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Quantum cohomology of minuscule homogeneous spaces II

Hidden symmetries

P.E. Chaput, L. Manivel, N. Perrin

September 28, 2006

Abstract

We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous
space, once localized at the quantum parameter, has a non trivial involution mapping Schubert
classes to multiples of Schubert classes. This can be stated as a strange duality property for the
Gromov-Witten invariants, which turn out to be very symmetric.

1 Introduction

This paper is a sequel to [CMP], where we began a unified study of the quantum cohomology of
(co)minuscule homogeneous manifolds. One intriguing feature of quantum cohomology, as already
observed by several authors and especially for Grassmannians (see []), is that it is more symmetric
that ordinary cohomology.

In this paper we show that the main tools introduced in [CMP] allow to state, and prove, a general
strange duality statement for the quantum cohomology of a (co)minuscule homogeneous manifold
X = G/P . Recall that a Z-basis for the ordinary cohomology ring H∗(X) (or for the Chow ring
A∗(X)) of X is given by the Schubert classes σ(w), where w ∈ WX belongs to the set of minimal
lengths representatives of W/WP , the quotient of the Weyl group W of G by the Weyl group WP of P .
To be precise, we let σ(w) be the class of the Schubert variety X(wXw), where wX denotes the longest
element in WX . So σ(w) has degree ℓ(w) in the Chow ring (and twice this degree in cohomology).
Note that the map w 7→ p(w) = w0w, for w ∈ W/WP ≃ WX , defines Poincaré duality on X. The map
w 7→ ι(w) = wP

0 w, where wP
0 denotes the longest element of WP , will play a crucial role in the sequel.

For w = sα1 · · · sαℓ(w)
a reduced decomposition of w ∈ WX , we let

y(w) =

ℓ(w)∏

i=1

nαi
(α0)

ǫ(αi).

Here α0 denotes the highest root of G, and nαi
(α0) is the coefficient of αi when α0 is written in the

basis of simple roots. Moreover, we have let ǫ(α) = 1 if α is a long root, ǫ(α) = −1 if α is short (in
the simply-laced case, all roots are considered long). The rational number y(w) is well defined since
in the (co)minuscule case, reduced decompositions are uniquely defined up to commutation relations.
Finally, we let δ(w) be the number of occurences, in a reduced decomposition of w, of the simple root
β that defines P .

Key words: quantum cohomology, minuscule homogeneous space, quiver, Schubert calculus, strange duality, Gromov-

Witten invariant.
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The Schubert classes are still a basis over Z[q] of the (small) quantum Chow ring QA∗(X), whose
associative product is defined in terms of 3-points Gromov-Witten invariants. Denote by QA∗(X)loc

its localization at q, that is,

QA∗(X)loc = QA∗(X) ⊗Z[q] Z[q, q−1].

Strange duality can be stated in a uniform way as follows.

Theorem 1.1 (Strange Duality) Let X be a minuscule or cominuscule homogeneous space. The
endomorphism ι of QA∗(X)loc, defined by

ι(q) = y(sα0)q
−1 and ι(σ(w)) = q−δ(w)y(w)σ(ι(w)),

is a ring involution.

This result can be stated as a symmetry property of the Gromov-Witten invariants, see Corollary
5.4, which unexpectedly relates certain numbers of small degree rational curves with numbers of high
degree rational curves. In fact we will obtain these results by observing that the quantum product
with the class of a point maps any Schubert class to another Schubert class, multiplied by some power
of q, see Theorem 3.3.

For Grassmannians these results were first proved by Postnikov [P1]; in this case y(w) = 1 for
any w. For classical Grassmannians our strange duality statement will be deduced from the quantum
Pieri formulas of [BKT]. For the two exceptional minuscule spaces, we have used the presentations of
the quantum Chow rings obtained in [CMP]. The case of the Cayley plane has been checked by hand,
but that of the Freudenthal variety required the help of a computer.

As a consequence of this theorem, we deduce from the formula for the smallest power of q appearing
in the quantum product of two Schubert classes, (see [FW] or [CMP]), a formula for the highest power
of q in such a product (Corollary 5.5). For u and v in WX , let us denote, following W. Fulton and C.
Woodward [FW], by δ(u, v) the minimal degree of a rational curve meeting two general translates of
X(u∗) and X(v∗) (see also [CMP] page 20 and corollary 4.12 for a combinatorial description).

Theorem 1.2 For u, v ∈ WX , the maximal power of q that appears in the quantum product of Schubert
classes σ(u) ∗ σ(v), is

dmax(u, v) = δ(u) − δ(ι(u), p(v)) = δ(v) − δ(ι(v), p(u)).

2 A partition of the Hasse diagram

Let X = G/P be a (co)minuscule homogeneous variety. In [CMP] we defined the perimeter dmax of
X. For any non negative integer d ≤ dmax, we introduced certain Schubert subvarieties Td and Yd of
X, with Td ⊂ Y ∗

d . These varieties allowed us to define a quantum Poincaré duality as follows: for any
Schubert subvarieties X(u),X(v) ⊂ X, the Gromov-Witten invariant Id(Y

∗
d ,X(u),X(v)) is non zero

if and only if X(u),X(v) are contained in the (smooth) variety Td, and define Poincaré dual classes
in Td – in which case the invariant equals one. In particular

Id(Y
∗
d , {pt}, Td) = 1.

One of the main themes of this paper is to investigate another quantum Poincaré type duality, defined
by the non vanishing of the Gromov-Witten invariants Id({pt},X(u),X(v)). Let δ(u) denote the
maximal integer d such that X(u) ⊂ Y ∗

d . The following facts are taken from [CMP] page 20:

1. There exists a degree d rational curve in X joining the base point e(1) = P/P of X = G/P with
the base point e(u) = uP/P ∈ X(u), if and only if d ≥ δ(u).
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2. If β is the simple root defining P , δ(u) is the number of occurences of sβ in a reduced decompo-
sition of u.

3. δ(u) = δ(wX , u), the minimal length of a Bruhat chain from u to wX , as defined in [FW].

We add to this list the following essential property.

Lemma 2.1 We have Td ⊂ X(w) ⊂ Y ∗
d if and only if d = δ(wX , w).

Proof. We proved in [CMP, corollary 4.12] a combinatorial characterisation of the smallest power
appearing in a quantum product. This gives δ(wX , w) = min{d / Td ⊂ X(w)}. The lemma will follow
from the fact that for all d ≤ dmax, we have Td−1 6⊂ Y ∗

d and the equivalence

Td−1 6⊂ X(w) ⇔ X(w) ⊂ Y ∗
d .

These two results come from the following facts on the quivers QY ∗

d
and QTd

(cf. [CMP] for definitions
and results on quivers):

• the quiver QY ∗

d
is obtained from the quiver QX by removing all the vertices above the vertex

(θ(β), d) where β is the simple root defining X and θ is the Weyl involution

• The vertices of QTd−1
are those under the vertex (θ(β), d).

The vertex (θ(β), d) ∈ QX is in the quiver QTd−1
but not in the quiver QY ∗

d
proving that Td−1 6⊂ Y ∗

d .
Furthermore, the condition Td−1 6⊂ X(w) is equivalent to the fact that the vertex (θ(β), d) is not in
the quiver of X(w) which is also equivalent to the inclusion X(w) ⊂ Y ∗

d . �

A nice consequence is that we get a partition of WX in dmax + 1 Bruhat intervals,

WX =

dmax⊔

d=0

[Td, Y
∗
d ].

We will denote by Wd ⊂ WX the interval [Td, Y
∗
d ]. For example, W1 is the image in W/WP ≃ WX of

the set of reflections sα, α a root of G. In particular T1 is represented by sα0.
Recall that in [CMP], we proved that Gromov-Witten invariants of degreed d on X can be inter-

preted as classical intersection numbers on an auxiliary variety Fd. This variety Fd is homogeneous
under the same group G as X, and there is an incidence diagram

Id
pd

//

qd

��

X

Fd

Then Zd ⊂ Fd is the (image by qd of the) fiber of pd, and Yd ⊂ X is the (image by pd of the) fiber of
qd. These varieties are given by the following table.

X d Td Yd Zd

G(p, n) ≤ min(p, n − p) G(p − d, n − 2d) G(d, 2d) G(p − d, p) × G(n − p − d, n − p)
Gω(n, 2n) ≤ n Gω(n − d, 2n − 2d) Gω(d, 2d) G(n − d, n)
GQ(n, 2n) ≤ [n/2] GQ(n − 2d, 2n − 4d) GQ(2d, 4d) G(n − 2d, n)

OP2 1 P5 P1 GQ(5, 10)
2 pt Q8 Q8

E7/P7 1 Q10 P1 OP2

2 P1 Q10 OP2

3 pt E7/P7 pt
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Lemma 2.2 For any d ≤ dmax, the Bruhat interval [Td, Y
∗
d ] in WX can be identified with the Hasse

diagram of a minuscule homogeneous variety Zd.

Proof. For any Schubert subvariety X(w) of X, we denoted by Fd(ŵ) = qd(p
−1
d (X(w)) the correspond-

ing Schubert subvariety of Fd. The map w 7→ ŵ identifies the Bruhat interval [Td, Y
∗
d ] in WX with

the Bruhat interval [Z∗
d , Fd] in WFd

. By Poincaré duality on Fd and Zd, this interval is canonically
identified with [pt, Zd], which coincides with the Hasse diagram of Zd. �

Moreover, each interval Wd, being isomorphic with the Hasse diagram of the smooth homogeneous
variety Zd, is endowed with a natural involution induced by Poincaré duality on the latter. We
get a global involution of WX which we denote by ι. In particular ι(Td) = Y ∗

d , and the fact that
Id(Y

∗
d , {pt}, Td) = 1 implies that for any u ∈ WX ,

codim(X(u)) + codim(X(ι(u))) = δ(u)c1(X).

3 The quantum product by the class of a point

In this section we want to compare the intersection in Fd of two cells in [Z∗
d , Fd] with an intersection

in Zd. Our first result will hold for arbitrary homogeneous spaces.

Let X be a homogeneous space and Y ⊂ X a Schubert subvariety. Suppose that Y is smooth,
and even homogeneous. The cell decomposition of X defined by the Schubert cells, gives a cell
decomposition of Y if we consider only those Schubert cells that are contained in Y . In particular this
yields a natural inclusion WY →֒ WX . We denote pX : WX → WX the Poincaré duality on X and
pY : WY → WY the Poincaré duality on Y .

Consider the submodule Z[Y ∗,X] of H∗(X) generated by the Schubert classes in [Y ∗,X]. This
module has a natural algebra structure: if [X(u)] ∪ [X(v)] =

∑
w∈WX

cw
u,v[X(w)] in X, set

[X(u)] · [X(v)] =
∑

w∈[Y ∗,X]

cw
u,v[X(w)].

Let j denote the inclusion Y → X; the morphism of modules j∗ : H∗(Y ) → H∗(X) is injective and the
dual morphism of algebras j∗ : H∗(X) → H∗(Y ) is surjective. The image of j∗ is Z[pt, Y ]; we denote
by j−1

∗ the inverse map Z[pt, Y ] → H∗(Y ).

Proposition 3.1 The restriction of j∗ to Z[Y ∗,X] is an algebra isomorphism with H∗(Y ). Ex-
plicitely, it equals pY ◦ j−1

∗ ◦ pX .

Proof. The first assertion is an immediate consequence of [CMP, lemma 3.12]. To prove the second
one, let C ∈ Z[pt, Y ] ⊂ H∗(X), and let D ∈ H∗(X). Since j∗ and j∗ are adjoint, we have:

(j∗pY j∗pX(C),D)X = (pY j∗pX(C), j∗D)Y
= δj∗pX(C),j∗D

= δpX(C),D = (C,D)X

The second and the third equality follow from the fact that j∗ maps bijectively Schubert classes to
Schubert classes. We therefore have proved that C = j∗pY j∗pX(C) for all C in Z[pt, Y ] or, equivalently,
that j∗D = pY j−1

∗ pX(D) for all D in Z[Y ∗,X]. �

Corollary 3.2 Let Y ⊂ X be a homogeneous Schubert subvariety of some rational homogeneous
manifold. Let Z be any other Schubert subvariety of X. Then

[Y ] ∪ [Z] =

{
pXpY [Z] if Z ⊃ Y ∗,
0 otherwise.
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We come back to the (co)minuscule setting. Our main examples of homogeneous Schubert sub-
varieties are our varieties Td and Yd in X and Zd in Fd. Applying the previous result to the latter
varieties, we get the following statement.

Theorem 3.3 For any u ∈ WX , we have

σ(pt) ∗ σ(u) = qδ(u)σ(pι(u)).

Proof. Let u, v ∈ WX . If Id(pt,X(u),X(v)) 6= 0, then, by corollary 3.21 in [CMP], we have u ≤
wY ∗

d
and v ≤ wY ∗

d
. Since Id(pt,X(u),X(v)) = I0(Zd, Fd(û), Fd(v̂)), by [CMP, lemma 3.12], we also

have û, v̂ ≥ Z∗
d , which is equivalent to u, v ≥ Td by the proof of Lemma 2.2. We conclude that

Id(pt,X(u),X(v)) 6= 0 implies that X(u),X(v) ∈ [Td, Y
∗
d ],which is equivalent to d = δ(u) = δ(v).

Denote by jd : Zd →֒ Fd the inclusion map. We have

I0(Zd, Fd(v̂), Fd(û)) =

∫

Zd

j∗d [Fd(v̂)] ∪ j∗d [Fd(û)].

According to proposition 3.1,
∫
Zd

j∗d [Fd(v̂)]∪j∗d [Fd(û)] equals one if v = ι(u) and equals zero otherwise.
The theorem follows. �

4 Strange duality

In this section we prove the strange duality property of the quantum Chow ring stated in Theorem
1.1. For convenience we will in fact prove a slightly different (but equivalent) statement, asserting the
existence of a duality mapping q to q−1. With the notable exception of Grassmannians, this is only
possible if we extend scalars a little bit.

We will need a case by case analysis to fix the coefficients ζ(w) in the next statement.

Theorem 4.1 For any (co)minuscule homogeneous variety X, one can find an algebraic number κ,
and a map ζ : WX → Z[κ], such that the correspondence

q 7→ q−1, σ(w) 7→ ζ(w)q−δ(w)σ(ι(w))

defines a ring involution of QA∗(X)loc[κ].

Clearly, such an involution changes the degree into its opposite, and the fact that it is involutive is
tantamount to the simple relation ζ ◦ ι = ζ−1. The hard part of the statement is that it is compatible
with the quantum product.

To get rid of κ, there remains to compose the previous involution with a degree automorphism
(that multiplies a degree d class by td for some t). It is then a routine but again case by case check
that we obtain Theorem 1.1. That is, we check that

ζ(w) = y(w)y(sα0)
−

ℓ(w)
c1(X) .

But we have no convincing explanation of why such a formula should hold true.

4.1 Quadrics

We begin with the easy example of quadrics. We will see that already in that case fixing the coefficients
involves some subtelties.
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Even dimensions

Let Q2m be a quadric of dimension 2m, acted on by SO2m+2. The simple root that defines the
corresponding maximal parabolic subgroup is α1. The Hasse diagram is the following:

• • • • • • • • • •

•

•

σ−
m

σ+
m

H1

11

11

2 2 2 2 2 2 1

Indeed, as is well known, there is one Schubert class σk in each degre k 6= m, and two Schubert
classes σ±

m in middle degree, defined by the two families of maximal linear spaces in Q2m. Of course
σ1 = H is the hyperplane class. For the classical intersection product, we have Hk = σk for k < m,
Hm = σ+

m + σ−
m, and Hk = 2σk for k > m. Since c1(Q

2m) = 2m, these formulas remain valid in the
quantum Chow ring, except in maximal degree. In fact the quantum Chevalley formula gives the two
identities

σ2m−1 ∗ H = σ2m + q, σ2m ∗ H = qH.

Note that σ2m−1 is the class of a line and coincides with [T1]. Also σ2m is the class [pt] of a point.

Proposition 4.2 The quantum Chow ring QA∗(Q2m) is determined by the formulas

σ+
m ∗ σ−

m = [pt], σ+
m ∗ σ+

m = σ−
m ∗ σ−

m = q.

Note that these relations imply that H2m = 2[pt] + 2q and H2m+1 = 4qH. Now it is easy to check
that QA∗(Q2m)loc has a ring involution given by

q 7→ 1/16q, Hk 7→ H2m−k/4q, [pt] 7→ [pt]/16q2,

(where the central formula holds for 1 ≤ k ≤ 2m − 1), and in middle degree by σ±
m 7→ σ∓

m/4q.
Multiplying each degree d class by 2d, we get a slightly different involution given by

q 7→ 22m−4/q,
σk 7→ 2k−1σ2m−k/q for 0 < k < m,
σ±

m 7→ 2m−2σ∓
m,

σk 7→ 2k−3σ2m−k/q for m < k < 2m,
[pt] 7→ 22m−4[pt]/q2.

This is precisely the statement of Theorem 1.1 for Q2m, as one can readily check from the Hasse
diagram above. Indeed, we have labeled the edges by the coefficients whose products, taken from the
rightmost end of the diagram, give the coefficients y(w). The corresponding coefficients for Theorem
4.1 are the following, where ζ(m) accounts for the two mid-dimensional classes:

ζ(k) = 4
k−m

m for 0 < k < 2m, ζ(0) = ζ(2m) = 1,

Odd dimensions

An odd dimensional quadric Q2m−1 is cominuscule but not minuscule. It has exactly one Schubert
class σk in each dimension k < 2m. Again σ1 = H is the hyperplane class. The Hasse diagram is the
simplest possible one; as in the even dimensional case we have labeled the edges by the coefficients
whose products, taken from the rightmost end, give the y(w) of Theorem 1.1.
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• • • • • • • • • •
H1 2 2 2

1
2 2 2 2 1

For the classical intersection product, we have Hk = σk for k < m, Hk = 2σk for k ≥ m. Since
c1(Q

2m−1) = 2m − 1, these formulas hold in the quantum Chow ring, except in maximal degree. In
fact the quantum Chevalley formula gives the two identities

σ2m−2 ∗ H = σ2m−1 + q, σ2m−1 ∗ H = qH.

This is enough to determine the quantum product. The class σ2m−2 is that of a line and coincides
with [T1]. Also σ2m−1 is the class [pt] of a point.

Again it is easy to check that QA∗(Q2m−1)loc has a ring involution given by almost the same
formulas that in even dimensions,

q 7→ 1/16q, Hk 7→ H2m−k−1/4q, [pt] 7→ [pt]/16q2,

(where the central formula holds for 1 ≤ k ≤ 2m − 2). Multiplying each degree d class by 2d, we get
the slightly different involution given by

q 7→ 22m−5/q,
σk 7→ 2k−1σ2m−k−1/q for 0 < k < m,
σk 7→ 2k−3σ2m−k−1/q for m ≤ k < 2m − 1,

[pt] 7→ 22m−5[pt]/q2.

This is in perfect agreement with Theorem 1.1.

4.2 Grassmannians

Now suppose X = G(p, n) is a Grassmannian. Then WX identifies with the set of partitions inscribed
in the rectangle p × (n − p), and dmax = min(p, n − p). For any d ⊂ dmax, Yd is a Grassmannian
G(d, 2d), and Td is another Grassmannian G(p − d, n − 2d). In particular the partition wY ∗

d
is just a

square of size d, while the partition wTd
is the complement of a rectangle of size (p− d)× (n− p− d).

We deduce that for any partition λ ∈ WX , the degree d = δ(λ) is the size of the biggest square
contained in λ. Clearly the interval [Td, Y

∗
d ] in WX identifies with the Hasse diagram of the product

G(d, p − d) × G(d, n − p − d). The partition ι(λ) is deduced from λ by taking the complementary
partitions in the SW and NE rectangles.

In this case Theorem 4.1 appears in [P1], Theorem 7.5. See also [H] where the involution is
interpreted in terms of complex conjugation.

4.3 Lagrangian Grassmannians

Let X = Gω(n, 2n) be a Lagrangian Grassmannian. Recall that WX identifies with the set of strict
partitions λ ⊂ ρn. In order to simplify notations we let σλ denote the class of the Schubert subvariety
Poincaré dual to X(λ). Its degree is the sum |λ| of the parts of λ. Morevoer, d = δ(λ) is simply the
number of (non zero) parts of λ, usually called the length and denoted ℓ(λ). In particular dmax = n.

Mapping λ to (λ1 − d, . . . , λd − 1) we get a partition inscribed in the rectangle d × (n − d). This
identifies the interval Wd of WX with the Hasse diagram of the Grassmannian G(d, n). Appying
Poincaré duality for that Grassmannian we dedude that the involution ι is given by

ι(λ1, . . . , λℓ(λ)) = (n + 1 − λℓ(λ), . . . , n + 1 − λ1).

7



Example 4.3 For n = 5 we have drawn below the Hasse diagram of Gω(5, 10) and its partition into
six disjoint intervals. More precisely we have drawn in black the arrows between different intervals,
and in the same color the arrows inside a given interval. Those are the Hasse diagrams of a point, of
P4 and of the Grassmannian G(2, 5), all appearing twice and symmetrically.

• • •

• • • • • •

• • • • • •

•

•

• •

• •

• • •• • •

•

• • •

•

Proposition 4.4 For λ ⊂ ρn a strict partition, let z(λ) := ℓ(λ)− 2|λ|
n+1 . Then z(ι(λ)) = z(λ∗) = −z(λ),

and Theorem 4.1 holds with

κ = 2−
2

n+1 and ζ(λ) = 2z(λ).

Proof. We just need to prove that our involution is compatible with the quantum Pieri formula for
σλ ∗ σk, for each k. We have ι(σk) = q−1σn+1−k, so we need to compare σλ ∗ σk with σι(λ) ∗ σn+1−k.

We use the quantum version of Pieri’s rule as stated in [BKT], Theorem 3:

σλ ∗ σk =
∑

µ

2N(λ,µ)σµ + q
∑

ν

2N ′(ν,λ)σν ,

where the first sum is over all strict partitions µ ⊃ λ with |µ| = |λ|+k, such that the complement µ/λ
is a horizontal strip, and the second sum is over all strict partitions ν ⊂ λ with |ν| = |λ| − (n + 1− k),
such that the λ/ν is a horizontal strip. Moreover N(λ, µ) denotes the number of connected components
of µ/λ which do no meet the first column, and N ′(ν, λ) is one less than the total number of connected
components of λ/ν. (By definition, two boxes are connected if they share an edge or a vertex.)
Applying our involution, we get

ι(σλ ∗ σk) = q−ℓ(λ)
∑

ℓ(µ)=ℓ(λ) 2z(µ)+N(λ,µ)σι(µ) + q−ℓ(λ)−1
∑

ℓ(µ)=ℓ(λ)+1 2z(µ)+N(λ,µ)σι(µ)

+q−ℓ(λ)−1
∑

ℓ(ν)=ℓ(λ) 2z(ν)+N ′(ν,λ)σι(ν) + q−ℓ(λ)
∑

ℓ(ν)=ℓ(λ)−1 2z(ν)+N ′(ν,λ)σι(ν). (1)

Similarly, we deduce again from Pieri’s rule that

ι(σλ) ∗ ι(σk) = 2z(λ)+z(k)
(
q−ℓ(λ)−1

∑
ℓ(α)=ℓ(λ) 2N(ι(λ),α)σα + q−ℓ(λ)−1

∑
ℓ(α)=ℓ(λ)+1 2N(ι(λ),α)σα

+q−ℓ(λ)
∑

ℓ(β)=ℓ(λ) 2N ′(β,ι(λ))σβ + q−ℓ(λ)
∑

ℓ(β)=ℓ(λ)−1 2N ′(β,ι(λ))σβ

)
. (2)

We claim that the four partial sums on the right hand sides of the two identities above correspond
pairwise.

Consider the first term on the right hand side of (2). Here α is a strict partition containing ι(λ),
of size |α| = |ι(λ)| + n + 1 − k, such that α/ι(λ) is a horizontal strip. If we let ν = ι(α), we get
that ν is contained in λ, ℓ(ν) = ℓ(α) and |ν| = |λ| − (n + 1 − k), and λ/ν ≃ α/ι(λ) is a horizontal
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strip. Moreover, the fact that ℓ(α) = ℓ(λ) means that α/ι(λ) does not meet the first column, so
N(ι(λ), α) = N ′(ν, λ) + 1. On the other hand,

z(ν) = ℓ(λ) −
2

n + 1
(|λ| − (n + 1 − k)) = z(λ) + z(k) + 1,

and therefore z(ν) + N ′(ν, λ) = z(λ) + z(k) + N(ι(λ), α). We conclude that the first partial sum of
(2) coincides exactly with the third partial sum of (1).

For the second term on the right hand side of (2), the difference with the first term is that
ℓ(α) = ℓ(λ) + 1, which means that α/ι(λ) does meet the first column. Thus N(ι(λ), α) = N ′(ν, λ).
On the other hand,

z(ν) = ℓ(λ) + 1 −
2

n + 1
(|λ| + (n + 1) − (n + 1 − k)) = z(λ) + z(k),

and therefore we get again z(ν) + N ′(ν, λ) = z(λ) + z(k) + N(ι(λ), α). We conclude that the second
partial sum of (2) coincides exactly with the second partial sum of (1).

Now consider the third term on the right hand side of (2). Here β is a strict partition contained in
ι(λ), with ℓ(β) = ℓ(λ) and |β| = |ι(λ)| − k, such that ι(λ)/β is a horizontal strip. If we let β = ι(µ),
we get ι(λ)/β ≃ µ/λ, so |µ| = |λ|+ k and N ′(β, ι(λ)) = N ′(λ, µ) = N(λ, µ)− 1. Again we deduce that
z(λ) + z(k) + N ′(β, ι(λ)) = z(µ) + N(λ, µ), so that the third partial sum of (2) coincides exactly with
the first partial sum of (1).

Finally, consider the third term on the right hand side of (2). Here β is as before except that
ℓ(β) = ℓ(λ) − 1, so that if we let ν = ι(β), then N ′(β, ι(λ)) = N ′(ν, λ). Again we conclude that the
fourth partial sum of (2) coincides exactly with the fourth partial sum of (1).

This concludes the proof. �

As we have already mentionned, it is possible to get rid of the root of two by composing with a
degree automorphism. We get:

Theorem 4.5 The correspondence

q 7→
4

q
, σλ 7→

(2

q

)ℓ(λ)
σι(λ) for λ ⊂ ρn,

defines a ring involution of QA∗(Gω(n, 2n))loc.

4.4 Orthogonal Grassmannians

Let X = GQ(n + 1, 2n + 2) be a Lagrangian Grassmannian. Recall that WX identifies again with the
set of strict partitions λ ⊂ ρn. Again we denote by σλ the Schubert class Poincaré dual to [X(λ)].
Its degree is |λ|, and δ(λ) = d if the number of (non zero) parts of λ is 2d or 2d − 1. In particular
dmax = [n/2].

Mapping λ to (λ1 − 2d + 1, . . . , λ2d) (where we let λ2d = 0 if ℓ(λ) = 2d − 1), we get a partition
inscribed in the rectangle 2d × (n − 2d + 1). This identifies the interval Wd of WX with the Hasse
diagram of the Grassmannian G(2d, n + 1). Appying Poincaré duality for that Grassmannian we
dedude that the involution ι is given by

ι(λ1, . . . , λ2δ(λ)) = (n − λ2δ(λ), . . . , n − λ1).

Example 4.6 For n = 5 we have drawn below the Hasse diagram of GQ(6, 12) and its partition into
four disjoint intervals. Note that the diagram is the same as for Gω(5, 10) but the partition is different.
Indeed we have only four intervals in that case, isomorphic with the Hasse diagrams of a point and of
G(2, 6) appearing twice symmetrically. (Beware that this symmetry is specific to the case where n is
odd.)
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• • •

• • • • • •

• • • • • •

•

•

• •

• •

• • •• • •

•

• • •

•

Proposition 4.7 For λ ⊂ ρn a strict partition, let z(λ) := 2|λ|
n − (ℓ(λ) + δλ1,n). Then z(ι(λ)) =

z(λ∗) = −z(λ), and Theorem 4.1 holds with

κ = 2−
2
n and ζ(λ) = 2z(λ).

Proof. The proof is notably different from that of Theorem 4.5, since we have

ι(σk) = q−1σn,n−k = q−1σn ∗ σn−k.

Again we check that our formula is compatible with the quantum version of Pieri’s rule as stated in
[BKT], Theorem 6:

σλ ∗ σk =
∑

µ

2N ′(λ,µ)σµ + q
∑

ν

2N ′(λ,ν)σν̄ ,

where the first sum is over all strict partitions µ ⊃ λ with |µ| = |λ| + k, such that µ/λ is a horizontal
strip, and the second sum is over all partitions ν = (n, n, ν̄) ⊃ λ, with ν̄ strict and |ν| = |λ| + k, such
that ν/λ is a horizontal strip. Note that the quantum correction is non trivial zero when λ1 = n.

We distinguish several cases.

First case: λ1 < n. Then

σλ ∗ σk =
∑

ℓ(µ)=ℓ(λ)

2N ′(λ,µ)σµ +
∑

ℓ(µ)=ℓ(λ)+1

2N ′(λ,µ)σµ (3)

has no quantum correction.

First subcase: ι(λ)1 < n. This means that ℓ(λ) = 2δ(λ), so that on the right hand side of (3) we have
δ(µ) = δ(λ) in the first partial sum and δ(µ) = δ(λ) + 1 in the second one. Hence

ι(σλ ∗ σk) = q−δ(λ)
∑

ℓ(µ)=ℓ(λ)

2z(µ)+N ′(λ,µ)σι(µ) + q−δ(λ)−1
∑

ℓ(µ)=ℓ(λ)+1

2z(µ)+N ′(λ,µ)σι(µ). (4)

On the other hand σι(λ) ∗ σn = σn,ι(λ) has no quantum correction, and the quantum Pieri rule gives

ι(σλ) ∗ ι(σk) = 2z(λ)+z(k)
(
q−δ(λ)−1

∑

α

2N ′(ι(λ),α)σn,α + q−δ(λ)
∑

β

2N ′((n,ι(λ)),β)σβ̄

)
. (5)

Consider some µ in the first sum on the right hand side of (4), and let β = ι(µ). We claim that

N ′((n, ι(λ)), β) = N ′(λ, µ) + 1 − δµ1,n.

10



The following picture should help to see this. We have represented the partition λ in thick lines, so
that ι(λ) is its complement (reversed) in the rectangle ℓ(λ) × n. We have added a line a the bottom
of this rectangle to represent (n, ι(λ)) (again reversed). The •’s represent β/(n, ι(λ)) (reversed), a
horizontal strip inside λ – except possibly if ℓ(β) = ℓ(λ) + 2, in which case there are some •’s on
the line above the first line of λ. The ◦’s represent µ/λ, again a horizontal strip. On each line they
complement the •’s of the line above. So we start with a connected component of •’s on the SW
corner of the picture, and going NE we successively meet the connected components of ◦’s and •’s.
We have thus the same number of components, or one more for the •’s if we end by one of these at
the NE corner. This is the case if and only if µ1 < n, so our claim follows.

• •

•

•

• •

• •

◦ ◦

◦

◦

◦

◦

λ

ι(λ)

But z(λ)+z(k)−z(µ) = δµ1,n−1, so z(λ)+z(k)+N ′((n, ι(λ)), β) = z(µ)+N ′(λ, µ). We conclude
that the first sum of (4) coincides with the second sum of (5).

Now consider some µ in the second sum on the right hand side of (4). Since ℓ(µ) = 2δ(λ) + 1 is
odd, we get ι(µ) = (n, α) for some strict partition α. We claim that

N ′(ι(λ), α) = N ′(λ, µ) − δµ1,n.

Again this implies that the second sum of (4) coincides with the first sum of (5), and we are done.

Second subcase: ι(λ)1 = n. Then ℓ(λ) = 2δ(λ) − 1, and in (3) we always have δ(µ) = δ(λ). Hence

ι(σλ ∗ σk) = q−δ(λ)
∑

µ

2z(µ)+N ′(λ,µ)σι(µ). (6)

On the other hand, σι(λ) ∗σn = qσι(λ)/n, where the first part of ι(λ)/n is smaller than n. In particular,
the quantum Pieri rule for σι(λ)/n ∗ σn−k has no quantum correction. We get

ι(σλ) ∗ ι(σk) = 2z(λ)+z(k)q−δ(λ)
∑

α

2N ′(ι(λ)/n,α)σα, (7)

the sum being taken over all strict partitions α ⊃ ι(λ)/n, with |α| = |ι(λ)/n| + n − k = |ι(λ)| − k,
such that α/(ι(λ)/n) is a horizontal strip. Let µ = ι(α), and note that δ(µ) = δ(α) = δ(α) since
ℓ(ι(λ)/n) = ℓ(λ) is odd. We claim that

N ′(ι(λ)/n, α) = N ′(λ, µ) + δℓ(µ),ℓ(λ) − δµ1,n.

Since we have z(µ) − z(λ) − z(k) = 1 + ℓ(λ) − ℓ(µ) − δµ1,n = δℓ(µ),ℓ(λ) − δµ1,n, we conclude that the
coefficients of σµ in (3) and (6) are equal, which is what we wanted to prove.

Second case: λ1 = n. Then we must take care of the quantum correction in Pieri’s rule. We write

σλ ∗ σk =
∑

ℓ(µ)=ℓ(λ)

2N ′(λ,µ)σµ +
∑

ℓ(µ)=ℓ(λ)+1

2N ′(λ,µ)σµ + q
∑

ℓ(ν)=ℓ(λ)

2N ′(λ,ν)σν̄ + q
∑

ℓ(ν)=ℓ(λ)+1

2N ′(λ,ν)σν̄ . (8)
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First subcase: ι(λ)1 < n. Then δ(µ) = δ(λ) in the first sum of (8) but δ(µ) = δ(λ) + 1 in the second
sum, while δ(ν̄) = δ(λ) − 1 in the third sum and δ(ν̄) = δ(λ) in the last one. Thus

ι(σλ ∗ σk) = q−δ(λ)
∑

ℓ(µ)=ℓ(λ) 2z(µ)+N ′(λ,µ)σι(µ) + q−δ(λ)−1
∑

ℓ(µ)=ℓ(λ)+1 2z(µ)+N ′(λ,µ)σι(µ)

+q−δ(λ)
∑

ℓ(ν)=ℓ(λ) 2z(ν̄)+N ′(λ,ν)σι(ν̄) + q−δ(λ)−1
∑

ℓ(ν)=ℓ(λ)+1 2z(ν̄)+N ′(λ,ν)σι(ν̄). (9)

On the other hand σι(λ) ∗ σn = σn,ι(λ) and the quantum Pieri rule gives

ι(σλ) ∗ ι(σk) = 2z(λ)+z(k)
(
q−δ(λ)−1

∑
ℓ(α)=ℓ(λ) 2N ′(ι(λ),α)σn,α + q−δ(λ)−1

∑
ℓ(α)=ℓ(λ)+1 2N ′(ι(λ),α)σn,α

+q−δ(λ)
∑

ℓ(β)=ℓ(λ)+1 2N ′((n,ι(λ)),β)σβ̄ + q−δ(λ)
∑

ℓ(β)=ℓ(λ)+2 2N ′((n,ι(λ)),β)σβ̄

)
. (10)

As above we check that the first, second, third and fourth partial sums in (10) coincide respectively
with the second, fourth, third and first partial sum in (9).

Second subcase: ι(λ)1 = n. Same story! �

After renormalizing, we get the following statement:

Theorem 4.8 The correspondence

q 7→
4

q
, σλ 7→

(2

q

)δ(λ)
2δι(λ)1,n−δλ1,nσι(λ) for λ ⊂ ρn,

defines a ring involution of QA∗(GQ(n + 1, 2n + 2))loc.

4.5 The Cayley plane

For the Cayley plane OP2 = E6/P1, we have dmax = 2, and the partition of the Hasse diagram is
as follows. The two non trivial intervals are isomorphic with the Hasse diagrams of an orthogonal
Grassmannian GQ(5, 10), and a quadric Q8.

• • • •

• • • • •

• • • • •

• • • • •

• •

• •

• • •

•

σ16

σ8

H

σ′′
11

To each Schubert class σw of OP2 we associate a coefficient ζ(w) as follows, where y = 2x2 and
3y2 = 1.
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1 1
x

1
y 2x

1 y 1 1
y 1

1 1
y 1 y 1

1
2x 2x 1

2x 2x 1
2x

1
x x

x 1
x

1
y x 1

1

Observe that ζ(ι(w)) = ζ(w∗) = ζ(w)−1.

Proposition 4.9 Theorem 4.1 holds for the Cayley plane with κ = 12−
1
4 and ζ(w) as above.

Proof. A presentation for the quantum Chow ring QA∗(OP2) has been given in [CMP], Theorem 5.1,
with generators H and σ′

4. What we have to check is that the same relations are verified by their
images

ι(H) = q−1σ′′
11 and ι(σ′

4) = q−1σ′′
8 .

This is a lengthy but direct computation. �

4.6 The Freudenthal variety

In this case dmax = 3. The partition of the Hasse diagram is symmetric, with two intervals that reduce
to a point, and two that are isomorphic with the Hasse diagram of the Cayley plane.

• • • • •

• • • • •

• • • • •

• • • • •

• • •

• •

• •

•

• • • • •

• • • • •

• • • • •

• • •

• •

•

• •

• • • • •

σ′
5

σ9

σ′′
9

σ17

H

In this case we needed a computer to check that Theorem 1.1 does hold. We know from [CMP]
that the quantum cohomology ring is generated over Z[q] by the classes H,σ′

5 and σ9, and we know
the relations explicitely. With the notations of [CMP], our involution is given by

q 7→ 11943936q−1, H 7→ q−1σ17, σ′
5 7→ 48q−1σ′

13, σ9 7→ 3456q−1σ′′
9 .

We first checked that this map preserves the relations and is involutive. Then we computed the image
of each Schubert class and checked that it is given by the explicit form of Theorem 1.1.
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5 Symmetries of Gromov-Witten invariants

For convenience, denote by p the symmetry of WX given by Poincaré duality. We deduce from Theorem
4.1 the following identity for the quantum product:

Theorem 5.1 For any u, v ∈ WX , we have

σ(ι(u)) ∗ σ(p(v)) = qδ(u)+δ(p(u))−δ(v)−δ(pι(v))σ(pιp(u)) ∗ σ(ιpι(v)).

Proof. Theorem 4.1 is equivalent to the following identity for Gromov-Witten invariants:

Ik(u, v,w) = ζ(u)ζ(v)ζ(w)Iδ(u)+δ(v)−δ(p(w))−k (ι(u), ι(v), pιp(w)). (11)

Using the fact that ζ(ι(u)) = ζ(p(u)) = ζ(u)−1, the same identity gives

Iℓ(pιp(w), ι(u), ι(v)) = (ζ(u)ζ(v)ζ(w))−1Iδ(pιp(w))+δ(u)−δ(pι(v))−ℓ(ιpιp(w), u, pιpι(v)).

Combining these two relations, we get

Ik(u, v,w) = Ik+δ(p(w))+δ(pιp(w))−δ(pι(v))−δ(v)(u, pιpι(v), ιpιp(w)),

which is equivalent to the identity for the quantum product

σ(pιpι(v)) ∗ σ(ιpιp(w)) = qδ(p(w))+δ(pιp(w))−δ(pι(v))−δ(v)σ(v) ∗ σ(w).

Replacing v by ι(u) and w by p(v) yields our claim. �

Note that Theorem 5.1 is non trivial only when p and ι don’t commute.

Now we observe that Theorem 3.3 can be used to generate more symmetries for the Gromov-Witten
invariants. The following statement is a generalization of Proposition 4.10 in [CMP].

Corollary 5.2 For any u ∈ WX , we have

[Ydmax
] ∗ σ(u) = qδ(u)+δ(pι(u))−dmaxσ(pιpι(u)),

[Y ∗
dmax

] ∗ σ(u) = qdmax−δ(p(u))σ(ιp(u)).

Proof. To prove the first identity, multiply the identity of Theorem 3.3 by σ(pt) and use the fact that
σ(pt) ∗ σ(pt) = qdmax [Ydmax

]. For the second identity, observe that Theorem 3.3 implies that σ(pt) is
invertible in QA∗(X)loc, and its inverse verifies the formula

σ(pt)−1 ∗ σ(u) = q−δ(p(u))σ(ιp(u)).

Applying this to the fundamental class σ(1) = 1 yields σ(pt)−1 = q−dmax [Y ∗
dmax

], which we just need
to substitute in the previous identity. �

Corollary 5.3 For any u, v ∈ WX , we have

qδ(u)σ(p(u)) ∗ σ(ι(v)) = qδ(v)σ(ι(u)) ∗ σ(p(v)).

Proof. Multiply the identity of Theorem 3.3 for ι(u) by the Schubert class σ(ι(v)), and use the asso-
ciativity of the quantum product. �

Together with Theorem 4.1, we get a series of symmetry relations for the Gromov-Witten invari-
ants, which are generated by the following simple ones:
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Corollary 5.4 For any u, v,w ∈ WX , we have the relation

Ik(u, v,w) = ζ(u)ζ(v)ζ(w)Iδ(w)−k(p(u), p(v), ι(w)).

Proof. In terms of Gromov-Witten invariants, Corollary 5.3 writes

Ik−δ(u)(p(u), ι(v), w) = Ik−δ(v)(ι(u), p(v), w).

Combining with the identity (11), we deduce that

Ik(u, v,w) = Ik+δ(p(u))−δ(v)(ιp(u), pι(v), w)

= Ik+δ(p(u))−δ(v)(ιp(u), w, pι(v))

= ζ(ιp(u))ζ(w)ζ(pι(v))Iδ(p(u))+δ(w)−δ(v))−(k+δ(p(u))−δ(v))(p(u), ι(w), p(v))

= ζ(u)ζ(w)ζ(v)Iδ(w)−k(p(u), p(v), ι(w)).

This is what we wanted to prove. �

Corollary 5.5 For u, v ∈ WX , the maximal power of q that appears in the quantum product of the
Schubert classes σ(u) ∗ σ(v) is

dmax(u, v) = δ(u) − δ(ι(u), p(v)) = δ(v) − δ(ι(v), p(u)).

Corollary 5.4 suggests to study the group Γ of permutations of W 3
X generated by (p, p, ι), (p, ι, p),

(ι, p, p). Clearly the size of this group is governed by the order η of the permutation pι of WX .

Proposition 5.6 The order of Γ is 2η2, and η is given by the following table:

X η

G(p, n) n/gcd(p, n − p)
Gω(n, 2n) 2
GQ(n, 2n) 4/gcd(2, n)

OP2 3
E7/P7 2

Note that η always divides the order of the symmetry group of the affine Dynkin diagram of G.

Proof. Let Γ0 denote the group of permutations of WX generated by the two involutions p and ι. The
order of Γ0 is 2η. Moreover, the projection on the first factor yields a morphism Γ → Γ0 which is
obviously surjective. Its kernel consists in the permutations of type (1, (pi)k, (ip)k), with k ∈ Z, so its
order is η. Thus the order of Γ is 2η2.

For the explicit values of η, first consider the case of X = G(p, n). A partition λ ∈ WX can be
identified with a 01-sequence ω with p ones and n − p zeroes encoding vertical and horizontal steps
along the boundary of λ, starting from the SW corner. Then the size of the biggest square contained
in λ is the number of zeroes among the first p terms of the sequence. Moreover, reading the sequence
backwards we get the sequence ω∗ of the Poincaré dual partition p(λ). So to get the sequence ω′ of
ι(λ), we write ω = ω0ω1 where ω0 has length p and ω1 has length n− p, and let ω′ = ω∗

0ω
∗
1. To deduce

the sequence ω′′ of pι(λ) we simply reverse ω′, so ω′′ = ω1ω0. The claim easily follows.
Now suppose X = GQ(n, 2n). We identify a strict partition λ ∈ WX with a 01-sequence ω of

length n as follows. First we consider it as a usual partition in a square of size (n + 1) × (n + 1) and
we let ω′ be the associated 01-sequence, of length 2n + 2. It begins with a 1 and ends with a 0. We
suppress the initial 1...10 sequence. Moreover, since λ is strict every 1 is followed by a 0, which we
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suppress. The resulting sequence has length n and is our ω = ω1 · · ·ωn. Note that the length of λ is
the number of 1’s.

We check that p and ι are easily expressed in terms of 01-sequences:

p(λ) 7→ ω̄1 · · · ω̄n, ι(λ) 7→ ωn−1 · · ·ω1ω0,

where ω0 = ω1 + · · · + ωn (mod 2) and 0̄ = 1, 1̄ = 0. So pι(λ) 7→ ω̄n−1 · · · ω̄1ω̄0, and pιpι(λ) 7→
ω1 · · ·ωn−1ω

′
n, where ω′

n = ωn if n is even and ω′
n = ω̄n if n is odd.

The case of Gω(n, 2n), and also that of E7/P7 are trivial, since p commutes with ι. Finally the
case of OP2 follows from an explicit computation. �

For a Grassmannian G(p, n), we get a Zn-symmetry only when (p, n) = 1, while this symmetry
always exists by [P1]. Does the same phenomenon happen for GQ(2m, 4m) ? That is, does our twofold
symmetry extend to a fourfold symmetry ?

The cases for which η = 2 are the most symmetric: the involution ι commutes with Poincaré
duality. In particular we get the relation

δ(u) + δ(p(u)) = dmax.

The Gromov-Witten invariants are identified by groups of eight according to the following identities:

Ik(u, v,w) = ζ(u)ζ(v)ζ(w)Iδ(w)−k(p(u), p(v), ι(w))

= Ik+dmax−δ(v)−δ(w)(u, ιp(v), ιp(w))

= ζ(u)ζ(v)ζ(w)Iδ(u)+δ(v)+δ(w)−dmax−k(ι(u), ι(v), ι(w)).

In particular all Gromov-Witten invariants can be directly computed from those of degree k ≤ dmax/4.

For the other cases we get even more identities, so that lots of Gromov-Witten invariants can be
identified with classical intersection numbers on the same variety.

We close this paper with a “dual quantum Chevalley formula”, that we obtain by applying our
strange duality Theorem to the quantum Chevalley formula of [CMP]. Remember that α0 denotes
the highest root, and that σ(sα0) = [T1]. The Bruhat interval [1, T1] has a Poincaré involution pT1.
Finally, recall that we denoted by β the simple root that defines P .

Proposition 5.7 For any u ∈ WX , we have

σ(u) ∗ σ(sα0) = δp(u)≤α0
σ(pT1p(u)) + q

∑

sαu→u,
α6=β

nα(α0)σ(sαu) + qδι(u)≤α0
y(p(sα0))σ(sβu).

The classical intersection product δp(u)≤α0
σ(pT1p(u)) is in agreement with Proposition 3.2. It

would be interesting to extend this formula to more general products.
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