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Pierre-Louis Montagard and Nicolas Ressayre

September 28, 2006

1 Introduction

Let Λ be a lattice in a real finite dimensional vector space. Here, we are
interested in the lattice polytopes, that is the convex hulls of finite subsets
of Λ. Consider the group G of the affine real transformations which map Λ
onto itself. Replacing the group of euclidean motions by the group G one can
define the notion of regular lattice polytopes. More precisely, for a lattice
polytope P, we denote by Isom(P) the subgroup of G which preserves P and
P is said to be a regular lattice polytope if the group Isom(P) acts transitively
on the set of complete flags of P. In [Kar06], Karpenkov obtained a clas-
sification of the regular lattice polytopes. Here we obtain this classification
by a more conceptual method. Another difference is that Karpenkov uses in
an essential way the classification of the euclidean regular polytopes, but we
don’t.

Let us explain our approach. Firstly, we associate in a very natural way a
reduced simply laced root system (not necessarily irreducible) to any regular
lattice polytope P. Then considering the faces of P, we even show that the
only possible root systems are of type An, Dn, E6, E7, E8 and (A1)

n (later,
we show that the exceptional root systems do not occur). Conversely, we fix
such a root system Φ and seek all the regular lattice polytopes P with Φ as
associated root system. Such a polytope is characterized up to isomorphism
by a lattice between the root lattice and the weight lattice, and a dominant
weight. We obtain in this way the list presented in Table 1.

For the convenience of the reader we also present below the regular lattice
polytopes of dimension two in Figures 1, 2 and 3. In each figure, we have
two lattices: the intersection of the gray lines and the marked points. These
lattices are the weight lattices ΛP and the root lattices ΛR of of the root
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system A2 in the two first case and A1 ×A1 in the last one. In Figure 1, we
have drawn an hexagon which can be considered as a lattice polygon in ΛP

or ΛR: this gives two classes of regular hexagons. In Figure 3, the situation
is similar with squares instead hexagons. In Figure 2, we have two triangles:
the dashed one in ΛP and the other one in ΛR. The result in dimension 2
asserts that up to evident equivalence (see Section 2) the only regular lattice
polygons are these 2 hexagons, these 2 triangles and these 2 squares.
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Fig. 1: Two Hexagons
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Fig. 2: Two Triangles
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Fig. 3: Two Squares

Finally we briefly mention the well-known link between convex polytopes
and algebraic geometry. We do not use this link but our inspiration for some
results are of geometric origin. To each lattice polytope P one can associate
a toric variety XP with T as torus, see for example [Oda88]. The polytope P
is regular if and only if the group of regular toric automorphism of XP acts
transitively on the set of the maximal chains of irreducible T -stable subva-
rieties of XP . In [Pro90], Procesi consider the toric variety XΦ associated
to the decomposition in Weyl chambers of the root system Φ. Our first re-
sults(see Proposition 3.4) can be translated in the following way: there exists
an equivariant surjective morphism from XΦ onto XP if Φ is the root system
associated to the regular lattice polytope P.

Convention In this paper, we only consider non degenerated polytopes that
is which span affinely the ambient real vector space.
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2 An equivalence relation

Let Λ be a free abelian group of rank n. Let Λ̂ be a set with a free transitive
action of Λ denoted by: m + z for any m ∈ Λ̂ and z ∈ Λ. Such a set Λ̂ is
called a Λ-affine space. A map f : Λ̂ −→ Λ̂ is said to be affine if there exists
a group morphism

−→
f : Λ −→ Λ such that f(m+ z) = f(m) +

−→
f (z).

Let GL(Λ) ≃ GLn(Z) denote the automorphism group of Λ and GA(Λ̂)
be the group of bijective affine maps of Λ̂. We have the following split exact
sequence:

1 −→ Λ −→ GA(Λ̂) −→ GL(Λ) −→ 1.

Consider ΛR := Λ⊗R and its affine space Λ̂R := m+ΛR (for any m ∈ Λ̂).
Now, Λ̂ is a lattice in Λ̂R and GA(Λ̂) is the subgroup of the isomorphism
group GA(Λ̂R) of Λ̂R of the elements which map Λ̂ onto itself.

A lattice polytope P is the convex hull in Λ̂R of a finite subset of Λ̂. Set

Isom(P) = {g ∈ GA(Λ̂) | gP = P}.

A lattice polytope P is said to be regular if Isom(P) acts transitively on the
set of complete flags of P. We want to classify the regular polytope modulo
GA(Λ̂) of course, but there is another reduction. We note that if h is a ho-
mothety of center in Λ̂ and integer ratio then h normalize GA(Λ̂) and if P is
a regular lattice polytope so is h(P). Finally we want to classify the regular
lattice polytopes up to the group generated by GA(Λ̂) and the homotheties
of center in Λ̂ and integer ratio. So we define:

Definition We call H the subgroup of GA(Λ̂R) generated by GA(Λ̂) and
the homotheties of center in Λ̂ and integer ratio.

Actually, this group doesn’t acts on the set of lattice polytopes, but on
those with rational vertices. Nevertheless, this group defines a equivalence
relation on the lattice polytopes. Our first reduction is to choose a common
origin for the polytopes. More precisely let us fix an origin O in Λ̂; now, one
can identify Λ and Λ̂, and embed GL(Λ) in GA(Λ̂)). Now we can define:

Definition We call a lattice polytope centered if its barycenter is O; it is said
to be primitive if it is not the image of another polytope by an homothety of
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center O and of integer ratio bigger than one.

The following proposition reduce the classification to those of primitive
centered regular lattice polytope.

Proposition 2.1 (i) Let P be a lattice polytope. There exits g ∈ H such
that g(P) is a primitive centered regular lattice polytope.

(ii) Conversely, if g ∈ H and P1,P2 are two primitive centered regular
lattice polytopes such that g(P1) = P2, then g ∈ GL(Λ)

Proof. The first point is obvious. For the second one, note that if g ∈ H
then there exists r ∈ Q such that r−→g (Λ) = Λ. Then let g ∈ H,P1,P2 be
such g(P1) = P2. As P1 and P2 are centered, we have g(O) = O i.e. g = −→g .
So, we deduce there exist r ∈ Q and h ∈ GL(Λ) such that r.h(P1) = P2. But
as P1 and P2 are primitive, so r = 1. �

¿From now on, we want to classify the primitive centered regular lattice
polytopes up to the action of GL(Λ).

3 Root systems

For root systems, we will use the notation of [Bou02]. Let P be a regular
lattice polytope in ΛR. For each edge a of P with vertices s1 and s2 we
consider the subgroup R.−−→s1s2 ∩ Λ of Λ and its two generators ±ua. When a
runs over all the edges of P, the ±ua form a finite subset Φ(P) of Λ.

Proposition 3.1 The subset Φ(P) of ΛR is a reduced root system.

Proof. It is clear that Φ(P) is finite, does not contain zero, spans ΛR and
Z.α ∩ Φ(P) = {±α} for any α ∈ Φ(P).

Let α ∈ Φ(P) and two vertices s1 and s2 on an edge a parallel to α.
Consider a complete flag D1 of P starting with s1 and a. Let D2 be the
complete flag of P with the same faces from D1 except for the vertex which
is s2. Let σ ∈ Isom(P) such that σ(D1) = D2. It is clear that −→σ is a
reflection which maps Φ(P) in Φ(P) and α on −α.

Let β be another element of Φ(P). The vector −→σ (β) − β is an element
of Λ proportional to α. Since α has been chosen primitive, −→σ (β) − β is an
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entire multiple of α. �

The root system Φ(P) is said to be associated to P. We denote by ΛP

and by ΛR, respectively the weight and root lattices of Φ(P). We have:

Proposition 3.2 The lattices Λ, ΛR and ΛP satisfy: ΛR ⊂ Λ ⊂ ΛP .

Proof. The inclusion ΛR ⊂ Λ is obvious. Let α ∈ Φ(P) and λ ∈ Λ. We
have to prove that < λ, α∨ > belongs to Z, where α∨ is the coroot associated
to α. But, σα(λ) = λ− < λ, α∨ > α belongs to Λ. We can conclude since α
is primitive on Λ. �

In the two following propositions, P is assumed to be centered in O.
In this case, Isom(P) is a subgroup of GL(Λ). Let Aut(Φ(P)) = {g ∈
GL(ΛR) | g.Φ(P) = Φ(P)} denote the automorphism group of Φ(P) and
W denote the Weyl group of Φ(P). Note that Aut(Φ(P)) is the semidirect
product of W and the automorphisms of the Dynkin diagram of Φ(P).

Proposition 3.3 Let P be a centered regular lattice polytope. We have:

(i) W ⊂ Isom(P) ⊂ Aut(Φ(P)).

(ii) The lattice Λ is stable by Isom(P).

(iii) The root system Φ(P) is homogeneous under Isom(P).

Proof. The inclusion W ⊂ Isom(P) is a direct consequence of the proof of
Proposition 3.1. The rest of the proposition is obvious. �

Obviously, Isom(P) acts transitively on the set of vertices of P. The
following proposition shows a little bit more:

Proposition 3.4 The regular lattice polytope P is assumed to be centered.
The Weyl group W acts transitively on the set of vertices of P.

Proof. Since any edge of P is parallel to a root of Φ(P), any maximal cone
of the dual fan of P is an union of Weyl chambers. But, W acts transitively
on the set of Weyl chambers. The proposition follows. �

A face of a regular polytope is a regular polytope. Here, one can say a
little bit more:
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Proposition 3.5 Let F be a face of a regular lattice polytope P and F its
direction. Then, F is a regular lattice polytope with associated root system
Φ(P) ∩ F .

Proof. We may assume that P is centered. It is clear that F is a lattice
regular polytope with root system Φ(F) contained in Φ(P) ∩ F . Let α ∈
Φ(P) ∩ F : we have to prove that α is parallel to an edge of F .

We claim that the reflection σα of W associated to α stabilizes F . Let A
be a point of F . The vector σα(A)−A is collinear to α and so belongs to F .
But, F = (A + F ) ∩ P; and so σα(A) belongs to F .

Consider the kernel Hα of σα − Id. Firstly, we assume that Hα ∩ F does
not contain any vertex. Then, there exists an edge a of F which intersects
Hα. Since a and σα(a) are edges of F , we have a = σα(a). In particular, a is
parallel to α.

We now assume that s is a vertex of P in Hα ∩F . Let b be an edge of F
containing s. Let β be a root parallel to b. This root β is neither orthogonal
neither collinear to α; so, Proposition 3.3 implies that Φ(P) ∩ Vect(α, β) is
a root system of type A2. Changing α by −α we may assume that α + β is
a root. One easily checks that σα+β(b) is parallel to α. �

4 Dual Polytope

In this section, we define two notions of the dual of a centered regular lattice
polytope P. Before, we recall the situation in the euclidean case.

4.1 The real case

Let E be a finite dimensional real vector space. Let P be a convex polytope
in E containing 0 in its interior. We denote by E∗ the dual of E and set:

P∗ = {ϕ ∈ E∗ s.t. ϕ|P ≥ −1}.

It is known that P∗ is a convex polytope, called dual of P. Moreover, P∗

contains 0 in its interior and the dual P∗∗ of P∗ equals P modulo the natural
identification between E and E∗∗. There is an inclusion-reversing combinato-
rial correspondence between the i-dimensional faces of P and the (n−1− i)-
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dimensional faces of P∗. In particular, if E is euclidean and P is regular, P∗

is regular too with an isomorphic isometry group.

Now, we assume that E is euclidean, P is regular and the barycenter of
the vertices of P is 0. Consider the convex hull P∨ of the barycenters of the
facets of P. With the scalar product, one may identify E and its dual: mod-
ulo this identification and under our assumptions P∗ are P∨ are positively
proportional. In particular, P∨ is regular with the same group as P and P∨∨

is positively proportional to P.

The two above constructions of the dual of a regular euclidean polytope
can be adapted to regular lattice polytopes: but the two so obtained notions
differ.

4.2 The lattice case

The lattice Λ∗ := Hom(Λ,Z) is called the dual of Λ. Let P be a lattice
polytope in E containing 0 in its interior. Consider

Q = {ϕ ∈ Λ∗ ⊗ R s.t. ϕ|P ≥ −1}.

It is a convex polytope in Λ∗⊗R containing 0 in its interior. But, its vertices
do not necessarily belong to Λ∗ but only to Λ∗⊗Q. We denote by P∗ the only
primitive lattice polytope positively proportional to Q. This lattice polytope
P∗ is called the ∗-dual of P.

Using the properties of P∗ in the real case, one easily check that if P is
primitive P∗∗ = P and that if P is centered regular so is P∗.

Now, P is assumed to be a centered regular lattice polytope. There exist
a unique positive rational number k such that the barycenters of the vertices
of the facets of k.P are primitive vectors in Λ. We denote by P∨ and call
∨-dual of P the convex hull of its barycenters.

Since Isom(P) is finite, there exists a scalar product on ΛR such that P
is an euclidean regular polytope in ΛR. Then, using the results stated in
Section 4.1, one easily checks that if P∨ is regular with the same group as P
and that if moreover P is primitive then P∨∨ = P.
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The polytopes P∗ and P∨ are not equivalent. For example, in dimension
two, the two triangles are their own ∨-dual and the ∗-dual one of the other.
In Table 1, we give the ∨-dual and ∗-dual of each regular lattice polytope.

5 Classification

In this section, we will obtain the classification of the centerd regular lattice
polytopes.

Let us start by reducing the list of possible root systems. Let P be
a primitive centered regular lattice polytope in ΛR of dimension n with
associated root system Φ. By Proposition 3.3 Aut(Φ) acts transitively on
Φ. Moreover, by Proposition 3.5, there exists a Levi subsystem Φ′ of Φ of
rank n − 1 which is the root system of a regular polytope Q with Isom(Q)
contained in the stabilizer of Φ′ in Isom(P). One easily deduces that the
type of Φ is

An
1 , An, Dn, E6, E7 or E8.

Conversely, let Φ be a root system in the above list. Let us choose a set of
simple roots of Φ. By Proposition 3.4, the vertices of a centered primitive lat-
tice polytope P with associated root system Φ are the orbit by W of a unique
dominant vertex s0 in ΛP . Such of polytope P is also given with a sublattice
Λ of ΛP containing ΛR. Moreover, the polytope P is completely determined
by Φ, s0 and Λ. Finally, the polytopes obtained from a pair (s0, Λ) and
its image by an automorphism of Φ are equivalent. In Sections 5.1 to 5.4,
for each possible Φ we give all the possible pairs (s0,Λ) up to the action of
Aut(Φ).

The last step consists to show that each given triple (Φ, s0,Λ) gives really
a regular lattice polytope. One has to check that the stabilizer of Λ in Aut(Φ)
acts transitively on the complete flags of the convex hull P of W.s0 and that
Φ is the root system of P. The first verification can be made by checking
the equality of the cardinality of Isom(P) and the set of complete flags of P.
Using the action of Isom(P) the second is equivalent to check that one root
is primitive on one edge of P. Thereafter, these verifications are left to the
reader.
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5.1 Root System An

1

Here, we assume that the root system Φ associated to the primitive centered
regular lattice polytope P is of type An

1 . Let ω1, · · · , ωn be a set of fundamen-
tal weights of Φ. Then, ΛP = Zω1⊕· · ·⊕Zωn and ΛR = Z.2ω1⊕· · ·⊕Z.2ωn.
Let ki ∈ Z>0 such that the unique dominant vertex s0 is

∑

kiωi. By the
action of W , the vertices of P are the

∑

i ±kiωi. In particular, P has n!2n

complete flags and Isom(P) = Aut(Φ). This implies that all the ki’s are
equal: s0 = k.

∑

i ωi. Reciprocally, Aut(P) acts transitively on the set of
flags of the convex hull of the k.

∑

i ±ωi.
Now, we have to determine the possible lattices Λ. Necessarily, Λ/ΛR

is a subgroup of ΛP/ΛR ≃ (Z/2Z)n stable by the action of Aut(Φ) acting
on (Z/2Z)n by permutations. By using for example the canonical bijection
between (Z/2Z)n and the set of the subsets of {1, · · · , n}, one easily checks
that the only possibilities for Λ are:

(i) Λ = ΛR,

(ii) Λ = {
∑

i kiωi | ki all even or all odd},

(iii) Λ = {
∑

i kiωi |
∑

i ki even},

(iv) Λ = ΛP .

But, the edges of the polytopes obtained with Λ = ΛP are parallel to the
ωi’s; so, the root system of P is {±ωi} which is a contradiction. Moreover,
for n = 2, the second and third lattices equals. So, we obtain two primitive
squares in dimension 2, and three primitive cubes for each dimension n ≥ 3.

In Table 1, for each choice of Λ, we give a notation for the class of the
corresponding cube C, the vertex s0, the cardinalities of C ∩ Λ and of the
intersection of C and an edge of Λ. We also give the class of the facets of C
and of its ∨ and ∗ duals. All these results are obtained by direct calculations
and prove that these cubes are ended non equivalent.

5.2 Root System Dn

For convenience, we set D1 = A1, D2 = A1 ×A1 and D3 = A3.
Let Cn be one of the cubes obtained in the preceding section with n ≥ 2.

Its ∗-dual polytope CCn is a primitive regular centered lattice polytope with
2n vertices and Isom(CCn) isomorphic to Aut(An

1 ). We easily deduce that
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the root system of CCn is of type Dn and Isom(CCn) = Aut(Dn), for any
n ≥ 2.

Since the facets of a cube are cubes, the stabilizer of s0 in Aut(Dn) is
isomorphic to Aut(Dn−1); then, we may assume that s0 = k.ω1 for a positive
integer k.

The lattice Λ must be stable by the action of Aut(Dn−1); there are three
possibilities (for n ≥ 3 and with notation of [Bou02]):

(i) Λ = ΛR,

(ii) Λ =
⊕

i Zεi,

(iii) Λ = ΛP .

So, we obtain three cocubes for each n ≥ 3 (see Table 1).
For n = 2, the two squares are ∗-dual one of the other; in particular, the

cosquares are squares.

Now, let P be a primitive centered regular lattice polytope with root
system Dn (n ≥ 4) which is not a cocube. Using Proposition 3.3 one easily
checks that the root system of P∨ is Dn too. The stabilizer of the dominant
vertex s0 in W is the stabilizer in W of a facet of P∨. By Proposition 3.5 it is
the Weyl group of a Levy subsystem of Φ which is the root system associated
to a regular polytope of dimension n − 1. We can deduce that n ≥ 5 and
s0 = k.ωn or s0 = k.ωn−1, or n = 4 and s0 is the multiple of any fundamental
weight.

For n ≥ 5, the two cases are equivalent using the action of Aut(Φ). We
claim that the convex hull Q of W.kωn−1 is not a regular polytope. In an
adapted base (e1, · · · , en) of ΛR, the vertices of Q are the

∑

i δiei with δi = ±1
and Πδi = 1. Let (x1, · · · , xn) denote the dual base of (e1, · · · , en). Consider
the two linear forms φ = x1 + · · ·+ xn−1 − xn and ψ = x1. The affine hyper-
plane φ = n− 2 define a facet of Q which is a simplex. But ψ = 1 is a facet
with 2n−2 vertices. So, Q is not regular since n ≥ 5.

For n = 4, the three fundamental weights ω1, ω3 and ω4 are equivalent
modulo Aut(D4) and give the cocubes. Consider the case s0 = k.ω2. Since
ω2 is the longest root, k = 1 and the vertices of the convex hull P of W.ω2

are the 24 roots of D4 and Isom(P) = Aut(D4).
Let (x1, · · · , x4) be the dual basis of (ε1, · · · , ε4) (with notation of [Bou02]).

One easily check that the affine hyperplane
∑

xi = 2 defines a facet of P
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which is a regular cocube. By the action of Aut(D4), one obtains the 24
facets:

• −2 ≤ x1 + x2 + x3 + x4 ≤ 2,

• −1 ≤ xi ≤ 1, for i = 1, · · · , 4,

• −2 ≤
∑

j 6=i xj − xi ≤ 2, for i = 1, · · · , 4,

• xi + xj − xk + xl ≤ 2, for {i, j, k, l} = {1, 2, 3, 4} and i < j and k < l.

In particular, P is regular.
Moreover, ΛP/ΛR is isomorphic to Z/2Z × Z/2Z and the only lattices

Λ stable by Aut(D4) such that ΛR ⊂ Λ ⊂ ΛP are ΛP and ΛR. So, we
obtain two classes of centered primitive regular lattice polytopes called 24-
cells polytopes. We denote by D4

1 those obtained with Λ = ΛP and D4
2 those

obtained with Λ = ΛR.
The dominant weights in P are: ω2, ω1, ω3, ω4, ω1 +ω3 and 0. By acting

W we deduce that P ∩ ΛP contains 24 + 6 + 6 + 6 + 32 + 1 = 81 points and
P ∩ΛR contains 24+ 1 = 25 points. This gives the cardinality of D4

i ∩Λ, for
i = 1 and 2.

Since the two 24-cells are the only lattice regular polytopes in dimension
four with isomorphism group Aut(D4) the ∨-dual of D4

1 is either D4
2 or itself.

But, one easily checks that the barycenter of the facet
∑

i xi = 2 ∩ P is
1
2

∑

i εi = ω4 and belongs to ΛP . We deduce that the dual D4
1
∨

contains

strictly less points of Λ than D4
1. Finally, D4

1
∨

= D4
2 and D4

2
∨

= D4
1.

Remark In this section, we have considered the cocubes for any n ≥ 2. But,
the others polytopes with associated root systems of type Dn have only be
considered when n ≥ 4. The case n = 2 has been made in Section 5.1 and
those with n = 3 will be considered in Section 5.3.

5.3 Root system An

Consider a primitive centered regular lattice polytope P with root system
Φ of type An with n ≥ 3. Because of the orders of the Weyl groups, the root
system of P∨ cannot be of type En. So, we may assume that the root system
of P∨ is also of type An; if not, we have already meet P.

By Proposition 3.5, the stabilizer of s0 which is the stabilizer of a facet of
P∨ in Isom(P) must contains the Weyl group of a root system of type An−1
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or A1 ×A1 for n = 3. This implies that if n ≥ 4 then s0 equals k.ω1 or k.ωn,
if n = 3 then s0 is a fundamental weight and implies no restriction on s0 if
n = 2.

Firstly, we assume that s0 is neither proportional to ω1 or ωn.
Let us fix n = 2. Under our assumption, P is an hexagon and Isom(P) =

Aut(A2). We deduce that s0 = k.(ω1 + ω2): this gives easily two regular
hexagons obtained with Λ equal to ΛR and ΛP .

If n = 3, our assumption implies that s0 = k.ω2. So, we obtain the three
cocubes considered in Section 5.2.

We now assume that s0 is proportional to ω1. The case when s0 is propor-
tional to ωn is equivalent up to Aut(Φ). The polytope P is the convex hull
of W.k.ω1 that is of the k.εi’s. In particular, P is a simplex and is regular
with Isom(P) = W .

The lattice Λ can be any lattice between ΛR and ΛP . Since ΛP/ΛR ≃
Z/(n + 1)Z, for each divisor d of n + 1 we have exactly one Λd such that
ΛP/Λd ≃ Z/dZ. For Λd and k = d, P is a primitive simplex denoted by
Sn

d . Direct calculation shows that the edges of Sn
d contain d + 1 points. In

particular they are pairwise non isomorphic.
The cardinality of Sn

d ∩ Λ is a little bit complicated to express. For any
τ ∈ Z/(n + 1)Z, we denote by c(τ) the cardinality of the following set

{a1, · · · , an+1 ∈ τ ∩ N s.t.
∑

ai = d(n+ 1)}.

Then, one easily checks that the cardinality of Sn
d ∩ Λ is

∑

τ∈Z/(n+1)Z

c(τ).

It would be interesting to simplify this formula !

5.4 Root systems En

By absurd, we will prove that there is no regular lattice polytope P with
root system of type E6. We may assume that P is primitive and centered.
Obviously, the root system of P∨ is necessarily E6. Moreover the root system
of a face of P is either D5 or A5. The first case is not possible because the
regular polytopes with D5 as root systems have Aut(D5) as isomorphism
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group. But, Aut(D5) is not contained in the stabilizer of D5 in Aut(E6). In
the second case, one has necessarily s0 = ω2 that is the longest root. So, the
vertices of P are the roots of E6. By Proposition 3.5, P has a facet parallel
to the Levy subsystem of type A5. It follows an easy contradiction.

The same argument shows that there is no regular lattice polytope with
root system of type E7 and E8.

6 Description of the regular lattice polytopes

In the following tabular, for each primitive centered regular lattice polytope
P, we give a notation, its root system, the group Isom(P) its lattice Λ, its
dominant vertex s0, the cardinalities of P ∩ Λ, the number of points in Λ
on an edge of P, primitive centered regular lattice polytope equivalent to
the facets of P and the duals of P∨ and P∗. All these elements allow us to
distinguish two non isomorphic lattice polytopes.

Proofs are given in the preceding section, the others are simple calcula-
tion left to the reader.

Remark In even dimension more than four, there exist three classes of
cocube. Two of these three cocubes have the same simplex as facet and the
third another one. In contradiction in [Kar06], the three cocubes have the
same simplex as facet.
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Type Φ Isom Not. Λ s0 Card. Edges Facet P∨ P∗

Simplex
An

n ≥ 3
W (Φ) ≃

Σn+1

Sn
d

for d|(n+ 1).
ΛR ⊂ Λ ⊂ ΛP

with #(ΛP/Λ) = d.
dω1

see
Sect 5.3

d+ 1 Sn−1
n Sn

d Sn
n+1

d

Cubes
An

1

n ≥ 2

Aut(Φ)
≃

(Z/2Z)n ⋉ Σn

Cn
1

Cn
2







Cn
3 for n even

Cn
3 for n odd

ΛR

ki ≡ kj mod 2

∑

ki even

2
∑

ωi
∑

ωi
∑

ωi

2
∑

ωi

3n

2n + 1
3n+1

2

5n−1
2

3
2
2

3

Cn−1
1

Cn−1
1

Cn−1
3

CCn
2

CCn
3

CCn
1

CCn
2

CCn
3

CCn
1

Cocubes
Dn

n ≥ 3

Aut(Φ)
≃

(Z/2Z)n ⋉ Σn

CCn
1

CCn
2







CCn
3 for n even

CCn
3 for n odd

ΛR
⊕

i Zεi

ΛP

2ω1

ω1

ω1

4n2 + 1
2n+ 1

2n+ 1

3
2

2

Sn−1
n

Sn−1
n

Sn−1
n/2

Sn−1
n

Cn
3

Cn
1

Cn
2

Cn
3

Cn
1

Cn
2

Hexagon A2

Aut(Φ)
≃
D6

H2
1

H2
2

ΛR

ΛP
ω1 + ω2

7
13

2
H2

2

H2
1

H2
1

H2
2

24-cell D4

Aut(Φ)
≃

(Σ4 ⋉ Z/2Z3) ⋉ Σ3

D4
1

D4
2

ΛR

ΛP
ω2

25
81

2
CC3

1

CC3
2

D4
2

D4
1

D4
1

D4
2

Remark: We have the following exeptional equalities in dimension two: C2
2 = C2

3 and C2
1
∨

= C2
2 .

Table 1: List of the centered primitive regular lattice polytopes
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