ) that S(ϕ(qi,qj ,E)) ∩ S(ϕΓ) = {<}
for every (qi, qj, E) ∈ Q × Q × P (Q).

Let us now construct a local sentence defining the language Lω2(Aut):
ψ is the conjunction of the following sentences ( the meaning of which is
explained below):

• (< is a linear order),

• ∀xy[(I(y) ≤ y) ∧ (y ≤ x → I(y) ≤ I(x)) ∧ (I(y) ≤ x ≤ y → I(x) =
I(y))],

• ∀x[I(x) = x ↔ P (x)],

• P (c), for each constant c of S(ϕΓ),

• ∀x1...xk[R(x1...xk) → P (x1)∧ ....∧P (xk)], for each predicate R(x1...xk)
of S(ϕΓ),

• ∀x1...xj[(P (x1) ∧ ... ∧ P (xj)) → P (f(x1...xj))], for each j-ary function
symbol f of S(ϕΓ),

• ∀x1...xj[(
∨

1≤i≤j ¬P (xi)) → f(x1...xj) = min(x1...xj)], for each j-ary

function symbol f of S(ϕΓ),

• ∀x1...xm[(P (x1)∧...∧P (xm)) → ϕΓ
0 (x1...xm)], where ϕΓ = ∀x1...xmϕΓ

0 (x1...xm)
with ϕΓ

0 an open formula,

• ∀x1...xj[
∨

i,k≤j(I(xi) 6= I(xk)) → f(x1...xj) = min(x1...xj)], for every
function f of S(ϕ(qi,qj ,E)) for (qi, qj, E) ∈ Q × Q × P (Q),

• ∀xy1...yj[(
∧

1≤l≤j I(yl) = I(x)) → I(f(y1...yj)) = I(x)], for each j-ary
function symbol f of S(ϕ(qi,qj ,E)) for (qi, qj, E) ∈ Γ,

• Finally, for each letter (qi, qj, E) and the associated sentence ϕa =
ϕ(qi,qj ,E):

• ∀xy1...yp[(
∧

1≤l≤p I(yl) = I(x) ∧ Qa(I(x))) → ϕ0
a(y1...yp) ∧ {(eb(y1) =

I(x) ∧ fb(y1...yp) = y1 ∧ ¬Rb(y1...yp) ∧
∧

ea∈S(ϕa) ea(y1) = ea(x); where
b 6= a, and eb, fb, Rb run over the constants, functions, and predicates
of S(ϕb)}],
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Above , 1) to each constant ea of S(ϕa) is associated a new unary
function ea(y) and 2) whenever ϕa = ∀y1...ypψa(y1...yp) with ψa open,
ϕ0

a is ψa in which every constant ea has been replaced by the function
ea.
At last we have the following conjunctions:

• ∀xy[(P (x) ∧ P (y) ∧ x < y) → (x < h(xy) < y ∧ ¬P (h(xy)))],

• ∀xyz ∈ P [x < y < z → x < h(xy) < h(xz) < y],

• ∀xy[(¬P (x) ∨ ¬P (y)) → h(xy) = x],

• ∀xy[(P (x) ∧ P (y) ∧ ¬(x < y)) → h(xy) = x].

Above h is a new binary function, P a unary predicate, I a unary function
added to S(ψ).

Construction of ψ :
Using the function I which marks the first letters of the subwords, we divide
a word into subwords. In every model M of ψ, the set of the ”first letters of
subwords” , PM , grows richer in a model of ϕΓ ( therefore will constitute a
word of LΓ

Aut).
Then we ”substitute” : for each letter (qi, qj, E) in PM , we substitute a word
of the associated language L(qi, qj, E), using for that the formula ϕ(qi,qj ,E).
The last four conjunctions imply that in a model M of ψ of order type
ω2, (PM being of order type ω because the ϕ(qi,qj ,E) have not any model
of order type > ω ), every subword is of order type ω, and therefore is a
word of the associated Büchi language L(qi, qj, E). Then it really holds that
Lω2(ψ) = Lω2(Aut).

Remark 6.4 This sentence is local because it is equivalent to a universal
one, and closure takes a finite number of steps in a model of ψ: one takes
the closure by I, then by the functions of S(ϕΓ), then by h, afterwards by the
functions of the S(ϕ(qi,qj ,E)).

Remark 6.5 By construction, the sentence ψ has not any well ordered model
of order type > ω2, because ϕΓ and the ϕ(qi,qj ,E) have no well ordered model
of order type > ω.
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6.3 ωn-languages recognized by generalized Büchi au-
tomata are local ωn-languages

We shall prove the following result:

Theorem 6.6 Whenever n is an integer ≥ 1, every ωn-language which is
recognized by a generalized Büchi automaton is defined by a local sentence
which has not any well ordered model of order type > ωn.

Proof.
We reason by induction over n. The cases n = 1 and n = 2 were solved in
preceding paragraphs.
Suppose the result be established for the integer n − 1.
Let then a generalized Büchi automata Aut = (Σ, Q, q0, ∆, γ, F ) reading
words of length ωn with n ≥ 2.
We now use a method which is analogous to that one used in the preceding
case:
We can divide a word of length ωn into ω subwords of length ωn−1.
Let as above the new alphabet Γ = Q × Q × P (Q) and the ω-language over
Γ: LΓ

Aut = Lω(ϕΓ).
And let Ln−1(qi, qj, E), the ωn−1-language of the ωn−1-words u such that if
Aut reads the word u beginning the reading in state qi , it finishes the reading
in state qj and the set of states entered by Aut during the run is E, (qi and
qj comprised in E ).
We easily see that the languages Ln−1(qi, qj, E) are ωn−1-languages recognized
by generalized Büchi automata.
Then remark that if one substitute in the language LΓ

Aut the
language Ln−1(qi, qj, E) for the letter (qi, qj, E), we obtain the ωn-language

Lωn(Aut).
By induction assumption, each language Ln−1(qi, qj, E) is defined by a local
sentence ϕn−1

(qi,qj ,E): we have Ln−1(qi, qj, E) = LΣ
ωn−1(ϕ

n−1
(qi,qj ,E)).

We then use the substitution method as above: we obtain the sentence ψ
of preceding paragraph, where we replaced the sentences ϕ(qi,qj ,E) by the
sentences ϕn−1

(qi,qj ,E) and the four last conjunctions by the conjunction of the

following sentences (where h is a n-ary function symbol ).

• ∀x1...xn[(
∨

1≤i≤n ¬P (xi)) → h(x1...xn) = x1],

• ∀x1...xn[(
∨

2≤i≤n ¬(x1 < xi)) → h(x1...xn) = x1].

• ∀x1...xn[(
∧

1≤i≤n P (xi) ∧
∧

2≤i≤n(x1 < xi)) → ¬P (h(x1...xn))],
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• ∀x1...xn[(
∧

1≤i≤n P (xi) ∧
∧

2≤i≤n(x1 < xi) ∧ P (y) ∧ x1 < y) → x1 <
h(x1x2...xn) < y],

• ∀x1...xn∀y1...yn[(
∧

1≤i≤n P (xi)∧
∧

1≤i≤n P (yi)∧
∧

2≤i≤n x1 < xi∧
∧

2≤i≤n x1 <
yi ∧

∧
1≤i≤j xi = yi ∧ xj+1 < yj+1) → h(x1...xn) < h(y1...yn)], for each

integer j such that 1 ≤ j < n.

The principle is the same as before: if M is a model of order type ωn of ψ,
PM is of order type ω because every sentence ϕn−1

(qi,qj ,E) has no well ordered

model of order type > ωn−1 , and then the function h ensures that every
subword is of length ωn−1.
M |ΛΣ is then a word of Lωn(Aut) and the converse is true: every word of
Lωn(Aut) grows richer in a model of ψ. Then it really holds that: LΣ

ωn(ψ) =
Lωn(Aut).
More, by construction, ψ has no well ordered model of order type > ωn. This
achieves the proof by induction.

Remark 6.7 The construction of the sentence ψ may be done in an effective
manner from the automaton Aut.

6.4 α-languages (ω ≤ α < ωω) recognized by
generalized Büchi automata are local α-languages

We shall prove the following

Theorem 6.8 Let α be an ordinal such that ω ≤ α < ωω. Then every α-
language recognized by a generalized Büchi automaton is a local α-language.

Proof. Let α be an ordinal such that ω ≤ α < ωω. The ordinal α admits a
decomposition into the Cantor normal form [?]:

α = ωpk .nk + ωpk−1 .nk−1 + .... + ωp1 .n1 + n0

where pi, ni, k are integers such that pk > pk−1 > .... > p1 ≥ 1 and n0 ≥
0, ni ≥ 1 for 1 ≤ i ≤ k, and k ≥ 1.
let Aut = (Σ, Q, q0, ∆, γ, F ) be a generalized Büchi automaton reading α-
words over Σ. We reason as above, dividing this time an α-word into nk

subwords of length ωpk , then nk−1 subwords of length ωpk−1 and so on ... up
to n1 subwords of length ωp1 and a finite subword of length n0.
Assume n0 > 0, the case n0 = 0 being treated in a similar manner.
Let then Ln(qi, qj) be the ωn-language of the ωn-words σ over Σ such that
there exists a run of the automaton Aut reading the word σ where Aut begins
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the reading of σ in state qi and finishes it in state qj (where qi ∈ Q, qj ∈ Q).
And let Rq the rational language of finite words σ such that if Aut begins to
read σ in state q, it finishes the reading in a final state of F .
Let then the (finite) language L of finite words, of length nk +nk−1 + ...n1 +1
over the alphabet A = {Lpl(qi, qj)\ qi ∈ Q, qj ∈ Q, 1 ≤ l ≤ k}∪{Rq \ q ∈ Q}.
L is constituted of the words which begin with a letter in the form Lpk(q0, qi),
such that the nk first letters are among the Lpk(qi, ql) and such that a letter
Lpk(qi, ql) is followed by a letter Lpk(ql, qm). The following nk−1 letters are
among the letters Lpk−1(qi, ql) then the nk−2 following letters are among the
Lpk−2(qi, ql), until the n1 letters among the Lp1(qi, qj) followed by a letter
among the Rq, q ∈ Q. And always a letter Lpm(qi, ql) is followed by a letter
Lpm(ql, qj) or by a letter Lpm−1(ql, qj), and the latest letter of the word being
Rq if the last but one letter is in the form Lp1(qi, q).
By construction, if one substitute in the language L for each letter Lpm(qi, qj)
or Rq the associated language (over Σ ), we obtain the α-language Lα(Aut).
The language L is finite then it is local and it is defined by a local sentence
ϕ which has no model of cardinal > nk + nk−1 + ....n1 + 1.
Each language Lpj(qi, qm) is recognized by a generalized Büchi automaton
therefore (from preceding paragraph) it is defined by a local sentence ϕpj

(qi, qm)
such that L>ω

pj (ϕpj
(qi, qm)) = ∅.

For q ∈ Q, the language Rq is rational then it is defined by a local sentence
ψq such that L≥ω(ψq) = ∅.
Again with the “ substitution method ”, we obtain a local sentence ψα such
that LΣ

α(ψα) = Lα(Aut).

6.5 Conclusion

We have proved in [FR96] the following:

Theorem 6.9 let ϕ be a local sentence with a symbol < in S(ϕ), and α be
an ordinal such that ω ≤ α < ωω, has ϕ a well ordered model (for < ) of
order type α? is a decidable problem.

The proof relies upon the existence of indiscernables in a model which re-
duces the existence of a model of order type α to the existence of a finite
model of another local sentence which is effectively obtained from ϕ.
The preceding method, which associates a local sentence to a Büchi α-
language then allows to decide the emptiness problem for a Büchi α-language.
The α-languages which are recognized by finite automata were first studied
by Büchi in order to obtain a decision algorithm for the monadic theory of
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(α,<).
The preceding result ( Theorem 6.9 ) allows to obtain a decision algorithm
for the sentences in the form ∃R1....∃Rkϕ, where ϕ is local in the signature
S(ϕ) = {<,R1, ...Rk}, where R1, ...Rk are relation or n-ary function sym-
bols with n ≥ 1. Theorem 6.8 shows that this is actually an extension (for
α < ωω) of Büchi’s result.
In fact local α-languages extend far beyond Büchi α-languages: all Büchi
ω-languages are, considering topological complexity, boolean combination of
Gδ-sets, then ∆0

3-sets, when there are local ω-languages in each Borel class
Σ0

β, for β an ordinal < ω2 and there are even some Σ1
1-complete analytic local

ω-languages, [Fin99].
Transfinite length word languages occur in the field of concurrency modeli-
sation with the trace languages [DR95] and also in the work about timed
automata where one consider that infinitely many actions may happen dur-
ing a finite period [BP97] [AD94]. Beyond the decidability of the empti-
ness problem, we may hope to obtain other decidability results about Büchi
α-languages, using results of model theory of local sentences, particularly
some stretching theorems based upon the notion of indiscernables in a model
[FR96].

In a second paper, we focus on local ω-languages, [Fin99]. We show that:

• Local ω-languages are neither closed under intersection nor under

complementation.

• Most undecidability results that hold for locally finite languages may be
extended to locally finite ω-languages, in particular the inclusion, the
equivalence problems are undecidable, as the problem of the rationality
of a local ω-language is.

We then study topological properties of these languages, showing:

• There are local ω-languages in each Borel class of finite rank and even
in Borel classes of infinite rank < ω2.

• For any Borel class G, it is undecidable to determine whether a local
ω-language is in the class G.

• There exist local ω-languages which are analytic but not Borel sets.

• One cannot decide whether a local ω-language is a Borel set.
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