
HAL Id: hal-00102390
https://hal.science/hal-00102390

Submitted on 29 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bi-Hamiltonian systems on the dual of the Lie algebra of
vector fields of the circle and periodic shallow water

equations
Boris Kolev

To cite this version:
Boris Kolev. Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and
periodic shallow water equations. Philosophical Transactions. Series A, Mathematical, Physical and
Engineering Sciences, 2007, 365 (1858), pp. 2333-2357. �10.1098/rsta.2007.2012�. �hal-00102390�

https://hal.science/hal-00102390
https://hal.archives-ouvertes.fr


cc
sd

-0
01

02
39

0,
 v

er
si

on
 1

 -
 2

9 
Se

p 
20

06

BI-HAMILTONIAN SYSTEMS ON THE DUAL OF THE LIE

ALGEBRA OF VECTOR FIELDS OF THE CIRCLE AND PERIODIC

SHALLOW WATER EQUATIONS

BORIS KOLEV

Abstract. This paper is a survey article on bi-Hamiltonian systems on the dual of
the Lie algebra of vector fields on the circle. We investigate the special case where one
of the structures is the canonical Lie-Poisson structure and the second one is constant.
These structures called affine or modified Lie-Poisson structures are involved in the
integrability of certain Euler equations that arise as models of shallow water waves.

1. Introduction

In the last forty years or so, the Korteweg-de Vries equation has received much atten-
tion in the mathematical physics literature. Some significant contributions were made in
particular by Gardner, Green, Kruskal, Miura (see [46] for a complete bibliography and a
historical review). It is through these studies, that emerged the theory of solitons as well
as the inverse scattering method.

One remarkable property of Korteweg-de Vries equation, highlighted at this occasion,
is the existence of an infinite number of first integrals. The mechanism, by which these
conserved quantities were generated, is at the origin of an algorithm called the Lenard
recursion scheme or bi-Hamiltonian formalism [18, 36]. It is representative of infinite-
dimensional systems known as formally integrable, in reminiscence of finite-dimensional,
classical integrable systems (in the sense of Liouville). Other examples of bi-Hamiltonian
systems are the Camassa-Holm equation [16, 4, 6, 14, 21] and the Burgers equation.

One common feature of all these systems is that they can be described as the geodesic
flow of some right-invariant metric on the diffeomorphism group of the circle or on a central
real extension of it, the Virasoro group. Each left (or right) invariant metric on a Lie
group induces, by a reduction process, a canonical flow on the dual of its Lie algebra. The
corresponding evolution equation, known as the Euler equation, is Hamiltonian relatively
to some canonical Poisson structure. It generalizes the Euler equation of the free motion
of a rigid body1. In a famous article [1], Arnold pointed out that this formalism could be
applied to the group of volume-preserving diffeomorphisms to describe the motion of an
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ideal fluid2. Thereafter, it became clear that many equations from mathematical physics
could be interpreted the same way.

In [19] (see also [44]), Dorfman and Gelfand showed that Korteweg-de Vries [27] equa-
tion can be obtained as the geodesic equation, on the Virasoro group, of the right-invariant
metric defined on the Lie algebra by the L2 inner product. In [41], Misiolek has shown
that Camassa-Holm equation [4] which is also a one dimensional model for shallow water
waves, can be obtained as the geodesic flow on the Virasoro group for the H1-metric.

While both the Korteweg-de Vries and the Camassa-Holm equation have a geometric
derivation and both are models for the propagation of shallow water waves, the two equa-
tions have quite different structural properties. For example, while all smooth periodic
initial data for the Korteweg-de Vries equation develop into periodic waves that exist for
all times [48], smooth periodic initial data for the Camassa-Holm equation develop either
into global solutions or into breaking waves (see the papers [5, 8, 9, 39]).

In this paper, we study the case of right-invariant metrics on the diffeomorphism group
of the circle, Diff(S1). Notice however that a similar theory is likely without the periodicity
condition (in which case, some weighted spaces express how close the diffeomorphisms of
the line are to the identity [7]).

Each right-invariant metric on Diff(S1) is defined by an inner product a on the Lie
algebra of the group, Vect(S1) = C∞(S1). If this inner product is local, it is given by the
expression

a(u, v) =

∫

S1

u A(v) dx u, v ∈ C∞(S1),

where A is an invertible, symmetric, linear differential operator. To this inner product on
Vect(S1), corresponds a quadratic functional (the energy functional)

HA(m) =
1

2

∫

S1

m A−1(m),

on the (regular) dual Vect∗(S1). Its corresponding Hamiltonian vector field XA generates
the Euler equation

dm

dt
= XA(m).

Among Euler equations of that kind, we have the well-known inviscid Burgers equation

ut + 3uux = 0,

and Camassa-Holm [4, 16] shallow water equation

ut + uux + ∂x (1 − ∂2
x)

−1
(
u2 +

1

2
u2

x

)
= 0.

Indeed, the inviscid Burgers equation corresponds to A = I (L2 inner product), whereas
the Camassa-Holm equation corresponds to A = I −D2 (H1 inner product) (see [10, 11]).

Burgers, Korteweg-de Vries and of Camassa-Holm equations are precisely bi-Hamiltonian
relatively to some second affine (after Souriau [47]) compatible Poisson structure3 (see

2However, this formalism seems to have been extended to hydrodynamics before Arnold by Moreau
[42].

3The affine structure on the Virasoro algebra which makes Korteweg-de Vries equation a bi-
Hamiltonian system seems to have been first discovered by Gardner [17] and for this reason, some authors
call it the Gardner bracket (see also [15].
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[14, 32, 37]). Since these equations are special cases of Euler equations induced by Hk-
metric, it is natural to ask whether, in general, these equations have similar properties for
any value of k. In [12], it was shown that this was not the case. There are no affine struc-
ture on Vect∗(S1) which makes the Eulerian vector field Xk, generated by the Hk-metric,
a bi-Hamiltonian system, unless k = 0 (Burgers) or k = 1 (Camassa-Holm). One similar
result for the Virasoro algebra was given in [13]. We investigate, here, the problem of
finding a modified Lie-Poisson structure for which the vector field XA is bi-Hamiltonian.
We show, in particular, that for an operator A with constant coefficients, this is possible
only if A = aI + bD2, where a, b ∈ R.

In §2, we recall the definition of Hamiltonian and bi-Hamiltonian manifolds and the
basic materials on bi-Hamiltonian vector fields. Section 3 contains a description of Poisson
structures on the dual of the Lie algebra of a Lie group. The last section is devoted to the
study of bi-Hamiltonian Euler equations on Vect∗(S1); the main results are stated and
proved.

In the description of modified affine Poisson structures we rely on Gelfand-Fuks coho-
mology. Since the handling of this cohomology theory is not obvious, we derive, in the
Appendix, an elementary, “hands-on” computation of the two first Gelfand-Fuks coho-
mological groups of Vect(S1).

2. Hamiltonian and bi-Hamiltonian manifolds

In this section, we recall definitions and well-known results on finite dimensional smooth
Poisson manifolds.

2.1. Poisson manifolds.

Definition 2.1. A symplectic manifold is a pair (M, ω), where M is a manifold and ω is
a closed nondegenerate 2-form on M , that is dω = 0 and for each m ∈ M , ωm is a non
degenerate bilinear skew-symmetric map of TmM .

Since a symplectic form ω is nondegenerate, it induces an isomorphism

(1) TM → T ∗M, X 7→ iX ω,

defined via iX ω(Y ) = ω(X, Y ). For example, this allows to define the symplectic gradient
Xf of a function f by the relation iXf

ω = −df . The inverse of this isomorphism (1) defines
a skew-symmetric bilinear form P on the cotangent space T ∗M . This bilinear form P
induces itself a bilinear mapping on C∞(M), the space of smooth functions f : M → R,
given by

(2) {f, g } = P (df, dg) = ω(Xf , Xg), f, g ∈ C∞(M),

and called the Poisson bracket of the functions f and g.
The observation that a bracket like (2) could be introduced on C∞(M) for a smooth

manifold M , without the use of a symplectic form, leads to the general notion of a Poisson
structure [34].

Definition 2.2. A Poisson (or Hamiltonian4) structure on a C∞ manifold M is a skew-
symmetric bilinear mapping (f, g) 7→ {f, g } on the space C∞(M), which satisfies the

4The expression Hamiltonian manifold is often used for the generalization of Poisson structure in the
case of infinite dimension manifolds.
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Jacobi identity

(3) {{f, g }, h } + {{g, h }, f } + {{h, f }, g } = 0,

as well as the Leibnitz identity

(4) {f, gh } = {f, g }h + g{f, h }.

When the Poisson structure is induced by a symplectic structure ω, the Leibnitz identity
is a direct consequence of (2), whereas the Jacobi identity (3) corresponds to the condition
dω = 0 satisfied by the symplectic form ω. In the general case, the fact that the mapping
g 7→ {f, g } satisfies (4) means that it is a derivation of C∞(M).

Each derivation on C∞(M) corresponds to a smooth vector field, that is, to each f ∈
C∞(M) is associated a vector field Xf : M → TM , called the Hamiltonian vector field of
f , such that

(5) {f, g } = Xf · g = LXf
g,

where LXf
g is the Lie derivative of g along Xf .

Jost [24] pointed out that, just like a derivation on C∞(M) corresponds to a vector
field, a bilinear bracket {f, g } satisfying the Leibnitz rule (4) corresponds to a field of
bivectors. That is, there exists a C∞ tensor field P ∈ Γ(

∧2 TM), called the Poisson
bivector of (M, {·, · }), such that

(6) {f, g } = P (df, dg).

for all f, g ∈ C∞(M).

Proposition 2.3. A bivector field P ∈ Γ(
∧2 TM) is the Poisson bivector of a Poisson

structure on M if and only if one of the following equivalent conditions holds:

(1) [P, P ] = 0, where [ , ] is the Schouten-Nijenhuis bracket5,
(2) The bracket {f, g } = P (df, dg) satisfies the Jacobi identity,
(3) [Xf , Xg] = X{f,g }, for all f, g ∈ C∞(M).

Proof. By definition of the Schouten-Nijenhuis bracket [49], we have

−
1

2
[P, P ](df, dg, dh) =	 P (dQ(df, dg), dh)

= {{f, g }, h } + {{g, h }, f } + {{h, f }, g }

= X{f,g } · h − Xf · Xg · h + Xg · Xf · h

for all f, g, h ∈ C∞(M) where 	 indicates the sum over circular permutations of f, g, h.
Hence, all these expressions vanish together. �

Remark 2.4. The notion of a Poisson manifold is more general than that of a symplectic
manifold. Symplectic structures correspond to nondegenerate Poisson structure. In that
case, the Poisson bracket satisfies the additional property that {f, g } = 0 for all g ∈
C∞(M) only if f ∈ C∞(M) is a constant, whereas for Poisson manifolds such non-
constant functions f might exist, in which case they are called Casimir functions. Such
functions are constants of motion for all vector fields Xg where g ∈ C∞(M).

5The Schouten-Nijenhuis bracket is an extension of the Lie bracket of vector fields to skew-symmetric
multivector fields, see [49].
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On a Poisson manifold (M, P ), a vector field X : M → TM is said to be Hamiltonian if
there exists a function f such that X = Xf . On a symplectic manifold (M, ω), a necessary
condition for a vector field X to be Hamiltonian is that

LXω = 0.

A similar criterion exists for a Poisson manifold (M, P ) (see [49]). A necessary condition
for a vector field X to be Hamiltonian is

LXP = 0.

2.2. Integrability. An integrable system on a symplectic manifold M of dimension 2n
is a set of n functionally independent6 f1, . . . , fn which are in involution, i.e. such that

∀j, k {fj , fk
} = 0.

A Hamiltonian vector field XH is said to be (completely) integrable if the Hamiltonian
function H belongs to an integrable system. In other words, XH is integrable if there
exists n first integrals7 of XH , f1 = H, f2, . . . , fn which commute together.

Remark 2.5. At any point x where the functions f1, . . . , fn are functionally independent,
the Hamiltonian vector fields Xf1

, . . . , Xfn
generate a maximal isotropic subspace Lx of

TxM . When x varies, the subspaces generate what one calls a Lagrangian distribution;
that is a sub-bundle L of TM whose fibers are maximal isotropic subspaces. In our case,
this distribution is integrable (in the sense of Frobenius). The leaves of L are defined by
the equations

f1 = const., . . . , fn = const..

A Lagrangian distribution which is integrable (in the sense of Frobenius) is called a real
polarization and is a key notion in Geometric Quantization.

In the study of dynamical systems, the importance of integrable Hamiltonian vector
fields is emphasized by the Arnold-Liouville theorem [2] which asserts that each compact
leaf is actually diffeomorphic to an n-dimensional torus

T n =
{
(ϕ1, . . . , ϕn); ϕk ∈ R/2πZ

}
,

on which the flow of XH defines a linear quasi-periodic motion, i.e. that in angular
coordinates (ϕ1, . . . , ϕn)

dϕk

dt
= ωk, k = 0, . . . , n,

where (ω1, . . . , ωn) is a constant vector.

Remark 2.6. In the case of a Poisson manifold, it can be confusing to define an integrable
system. However, we can use the symplectic definition on each symplectic leaves of the
Poisson manifold.

6This means that the corresponding Hamiltonian vector fields Xf1
, . . . , Xfn

are independent on an
open dense subset of M .

7A first integral is a function which is constant on the trajectories of the vector field.
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2.3. Bi-Hamiltonian manifolds. Two Poisson brackets { , }P and { , }Q are compatible
if any linear combination

{f, g }λ, µ = λ{f, g }P + µ{f, g }Q, λ, µ ∈ R,

is also a Poisson bracket. A bi-Hamiltonian manifold (M, P, Q) is a manifold equipped
with two Poisson structures P and Q which are compatible.

Proposition 2.7. Let P and Q be two Poisson structures on M . Then P and Q are
compatible if and only if one of the following equivalent conditions holds:

(1) [P, Q] = 0, where [ , ] is the Schouten-Nijenhuis bracket,
(2) 	 {{g, h }P , f }Q + {{g, h }Q, f }P = 0, where 	 is the sum over circular permuta-

tions of f, g, h,
(3) [XP

f , XQ
g ] + [XQ

f , XP
g ] = XP

{f,g }Q
+ XQ

{f,g }P
, for all f, g ∈ C∞(M).

Proof. By definition of the Schouten-Nijenhuis bracket [49], we have

− [P, Q](df, dg, dh) =	 P (dQ(df, dg), dh) + Q(dP (df, dg), dh)

=	 {{g, h }P , f }Q + {{g, h }Q, f }P

= −[XP
f , XQ

g ] · h − [XQ
f , XP

g ] · h

+ XP
{f,g }Q

· h + XQ

{f,g }P
· h

for all f, g, h ∈ C∞(M). Hence, all these expressions vanish together. �

2.4. Lenard recursion relations. On a bi-Hamiltonian manifold M , equipped with
two compatible Poisson structures P and Q, we say that a vector field X is (formally)
integrable8 or bi-Hamiltonian if it is Hamiltonian for both structures. The reason for this
terminology is that for such a vector field, there exists under certain conditions a hierarchy
of first integrals in involution that may lead in certain case to complete integrability, in
the sense of Liouville. A useful concept for obtaining such a hierarchy of first integrals is
the so called Lenard scheme [38].

Definition 2.8. On a manifold M equipped with two Poisson structures P and Q, we
say that a sequence (Hk)k∈N∗ of smooth functions satisfy the Lenard recursion relation if

(7) P dHk = Q dHk+1,

for all k ∈ N∗.

Proposition 2.9. Let P and Q be Poisson structures on a manifold M and let (Hk)k∈N∗

be a sequence of smooth functions on M that satisfy the Lenard recursion relation. Then
the functions, Hk, are pairwise in involution with respect to both brackets P and Q.

Proof. Using skew-symmetry of P and Q and relation (7), we get

P (dHk, dHk+p) = Q(dHk+1, dHk+p) = P (dHk+1, dHk+p−1),

for all k, p ∈ N∗. From which we deduce, by induction on p, that

{Hk, Hk+p }P = 0,

for all k, p ∈ N∗. It is then an immediate consequence that

{Hk, Hl }Q = 0,

8This terminology is used for evolution equations in infinite dimension.
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for all k, l ∈ N∗. �

Remark 2.10. Notice that in the proof of proposition 2.9, the compatibility of P and Q
is not needed.

Suppose now that (M, P, Q) is a bi-Hamiltonian manifold and that at least one of the
two Poisson brackets, say Q is invertible. In that case, we can define a (1, 1)-tensor field

R = PQ−1,

which is called the recursion operator of the bi-Hamiltonian structure. It has been shown
[28, 29] that, as a consequence of the compatibility of P and Q, the Nijenhuis torsion of
R, defined by

T (R)(X, Y ) = [RX, RY ] − R
(
[RX, Y ] + [X, RY ]

)
+ R2[X, Y ]

vanishes. In this situation, the family of Hamiltonians

Hk =
1

k
trRk, (k ∈ N

∗),

satisfy the Lenard recursion relation (7). Indeed, this results from the fact that

LX tr(T ) = tr(LX T )

for every vector field X and every (1, 1)-tensor field T on M and that the vanishing of the
Nijenhuis torsion of R can be rewritten as

LRX R = R LX R

for all vector field X.

Remark 2.11. This construction has to be compared with Lax isospectral equation asso-
ciated to an evolution equation

(8)
du

dt
= F (u).

The idea is to associate to equation (8), a pair of matrices (or operators in the infinite
dimensional case) (L, B), called a Lax pair, whose coefficients are functions of u and in
such a way that when u(t) varies according to (8), L(t) = L(u(t)) varies according to

dL

dt
= [L, B].

This equation has been formulated in [30] in order to obtain a hierarchy of first integrals of
the evolution equation as eigenvalues or traces of the operator L. This analogy between R
and L is not casual and has been studied in [29]. Many evolution equations which admit
a Lax pair appear to be also bi-Hamiltonian systems generated by a recursion operator
R = PQ−1.

In practice, we may be confronted to the following problem. We start with an evolution
equation represented by a vector field X on a manifold M . We find two compatible Poisson
structures P and Q on M which makes X a bi-Hamiltonian vector field. But P and Q
are both non-invertible. In that case, it is however still possible to find a Lenard hierarchy
if the following algorithm works.

Step 1: Let H1 the Hamiltonian of X for the Poisson structure P and let X1 = X. The
vector field X1 is Hamiltonian for the Poisson structure Q by assumption, this defines
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Hamiltonian function H2. We define X2 to be the Hamiltonian vector field generated by
H2 for the Poisson structure P .

Step 2: Inductively, having defined Hamiltonian function Hk and letting Xk be the
Hamiltonian vector field generated by Hk for the Poisson structure P , we check if Xk is
Hamiltonian for the Poisson structure Q. If the answer is yes, then we define Hk+1 to be
the Hamiltonian of Xk for the Poisson structure Q.

3. Poisson structures on the dual of a Lie algebra

3.1. Lie-Poisson structure. The fundamental example of a non-symplectic Poisson
structure is the Lie-Poisson structure on the dual g∗ of a Lie algebra g.

Definition 3.1. On the dual space g∗ of a Lie algebra g of a Lie group G, there is a
Poisson structure defined by

(9) {f, g }(m) = m([dmf, dmg])

for m ∈ g∗ and f, g ∈ C∞(g∗), called the canonical Lie-Poisson structure9.

Remark 3.2. The canonical Lie-Poisson structure has the remarkable property to be linear,
that is the bracket of two linear functionals is itself a linear functional. Given a basis of
g, the components10 of the Poisson bivector W associated to (9) are

(10) Pij = ck
ij xk,

where ck
ij are the structure component of the Lie algebra g.

3.2. Modified Lie-Poisson structures. Under the general name of modified Lie-Poisson
structures, we mean an affine11 perturbation of the canonical Lie-Poisson structure on g∗.
In other words, it is represented by a bivector

P + Q,

where P is the canonical Poisson bivector defined by (10) and Q = (Qij) is a constant

bivector on g∗. Such a Q ∈
∧2

g∗ is itself a Poisson bivector. Indeed the Schouten-
Nijenhuis bracket

[Q, Q] = 0,

since Q is a constant tensor field on g∗.
The fact that P + Q is a Poisson bivector, or equivalently that Q is compatible with

the canonical Lie-Poisson structure, is expressed using proposition 2.7, by the condition

(11) Q([u, v], w) + Q([v, w], u) + Q([w, u], v) = 0,

for all u, v, w ∈ g.

9Here, dmf , the differential of a function f ∈ C∞(g∗) at m ∈ g∗ is to be understood as an element of
the Lie algebra g

10In what follows, the convention for lower or upper indices may be confusing since we shall deal
with tensors on both g and g∗. Therefore, we emphasize that the convention we use in this paper is the
following: upper-indices correspond to contravariant tensors on g and therefore covariant tensors on g∗

whereas lower indices correspond to covariant tensors on g and therefore contravariant tensors on g∗.
11A Poisson structure on a linear space is affine if the bracket of two linear functionals is an affine

functional.
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3.3. Lie algebra cohomology. On a Lie group G, a left-invariant12 p-form ω is com-
pletely defined by its value at the unit element e, and hence by an element of

∧p
g∗. In

other words, there is a natural isomorphism between the space of left-invariant p-forms on
G and

∧p
g∗. Moreover, since the exterior differential d commutes with left translations,

it induces a linear operator ∂ :
∧p

g∗ →
∧p+1

g∗ defined by

(12) ∂γ(u0, . . . , up) =
∑

i<j

(−1)i+jγ([ui, uj], u0, . . . , ûi, . . . , ûj, . . . , up),

where the hat means that the corresponding element should not appear in the list. γ is
said to be a cocycle if ∂γ = 0. It is a coboundary if is of the form γ = ∂µ for some cochain
µ in dimension p − 1. Every coboundary is a cocycle: that is ∂ ◦ ∂ = 0.

Example 3.3. For every γ ∈
∧0

g∗ = R, we have ∂γ = 0. For γ ∈
∧1

g∗ = g∗, we have

∂γ (u, v) = −γ([u, v]),

where u, v ∈ g. For γ ∈
∧2

g∗, we have

∂γ (u, v, w) = −γ([u, v], w) − γ([v, w], u) − γ([w, u], v),

where u, v, w ∈ g.

The kernel Zp(g) of ∂ :
∧p(g∗) →

∧p+1(g∗) is the space of p-cocycles and the range
Bp(g) of ∂ :

∧p−1(g∗) →
∧p(g∗) is the spaces of p-coboundaries. The quotient space

Hp
CE(g) = Zp(g)/Bp(g) is the p-th Lie algebra cohomology or Chevaley-Eilenberg coho-

mology group of g. Notice that in general the Lie algebra cohomology is different from
the de Rham cohomology Hp

DR. For example, H1
DR(R) = R but H1

CE(R) = 0.

Remark 3.4. Each 2-cocycle γ defines a modified Lie-Poisson structure on g∗. The com-
patibility condition (11) can be recast as ∂γ = 0. Notice that the Hamiltonian vector field
Xf of a function f ∈ C∞(g∗) computed with respect to the Poisson structure defined by
the 2-cocycle γ is

(13) Xf (m) = γ(dmf, ·).

Example 3.5. A special case of modified Lie-Poisson structure is given by a 2-cocycle γ
which is a coboundary. If γ = ∂m0 for some m0 ∈ g∗, the expression

{f, g }0(m) = m0([dmf, dmg])

looks like if the Lie-Poisson bracket had been “frozen” at a point m0 ∈ g∗ and for this
reason some authors call it a freezing structure.

4. Bi-Hamiltonian vector fields on Vect∗(S1)

4.1. The Lie algebra Vect(S1). The group D of smooth orientation-preserving dif-
feomorphisms of the circle S1 is endowed with a smooth manifold structure based on
the Fréchet space C∞(S1). The composition and the inverse are both smooth maps
D × D → D, respectively D → D, so that D is a Lie group [40]. Its Lie algebra g is

12In this section, we deal with left-invariant forms but, of course, everything we say may be applied
equally to right-invariant forms up to a sign in the definition of the coboundary operator.
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the space Vect(S1) of smooth vector fields on S1, which is itself isomorphic to the space
C∞(S1) of periodic functions. The Lie bracket13 on g = Vect(S1) is given by

[u, v] = uvx − uxv.

Lemma 4.1. The Lie algebra Vect(S1) is equal to its commutator algebra. That is
[
Vect(S1), Vect(S1)

]
= Vect(S1).

Proof. Any real periodic function u on can be written uniquely as the sum

u = w + c

where w is periodic function of total integral zero and c is a constant. To be of total
integral zero is the necessary and sufficient condition for a periodic function w to have a
periodic primitive W . Hence we have [1, W ] = w. Moreover, since [cos, sin] = 1, we have
proved that every periodic function u can be written as the sum of two commutators. �

4.2. The regular dual Vect∗(S1). Since the topological dual of the Fréchet space Vect(S1)
is too big and not tractable for our purpose, being isomorphic to the space of distributions
on the circle, we restrict our attention in the following to the regular dual g∗, the subspace
of Vect(S1)∗ defined by linear functionals of the form

u 7→

∫

S1

mu dx

for some function m ∈ C∞(S1). The regular dual g∗ is therefore isomorphic to C∞(S1)
by means of the L2 inner product14

< u, v >=

∫

S1

uv dx.

With these definitions, the coadjoint action15 of the Lie algebra Vect(S1) on the regular
dual Vect∗(S1) is given by

ad∗
u m = mux + (mu)x = 2mux + mxu.

Let F be a smooth real valued function on C∞(S1). Its Fréchet derivative dF (m) is a
linear functional on C∞(S1). We say that F is a regular function if there exists a smooth
map δF : C∞(S1) → C∞(S1) such that

dF (m) M =

∫

S1

M · δF (m) dx, m, M ∈ C∞(S1).

That is, the Fréchet derivative dF (m) belongs to the regular dual g∗ and the mapping
m 7→ δF (m) is smooth. The map δF is a vector field on C∞(S1), called the gradient of
F for the L2-metric. In other words, a regular function is a smooth function on C∞(S1)
which has a smooth L2 gradient.

13It corresponds to the Lie bracket of right-invariant vector fields on the group.
14In the sequel, we use the notation u, v, . . . for elements of g and m, n, . . . for elements of g∗ to

distinguish them, although they all belong to C∞(S1).
15The coadjoint action of a Lie algebra g on its dual is defined as

(adu m, v) = −(m, adu v) = −(m, [u, v]),

where u, v ∈ g, m ∈ g∗ and the pairing is the standard one between g and g∗.
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Example 4.2. Typical examples of regular functions on the space C∞(S1) are linear func-
tionals

F (m) =

∫

S1

um dx,

where u ∈ C∞(S1). In that case, δF (m) = u. Other examples are nonlinear polynomial
functionals

F (m) =

∫

S1

Q(m) dx,

where Q is a polynomial in derivatives of m up to a certain order r. In that case,

δF (m) =
r∑

k=0

(−1)k dk

dxk

(
∂Q

∂Xk

(m)

)
.

Notice that the smooth function Fθ : C∞(S1) → R defined by Fθ(m) = m(θ) for some
fixed θ ∈ S

1 is not regular since dFθ is the Dirac measure at θ.

A smooth vector field X on g∗ is called a gradient if there exists a regular function F
on g∗ such that X(m) = δF (m) for all m ∈ g∗. Observe that if F is a smooth real valued
function on C∞(S1) then its second Fréchet derivative is symmetric [23], that is,

d2F (m)(M, N) = d2F (m)(N, M), m, M, N ∈ C∞(S1).

For a regular function, this property can be rewritten as

(14)

∫

S1

(
δF ′(m)M

)
N dx =

∫

S1

(
δF ′(m)N

)
M dx,

for all m, M, N ∈ C∞(S1). That is, the linear operator δF ′(m) is symmetric for the
L2-inner product on C∞(S1) for each m ∈ C∞(S1). Conversely, a smooth vector field X
on g∗ whose Fréchet derivative X ′(m) is a symmetric linear operator is the gradient of
the function

(15) F (m) =

∫ 1

0

< X(tm), m > dt.

This can be checked directly, using the symmetry of X ′(m) and an integration by part.
We will resume this fact in the following lemma.

Lemma 4.3. On the Fréchet space C∞(S1) equipped with the (weak) L2 inner product, a
necessary and sufficient condition for a smooth vector field X to be a gradient is that its
Fréchet derivative X ′(m) is a symmetric linear operator.

4.3. Hamiltonian structures on Vect∗(S1). To define a Poisson bracket on the space
of regular functions on g∗, we consider a one-parameter family of linear operators Pm

(m ∈ C∞(S1)) and set

(16) {F, G }(m) =

∫

S1

δF (m) Pm δG(m) dx.

The operators Pm must satisfy certain conditions in order for (16) to be a valid Poisson
structure on the regular dual g∗.

Definition 4.4. A family of linear operators Pm on g∗ define a Poisson structure on g∗

if (16) satisfies
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(1) {F, G } is regular if F and G are regular,
(2) {G, F } = −{F, G },
(3) {{F, G }, h }+ {{G, H }, F } + {{H, F }, G } = 0.

Notice that the second condition above simply means that Pm is a skew-symmetric
operator for each m.

Example 4.5. The canonical Lie-Poisson structure on g∗ given by

{F, G }(m) = m (〈δF, δG 〉) =

∫

S1

δF (m) (mD + Dm) δG(m) dx

is represented by the one-parameter family of skew-symmetric operators

(17) Pm = mD + Dm

where D = ∂x. It can be checked that all the three required properties are satisfied. In
particular, we have

δ{F, G } = δF ′(PmδG) − δG′(PmδF ) + δF DδG − δG DδF.

Definition 4.6. The Hamiltonian of a regular function F , for a Poisson structure defined
by P is defined as the vector field

XF (m) = P δF (m).

Proposition 4.7. A necessary condition for a smooth vector field X on g∗ to be Hamil-
tonian with respect to the Poisson structure defined by a constant linear operator Q is the
symmetry of the operator X ′(m)Q for each m ∈ g∗.

Proof. If X is Hamiltonian, we can find a regular function F such that

X(m) = QδF (m).

Moreover, since Q is a constant linear operator, we have

X ′(m) = QδF ′(m),

and therefore, we get
X ′(m)Q = QδF ′(m)Q,

which is a symmetric operator since Q is skew-symmetric and δF ′(m) is symmetric. �

4.4. Hamiltonian vector fields generated by right-invariant metrics. A right-
invariant metric on the diffeomorphism group Diff(S1) is uniquely defined by its restric-
tion to the tangent space to the group at the unity, hence by a non-degenerate continuous
inner product a on Vect(S1). If this inner product a is local, then according to Peetre [45],
there exists a linear differential operator

(18) A =

N∑

j=0

aj

dj

dxj

where aj ∈ C∞(S1) for j = 0, . . . , N , such that

a(u, v) =

∫

S1

A(u) v dx =

∫

S1

A(v) u dx,
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for all u, v ∈ Vect(S1). The condition for a to be non-degenerate is equivalent for A to
be a continuous linear isomorphism of C∞(S1).

Remark 4.8. In the special case where A has constant coefficients, the symmetry is tra-
duced by the fact that A contains only even derivatives and the non-degeneracy by the
fact that the symbol of A

sA(ξ) = eixξA(e−ixξ) =
N∑

j=0

a2j(−iξ)2j ,

has no root in Z.

The right-invariant metric on Diff(S1) induced by a continuous, linear, invertible oper-
ator A gives rise to an Euler equation16 on Vect(S1)∗

(19)
dm

dt
= 2mux + mxu,

where m = Au. This equation is Hamiltonian with respect to the Lie-Poisson structure
on Vect(S1)∗ with Hamiltonian function on Vect(S1)∗ given by

H2(m) =
1

2

∫

S1

mu dx.

The corresponding Hamiltonian vector field XA is given by

XA(m) = (mD + Dm)(A−1m) = 2mux + umx.

Remark 4.9. The family of operators

Ak = 1 −
d2

dx2
+ · · · + (−1)k d2k

dx2k
,

corresponding respectively to the Sobolev Hk inner product, have been studied in [10, 11].
The Riemannian exponential map of the corresponding geodesic flow has been shown to
be a local diffeomorphism except for k = 0. This later case corresponds to the L2 metric
on Diff(S1) and happens to be singular.

Remark 4.10. A non-invertible inertia operator A may induce in some cases, a weak
Riemannian metric on a homogenous space. This is the way to interpret Hunter-Saxton
and Harry Dym equations as Euler equations, see [25].

The following theorem is a generalization of [12, Theorem 3.7].

Theorem 4.11. The only continuous, linear, invertible operators

A : Vect(S1) → Vect(S1)∗

with constant coefficients, whose corresponding Euler vector field XA is bi-Hamiltonian
relatively to some modified Lie-Poisson structure are

A = aI + bD2,

16The second order geodesic equation corresponding to a one sided invariant metric on a Lie group
can always be reduced to a first order quadratic equation on the dual of the Lie algebra of the group: the
Euler equation (see [3] or [26]). The generality of this reduction was first revealed by Arnold [1].
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where a, b ∈ R satisfy a − bn2 6= 0, ∀n ∈ Z. The second Hamiltonian structure is induced
by the operator

Q = DA = aD + bD3,

where D = d/dx and the Hamiltonian function is

H3(m) =
1

2

∫

S1

(
au3 − bu(ux)

2
)
dx,

where m = Au.

Remark 4.12. We insist on the fact that the proof we give applies for an operator with
constant coefficients. It would be interesting to study the case of an invertible, continuous
linear operator whose coefficients are not constant. Are there such operator A with bi-
Hamiltonian Euler vector field XA relative to some modified Lie-Poisson structure ? In
that case, for which modified Lie-Poisson structures Q is there an Euler vector field XA

which is bi-Hamiltonian relatively to Q ?

Proof. The proof is essentially the same as the one given in [12]. A direct computation
shows that

XA(m) = (aD + bD3) δH3(m)

where

H3(m) =
1

2

∫

S1

(
au3 − bu(ux)

2
)
dx,

and
A = aI + bD2,

where a, b ∈ R.
Each modified Lie-Poisson structure on Vect∗(S1) is given by a local 2-cocycle of Vect(S1).

According to proposition A.3 (see the Appendix), such a cocycle is represented by a dif-
ferential operator

(20) Q = m0D + Dm0 + βD3

where m0 ∈ C∞(S1) and β ∈ R. We will now show that there is no such cocycle for which
XA is Hamiltonian if the order of

A =

N∑

j=0

a2jD
2j

is strictly greater than 2.
By virtue of proposition 4.7, a necessary condition for XA to be Hamiltonian with

respect to the cocycle represented by Q is that

K(m) = X ′
A(m)Q

is a symmetric operator. We have

X ′
A(m) = 2uxI + uD + 2mDA−1 + mxA

−1,

and in particular, for m = 1,
X ′

A(1) = D + 2DA−1.

Hence
K(1) =

(
D + 2DA−1

)
◦

(
m0D + Dm0

)
+ βD4(1 + 2A−1),
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whereas
K(1)∗ =

(
m0D + Dm0

)
◦

(
D + 2DA−1

)
+ βD4(1 + 2A−1).

Therefore, letting m′
0 = dm0

dx
, we get

K(1) − K(1)∗ =
(
m′

0D + Dm′
0

)
+ 2

(
A−1Dm0D − Dm0DA−1

)
+

+ 2
(
A−1D2m0 − m0D

2A−1
)
,

and this operator vanishes if and only if

(21) A
(
K(1) − K(1)∗

)
A = 0.

But A
(
K(1) − K(1)∗

)
A is the sum of 2 linear differential operators:

2
(
Dm0DA − ADm0D

)
+ 2

(
D2m0A − Am0D

2
)
,

which is of order less than 2N + 2 and

A
(
m′

0D + Dm′
0

)
A,

which is of order 4N + 1 unless m′
0 = 0 which must be the case if (21) holds. Therefore

m0 has to be a constant. Let α = 2m0 ∈ R. Then

K(m) = α
{
2uxD + uD2 + 2mD2A−1 + mxDA−1

}
+

+ β
{
2uxD

3 + uD4 + 2mD4A−1 + mxD
3A−1

}

because D and A commute. The symmetry of the operator K(m) means

(22)

∫

S1

N K(m)M dx =

∫

S1

M K(m)N dx,

for all m, M, N ∈ C∞(S1). Since this last expression is tri-linear in the variables m, M, N ,
the equality can be checked for complex periodic functions m, M, N . Let m = Au,
u = e−ipx, M = e−iqx and N = e−irx with p, q, r ∈ Z. We have

∫

S1

N K(m)M dx =
[
(2pq3 + q4)β − (2pq + q2)α+

+
(
(pq3 + 2q4)β − (pq + 2q2)α

)sA(p)

sA(q)

] ∫

S1

e−i(p+q+r)x dx ,

whereas
∫

S1

M K(m)N dx =
[
(2pr3 + r4)β − (2pr + r2)α+

+
(
(pr3 + 2r4)β − (pr + 2r2)α

)sA(p)

sA(r)

] ∫

S1

e−i(p+q+r)xdx .

Now we set p = n, q = −2n, r = n and we must have

(23) (24n4β − 6n2α)sA(n) = (6n4β − 6n2α)sA(2n),

if K(m) is symmetric.
If β 6= 0, the leading term in the left hand-side of (23) is 24 (−1)N a2N β n2N+4, whereas

the leading term of the right hand-side is 6 (−1)N 22N a2N β n2N+4. Hence, unless N = 1,
we must have β = 0.

On the other hand, if β = 0, we must have αsA(n) = αsA(2n), for all n ∈ N∗. Thus
α = 0 unless N = 0. This completes the proof. �
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4.5. Hierarchy of first integrals. In view of theorem 4.11, the next step is to find a
hierarchy of first integrals in involution for the vector field XA where

A = aI + bD2,

and a, b ∈ R satisfy a − bn2 6= 0, ∀n ∈ Z. The vector field

XA(m) = 2mux + umx.

is bi-Hamiltonian. It can be written as

XA(m) = Pm δH2(m),

where

H2(m) =
1

2

∫

S1

um dx

and Pm = mD + Dm or as
XA(m) = Q δH3(m),

where

H3(m) =
1

3

∫

S1

u(um + q(u)) dx,

q(u) = 1/2(au2 + bu2
x) and Q = DA = aD + bD3.

The problem we get when we try to apply the Lenard scheme to obtain a hierarchy of
conserved integrals is that both Poisson operators Pm and Q are non invertible. However,
Q is composed of two commuting operators, A which is invertible and D which is not.
The image of D is the codimension 1 subspace, C∞

0 (S1), of smooth periodic functions
with zero integral. The restriction of D to this subspace is invertible with inverse D−1,
the linear operator which associates to a smooth function with zero integral its unique
primitive with zero integral. Following Lax in [31], we are able to prove the following
result.

Theorem 4.13. There exists a sequence (Hk)k∈N∗ of functionals, whose gradients Gk

are polynomial expressions of u = A−1m and its derivatives, which satisfy the Lenard
recursion scheme

Pm Gk = Q Gk+1.

Remark 4.14. It is worth to notice, that contrary to the result given by Lax in [31], for
the KdV equation, the operators Gk are polynomials in u = A−1m and not in m. In
particular, there are non-local operators17, if A 6= aI, for some a ∈ R.

Before giving a sketch of proof of this theorem, let us illustrate the explicit computation
of the first Hamiltonians of the hierarchy. We start with

H1(m) =

∫

S1

m dx, G1(m) = 1.

We define X1 to be the Hamiltonian vector field of H1 for the Lie-Poisson structure Pm

X1(m) = Pm G1(m) = mx.

X1(m) is in the image of D for all m and we can define

G2(m) = Q−1X1(m) = A−1D−1(mx) = A−1(m) = u

17Notice that our m corresponds to u in the notations of [31].
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which is the gradient of the second Hamiltonian of the hierarchy

H2(m) =
1

2

∫

S1

mu dx.

We compute then X2, the Hamiltonian vector field of H2 for Pm

X2(m) = Pm G2(m) = 2mux + mxu = (mu + q(u))x,

where q(u) = 1/2(au2 + bu2
x). X2(m) is in the image of D for all m and we can define

G3(m) = Q−1X2(m) = A−1(mu + q(u)),

which is the gradient of the third Hamiltonian of the hierarchy

H3(m) =
1

3

∫

S1

u(mu + q(u)) dx.

So far, we obtain this way a hierarchy of Hamiltonians (Hk)k∈N∗ satisfying the Lenard
recursion relations for the Euler equation associated to the operator A.

Example 4.15 (Burgers Hierarchy). For A = I, we obtain explicitly the whole Burgers
hierarchy

Hk+1(m) =
(2k!)

2k(k!)2(k + 1)

∫

S1

mk+1 dx, (k ∈ N).

Example 4.16 (Camassa-Holm Hierarchy). For A = I −D2, we obtain the Camassa-Holm
hierarchy. The first members of the family are

H1(m) =

∫

S1

m dx =

∫

S1

u dx,

H2(m) =
1

2

∫

S1

mu dx =
1

2

∫

S1

(u2 + u2
x) dx,

H3(m) =
1

2

∫

S1

u(u2 + u2
x) dx.

The next integrals of the hierarchy are much harder to compute explicitly. One may
consider [33, 35] for further studies on the subject.

Sketch of Proof of Theorem 4.13. The proof is divided into two steps. We refer to [31] for
the details.

Step 1: We show by induction that there exists a sequence of vector fields Gk, which
are polynomial expressions of u = A−1m and its derivatives and which satisfy

(24) G1 = 1, PGk = QGk+1, ∀k ∈ N
∗.

Step 2: We show that Gk is, for all k the gradient of a function Hk.
To prove Step 1, we suppose that G1, . . . , Gn have been constructed satisfying (24) and

we use the following two lemmas18 to show that Gn+1 exists.

Lemma 4.17. Suppose that Q is a polynomial in derivatives of u up to order r such that∫

S1

Q(u) dx = 0,

for all u ∈ C∞(S1). Then there exists a polynomial G in derivatives of u up to order r−1
such that Q = DG.

18The proof of lemma 4.17 can be found in [43] while the proof of lemma 4.18 can be found in [31].
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Lemma 4.18. We have ∫

S1

PGn dx = 0

for all n ∈ N∗.

To prove Step 2, it is enough to show that G′
k is a symmetric operator for all k,

by virtue of Lemma 4.3. We suppose that G1, . . . , Gn are gradients and show first the
following result.

Lemma 4.19. The operator

QG′
n+1(m)Q

is symmetric for all m ∈ C∞(S1).

We conclude then, like in [31], that G′
n+1(m) itself is symmetric. We will give here the

details of the proof of Lemma 4.19, since the proof of the corresponding result for KdV
in [31] is just a direct, hand waving computation and does not apply in our more general
case.

Proof of Lemma 4.19. First, we differentiate the recurrence formula (24) and we obtain

(25) QG′
n+1(m) = ad∗

Gn
+ PmG′

n(m)

and

(26) QG′
n(m) = ad∗

Gn−1
+ PmG′

n−1(m).

We multiply (25) by Q on the right, (26) by P on the right, and subtract (26) from (25);
we get

QG′
n+1(m)Q = QG′

n(m)Pm + PmG′
n(m)Q + ad∗

Gn
Q − ad∗

Gn−1
Pm − PmG′

n−1(m)Pm.

Using the fact that

(ad∗
u)

∗ = −adu,

we get finally
(
QG′

n+1(m)Q
)∗

− QG′
n+1(m)Q = QadGn

− PmadGn−1
− ad∗

Gn
Q + ad∗

Gn−1
Pm.

Using the fact that Q satisfy the following cocycle condition

Q([u, v]) = ad∗
uQ(v) − ad∗

vQ(u)

which can be rewritten as

Qadu = ad∗
uQ − PQ(u),

we get
(
QG′

n+1(m)Q
)∗

− QG′
n+1(m)Q = −PQ(Gn) − PmadGn−1

+ ad∗
Gn−1

Pm.

But this last expression is zero because

Pmadv = ad∗
vPm − PPm(v)

and Q(Gn) = PmGn−1. �

�
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Remark 4.20. In the special case where the cocycle γ is a coboundary, that is when the
second structure is a freezing structure, the algorithm used to generate a hierarchy of first
integrals is known as the translation argument principle [3, 25]. Let Hλ be a function on
g∗ which is a Casimir function of the Poisson structure

{·, · }λ = {·, · }0 + λ{·, · }LP .

That is, for every function F one has

{Hλ, F}λ = 0.

Suppose that Hλ can be expressed as a series

Hλ = H0 + λH1 + λ2H2 + · · ·

Then, one can check that H0 is a Casimir function of {·, · }0 and that for all k, the
Hamiltonian vector field of Hk+1 with respect to {·, · }0 coincides with the Hamiltonian
vector field of Hk with respect to {·, · }LP . Furthermore, all the Hamiltonians Hk are in
involution with respect to both Poisson structures and the corresponding Hamiltonian
vector fields commute with each other. In practice, to obtain such a Casimir function Hλ,
one chooses a Casimir function H of the Poisson structure {·, · }LP and then translates
the argument

Hλ(m) = H(m0 + λm).

The above method has been successfully applied to the KdV equation viewed as a Hamil-
tonian field on the dual of the Virasoro algebra.

Appendix A. The Gelfand-Fuks Cohomology

Gelfand and Fuks [20, 22] have developed a systematic method to compute the coho-
mology of the Lie algebra of vector fields on a smooth manifold. This theory is quite
sophisticated. The aim of this section is to present a computation of the first two coho-
mological groups of Vect(S1), using only elementary arguments.

The first difficulty when we deal with infinite dimensional Lie algebras like Vect(S1) is
to define what we call a cochain, since a linear or a multilinear map on Vect(S1) may be
too vague as already stated.

Definition A.1. A p-cochain γ on Vect(S1) with values in R is called local if it has the
following expression

γ(u1, . . . , up) =

∫

S1

P (u1, . . . , up) dx

where P is a p-linear differential operator.

It is easy to check that if γ is local then ∂γ is also local. In the sequel, a cochain
on Vect(S1) will always mean a local cochain19. The associated cohomology is called the
Gelfand-Fuks cohomology.

19Using a theorem of Peetre [45], a local cochain can be characterized by the condition

p⋂

i=1

Supp(fi) = ∅ ⇒ γ (u1, . . . , up) = 0.
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A.1. The first cohomology group. A local 1-cochain γ on Vect(S1) has the following
expression

γ(u) =

∫

S1

P (u) dx,

where P is a linear differential operator. Integrating by parts, we can write it as

γ(u) =

∫

S1

mu dx,

where m ∈ C∞(S1) is uniquely defined by γ.

Proposition A.2.

H1
GF (Vect(S1); R) = {0} .

Proof. If γ is a 1-cocycle, it satisfies the condition

γ([u, v]) = 0,

for all u, v in Vect(S1). It a very general result that a Lie algebra which is equal to its
commutator algebra has a trivial 1-dimensional cohomology group. Indeed, a linear func-
tional which vanishes on commutators, vanishes everywhere. The proposition is therefore
a corollary of lemma 4.1. �

A.2. The second cohomology group. A local 2-cochain γ on Vect(S1) has the follow-
ing expression

γ(u, v) =

∫

S1

P (u, v) dx

where P is a quadratic differential operator. Integrating by parts, we can write it as

γ(u, v) =

∫

S1

uK(v) dx,

where K : C∞(S1) → C∞(S1) is a linear differential operator

K =
n∑

k=0

ak(x)Dk

which is skew-symmetric relatively to the L2-inner product. This operator is uniquely
defined by γ. If moreover γ is a 2-coboundary, there exists m ∈ g∗ such that γ = ∂m,
that is

γ(u, v) = −

∫

S1

m[u, v] dx =

∫

S1

(ad∗
u m)v dx,

where u, v ∈ g. We will therefore introduce the following notation

(27) ∂m (u) = ad∗
u m = mux + (mu)x = 2mux + mxu,

to represent the coboundary of the 1-cochain m ∈ g∗.

Proposition A.3. The cohomology group H2
GF (Vect(S1); R) is one dimensional. It is

generated by the Virasoro cocycle

vir(u, v) =

∫

S1

(u′v′′ − v′u′′) dx.
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Proof. Let γ be a 2-cocycle and K the corresponding linear differential operator. The
cocycle condition ∂γ = 0 leads to the following condition on K

(28) K([u, v]) = ad∗
u K(v) − ad∗

v K(u),

for all u, v ∈ C∞(S1). Let w ∈ C∞(S1) with zero integral and W ∈ C∞(S1) a primitive
of w, we have w = [1, W ] and hence

K(w) = K([1, W ])

= ad∗
1 K(W ) − ad∗

W K(1)

= K(W )′ − (2a0W
′ + a′

0W )

=
(
a′

1w + a′
2w

′ + · · · + a′
nw

(n−1)
)

+ K(w) − 2a0w.

Therefore we have

(a′
1 − 2a0)w + a′

2w
′ + · · ·+ a′

nw(n−1) = 0

for all periodic function w with zero integral which leads to 2a0 = a′
1 and ak = const., for

2 ≤ k ≤ n. That is, any linear differential linear operator K which satisfies (28) can be
written

K = ∂m +
n∑

k=2

λkD
k,

where m is a smooth periodic function20 and the λk are real numbers. Using again
equation (28), we get for all periodic functions u, v

n∑

k=2

λk(uv′ − vu′)(k) = 2
n∑

k=2

λk(v
(k)u′ − u(k)v′) +

n∑

k=2

λk(v
(k+1)u − u(k+1)v),

which can be rewritten using Leibnitz rule as

n∑

k=2

λk

{
k−1∑

p=1

Cp
k(u(p)v(k+1−p) − v(p)u(k+1−p)) + 3(u(k)v′ − v(k)u′)

}
= 0.

If we fix v and consider this expression as a linear differential equation in u, all the
coefficients of that operator must be zero, and in particular for the coefficient of u′ we
have

n∑

k=2

λk(k − 3)v(k) = 0.

Therefore we have λk = 0 for k 6= 3. Since D3 is easily seen to verify (28), we can conclude
that every cocycle operator K is of the form

K = λD3 + ∂m

for some λ ∈ R and m in C∞(S1). Since every coboundary operator ∂m is a linear
differential operator of order 1, D3 represent a non-trivial cohomology class, which ends
the proof. �

20Recall that ∂m is the linear differential operator defined by

∂m (u) = ad∗u m = mu′ + (mu)′ = 2mu′ + m′u.
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à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 16(1):319–361, 1966.

[2] V. I. Arnold. Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1997. Translated from the 1974 Russian original by K. Vogtmann
and A. Weinstein, Corrected reprint of the second (1989) edition.

[3] V. I. Arnold and B. A. Khesin. Topological methods in hydrodynamics, volume 125 of Applied Math-
ematical Sciences. Springer-Verlag, New York, 1998.

[4] R. Camassa and D. D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev.
Lett., 71:1661–1664, 1993.

[5] A. Constantin. On the Cauchy problem for the periodic Camassa-Holm equation. J. Differential
Equations, 141:218–235, 1997.

[6] A. Constantin. On the inverse spectral problem for the Camassa-Holm equation. J. Funct. Anal.,
155(2):352–363, 1998.

[7] A. Constantin. Existence of permanent and breaking waves for a shallow water equation: a geometric
approach. Ann. Inst. Fourier (Grenoble), 50(2):321–362, 2000.

[8] A. Constantin and J. Escher. Well-posedness, global existence, and blowup phenomena for a periodic
quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51(5):475–504, 1998.

[9] A. Constantin and J. Escher. On the blow-up rate and the blow-up set of breaking waves for a
shallow water equation. Math. Z., 233(1):75–91, 2000.

[10] A. Constantin and B. Kolev. On the geometric approach to the motion of inertial mechanical systems.
J. Phys. A, 35:R51–R79, 2002.

[11] A. Constantin and B. Kolev. Geodesic flow on the diffeomorphism group of the circle. Comment.
Math. Helv., 78(4):787–804, 2003.

[12] A. Constantin and B. Kolev. Integrability of invariant metrics on the diffeomorphism group of the
circle. J. Nonlinear Sci., 16(2):109–122, 2006.

[13] A. Constantin, B. Kolev, and J. Lenells. Integrability of invariant metrics on the Virasoro group.
Physics Letters A, 350(1-2):75–80, 2006.

[14] A. Constantin and H. P. McKean. A shallow water equation on the circle. Comm. Pure Appl. Math.,
52:949–982, 1999.

[15] L. D. Faddeev and V. E. Zaharov. The Korteweg-de Vries equation is a fully integrable Hamiltonian
system. Funkcional. Anal. i Priložen., 5(4):18–27, 1971.

[16] A. S. Fokas and B. Fuchssteiner. Symplectic structures, their Bäcklund transformations and heredi-
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Théor., 53(1):35–81, 1990.

[29] Y. Kosmann-Schwarzbach and F. Magri. Lax-Nijenhuis operators for integrable systems. J. Math.
Phys., 37(12):6173–6197, 1996.

[30] P. D. Lax. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.,
21:467–490, 1968.

[31] P. D. Lax. Almost periodic solutions of the KdV equation. SIAM Rev., 18(3):351–375, 1976.
[32] J. Lenells. The correspondence between KdV and Camassa-Holm. Int. Math. Res. Not., (71):3797–

3811, 2004.
[33] J. Lenells. Conservation laws of the Camassa-Holm equation. J. Phys. A, 38(4):869–880, 2005.
[34] A. Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geometry,
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