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Abstract

In this note, we consider a SK (Sherrington–Kirkpatrick)-type model on Z
d for

d ≥ 1, weighted by a function allowing to any single spin to interact with a small
proportion of the other ones. In the thermodynamical limit, we investigate the
equivalence of this model with the usual SK spin system, through the study of the
fluctuations of the free energy.
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1 Introduction

This paper is concerned with a localized version of the Sherrington-Kirkpatrick model
with external field, which can be described in the following way: for N, d ≥ 1, our
space of configurations will be Σ = ΣN = {−1, 1}CN , where CN is the finite lattice box
CN = [−N ;N ]d in Z

d. For a given configuration σ ∈ ΣN , we will consider the Hamiltonian

−HN (σ) =
β

N̂d/2

∑

(i,j)∈CN

q

(

i− j

N

)

g(i,j)σiσj + h
∑

i∈CN

σi, (1.1)

where β stands for the inverse of the temperature of the system, N̂ = 2N + 1, (i, j)
is the notation for a pair of sites i, j ∈ CN (taken only once),

{

g(i,j) : (i, j) ∈ CN

}

is a
family of IID standard centered Gaussian random variables, and h represents a constant

∗This author’s research partially supported by CAPES.
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positive external field, under which the spins tend to take the value +1. Our localization
is represented by the function q, which can be thought of as a smooth frame, and which is
only assumed to be defined on [−1, 1]d such that q2 is of positive type, so that q2 is non-
negative and invariant by symmetry about the origin. We also assume q2 is a continuous
function, including at its periodic boundary −1 ≡ 1. The aim of our article is then to
study the limit, when N → ∞, of the Gibbs measure GN (σ) defined on ΣN by

GN(σ) =
e−HN (σ)

ZN
, where ZN = ZN(β) =

∑

σ∈ΣN

e−HN (σ),

and more specifically, we will concentrate on the so-called free energy of the system,
defined by:

p(β) = lim
N→∞

E[pN(β)] = a.s. − lim
N→∞

pN(β), where pN(β) =
1

N̂d
log(ZN(β)). (1.2)

The model described by (1.1) can be considered as a finite range approximation of the
mean field SK model, associated with the Hamiltonian

−ĤN (σ) =
β

N̂d/2

∑

(i,j)∈CN

g(i,j)σiσj + h
∑

i∈CN

σi,

for which a large amount of information is now available [6, 9]. It seems then natural to
try to approximate the realistic spin glass system, on which we have very little rigorous
knowledge (see however [7]), by our localized model (1.1), capturing some of the geometry
of the physical spin configuration, but still of a mean-field type in the limit N → ∞. One
could then hope to perform an expansion in N in order to quantify the difference between
the original SK model and our model (1.1).

In fact, this kind of idea is not new, and goes back at least, in the spin glass context, to
[3]. A version of our model with h = 0 has been studied then in [10], and more recently,
the Kac limit of finite range spin glasses has been considered in [5, 2]. In these latter
references, a slightly different point of view is adopted: the finite range model depends
on a given parameter γ > 0, (which would be 1/N in our setting), and this localization
parameter is sent to 0 after the thermodynamical limit in N is taken. It can be shown
then, by some nice and soft interpolation arguments, that in the limit γ → 0, the free
energy of the localized system is the same as the free energy of the SK model, for any
value of the parameter β ≥ 0. Notice that the results contained in [5, 2] cannot be applied
directly to our model, since in our case the limits γ → 0 and N → ∞ are taken at the
same time. However, some slight modifications of the computations contained in these
papers would also show that our quantity pN (β) defined at (1.2) behaves like the free
energy of the SK model for large N .

The goal of our paper is then, in a sense, more modest than [5, 2], since we will only
deal with the high temperature region of the model, i.e. small values of β. On the other
hand, our scope is to show that the equivalence between the SK model and our localized
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model still holds, in the thermodynamical limit, for a second order expansion of the free
energy, that is in the central limit theorem regime. More specifically, we will show the
following limit result: let γ0 be the L2-norm of q in [−1, 1]d. For β, h > 0, let also s be
the unique solution to the equation

s = E
[

tanh2(βz
√
s+ h)

]

, (1.3)

and SK(β, h) be the function

SK(β, h) = β2(1 − s)2/4 + log 2 + E
[

log
[

cosh
(

βz
√
s+ h

)]]

, (1.4)

which represents the free energy of the SK model in the high temperature region. Set also
p(β, h) = SK(γ

1/2
0 β, h). Then, under suitable conditions on q, we have

(L) − lim
N→∞

N̂d/2 [pN(β) − p(β, h)] = Y,

where Y is a centered Gaussian random variable with variance τ = τ(β, h, γ0). The
announced equivalence, at the CLT level, between the SK model and the localized one,
springs then from the fact that τ(β, h, 1) is also the variance of the Gaussian random
variable which shows up in the central limit theorem of the SK case (see [4, 8]).

Let us say a few words about the method we have used in order to get our result:
since we are in the high temperature regime, we are allowed to use a cavity type method
in order to compute the limit of the overlap of the localized spin system. This yields then
the limit of the free energy in a straightforward manner. It has also been shown in [8]
that the stochastic calculus tools developed in [1] could be adapted to the case of spin
glasses with external field. This induces a powerful method for obtaining central limit
theorems for the free energy, and interestingly enough, in this context, a dynamical point
of view gives some insight on a static stochastic problem. We will elaborate here on this
method in order to treat the localized case, by taking advantage systematically of the
Fourier decomposition of q.

Our paper is divided as follows: at Section 2, we compute the simple limit of the overlap
function and of pN(β), recovering the results obtained in [2] for the high temperature
regime. At Section 3, we derive the announced central limit theorem thanks to stochastic
calculus tools.

2 Simple limit of the free energy

Recall that we are dealing with the system induced by the Hamiltonian (1.1), and let us
define some additional notations about Gibbs averages: let f : Σn

N → R be a function of
n configurations, with n ≥ 1. Then we set

ρ(f) =
1

Zn
N

∑

σ1,...,σn

f(σ1, . . . , σn) exp

(

−
n
∑

l=1

HN(σl)

)

, and ν(f) = E [ρ(f)] . (2.1)
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In the sequel of the paper, we will also write ∂uϕ instead of ∂ϕ/∂u for the derivative of a
function ϕ with respect to a parameter u, and p̄N(β) = E[pN(β)]. With these notations
in hand, our strategy in order to get the limit of pN(β) will follow the classical steps of
the cavity procedure, namely:

1. Find an expression for ∂β p̄N(β) in terms of an overlap-type function R1,2.

2. For a general function f : Σn
N → R, find a useful expression for ∂vρv(f) along a

suitable path defined for v ∈ [0, 1], involving a Hamiltonian HN,v(σ).

3. Compute ρv(R
1,2) inductively and deduce an expression for ∂β p̄N (β), and then for

p̄N(β).

We will start by the first of these steps, for which we will introduce a little more notation:
first of all, we assume for the moment the following basic hypothesis on q:

Hypothesis 2.1. The function q is continuous on [−1, 1]d.

In this case, the function q2 : [−1, 1]d → R+ can be decomposed, as a function of
L2([−1, 1]d), into a Fourier series of the form:

q2(x) =
∑

k∈Zd

γke
ıπk·x, with

∑

k∈Zd

γ2
k <∞ and Γ ≡

∑

k∈Zd

γk <∞. (2.2)

Set also R1,2 = N̂−d
∑

i∈CN
σ1

i σ
2
i , and for any k ∈ Z

d,

R1,2
k =

1

N̂d

∑

i∈CN

e
ıπi·k

N σ1
i σ

2
i , if k 6= 0, and R1,2

0 = R1,2 − r, (2.3)

where r is a positive constant, whose exact value will be determined later on. Eventually,
we will denote by qN the function q(·/N) defined on [−N ;N ]d, and Z

d
∗ = Z

d\{0}. Then
the following relation holds true:

Proposition 2.2. For all β > 0, we have

∂β p̄N(β) =
β

N̂2d

∑

(i,j)∈CN

q2
N(i− j) − β

2

∑

k∈Zd
∗

γkE
[

ρ(R1,2
k )
]

− β

2
γ0E

[

ρ(R1,2)
]

+
Γ

2N̂d
.

Proof. Set B(σ) = e−HN (σ). Then the previous definitions and an elementary Gaussian
integration by parts yield (see [9]):

∂β p̄N(β) =
β

N̂2d
E





∑

(i,j)∈CN

q2
N (i− j) −

∑

(i,j)∈CN

∑

σ1,σ2

q2
N(i− j)σ1

i σ
1
jσ

2
i σ

2
jB(σ1)B(σ2)

Z2
N





=
β

N̂2d





∑

(i,j)∈CN

q2
N(i− j) −

∑

(i,j)∈CN

q2
N(i− j)E

[

ρ(σ1
i σ

1
jσ

2
i σ

2
j )
]



 .
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Hence, using the decomposition (2.2) of q2, we obtain

∂β p̄N (β) =
β

N̂2d
E





∑

(i,j)∈CN

q2
N(i− j) −

∑

(i,j)∈CN

ρ

(

∑

k∈Zd

γke
ıπ i−j

N
·kσ1

i σ
1
jσ

2
i σ

2
j

)





=
β

N̂2d
E

[

∑

(i,j)∈CN

q2
N (i− j) −

∑

k∈Zd

γk

2
ρ





∣

∣

∣

∣

∣

∑

i∈CN

eıπ i
N
·kσ1

i σ
2
i

∣

∣

∣

∣

∣

2




+
∑

k∈Zd

γk

2
ρ

(

∑

i∈CN

∣

∣

∣
eıπ i

N
·kσ1

i σ
2
i

∣

∣

∣

2
)]

,

from which the desired expression is deduced easily.

We are now ready to start the second step of the strategy mentioned above.

2.1 The cavity method

The cavity method will consist here in suppressing in a continuous way the interactions
between a certain site m ∈ CN and the remaining spins. This will be done in the following
way: set Ĉm

N = {i ∈ CN ; i 6= m}. We decompose, for all σ ∈ ΣN ,

−HN (σ) = −Hm
N (ρm) + σm (h+ gm (ρm)) ,

where ρm denotes the ordered spin values except for the m-th spin, that is, the (N̂d − 1)-
tuple (σi; i ∈ Ĉm

N ) and we denote

gm (ρm) =
β

N̂d/2

∑

i∈Ĉm
N

qN(m− i)g(m,i)σi,

and we also use the notation

−Hm
N (ρm) =

∑

(i,j)∈Ĉm
N

qN(i− j)g(i,j)σiσj + h
∑

i∈Ĉm
N

σi.

This new Hamiltonian is similar but not identical to the Hamiltonian −HN−1 on ΣN−1.

The path we will build is now of the following form: consider a collection {Bi,m(v); i ∈
Ĉm

N , v ∈ [0, 1]} of independent standard Brownian motions, and {X(v); v ∈ [0, 1]} an in-
dependent reversed time Brownian motion, all defined on the probability space (Ω,F , P ).
Notice that g(i,m) can be seen as the final value Bi,m(1) of the Brownian motion Bi,m, and
that X is the solution to a stochastic differential equation of the form

X(v) = η −
∫ v

0

X(s)

1 − s
ds+W (v), v ∈ [0, 1], (2.4)
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where η is a standard Gaussian random variable and W another Brownian motion, inde-
pendent of the remainder of the randomness. Notice that, for notational sake, we have
written Bi,m instead of B(i,m). Set then r̂ = γ

1/2
0 r and for v ∈ [0, 1], define

−HN,v (σ) = −Hm
N (ρm)+

β

N̂d/2

∑

i∈Ĉm
N

qN(m− i)σiσmBi,m(v)+βr̂1/2
∑

i∈Ĉm
N

σiX(t)+h
∑

i∈Ĉm
N

σi.

For f : Σn
N → R, denote also by ρv(f) the associated Gibbs average, defined in a similar

way to (2.1), and νm,v(f) = E[ρv(f)].

Recall now the following elementary lemma from [8]:

Lemma 2.3. For k ≥ 1, let {Bl; l ≤ k} be a collection of independent standard Brownian
motions. Let also X be the solution to (2.4), and ϕ : R

k+1 → R be a C2 function having
at most exponential growth together with its first two derivatives. Then, for any v ∈ [0, 1],

E [ϕ(B1(v), . . . , Bk(v), X(v))]

= E [ϕ(η)] +
1

2

∫ v

0

k
∑

l=1

E
[

∂2
xlxl

ϕ(B1(s), . . . , Bk(s), X(s))
]

ds

− 1

2

∫ v

0

E
[

∂2
xk+1xk+1

ϕ(B1(s), . . . , Bk(s), X(s))
]

ds.

These preliminary tools yield the following differentiation rule:

Proposition 2.4. For any f : Σn
N → R and v ∈ [0, 1], the derivative of νm,v(f) is given

by

∂vνm,v (f) = β2
∑

k∈Zd

γke
ıπm·k/N

(

∑

1≤l<l′≤n

νm,v

(

fR̄l,l′

k σl′

mσ
l
m

)

− n
n
∑

l=1

νm,v

(

fR̄l,n+1
k σl

mσ
n+1
m

)

+
n(n+ 1)

2
νm,v

(

fR̄n+1,n+2
k σn+1

m σn+2
m

)

)

. (2.5)

Proof. This result stems from an easy application of Lemma 2.3 to the function

ϕ (Bi,m(v), i ∈ Cm
N ; Xm(v)) ≡ ρm,v(f).

The computations of the second derivatives of ϕ are a matter of easy (though cumbersome)
calculations, and are left to the reader for sake of conciseness.

Now that the variations of νm,v(f) have been computed, we can proceed to get some
bounds on the overlaps R1,2

k .
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2.2 Bounds on the overlap

Let us start with three lemmas whose proofs follow essentially that of the corresponding
result in the cavity method for the standard Sherrington-Kirkpatrick model, and which
will be combined with the explicit expression for νm,v in Proposition 2.4 and a separate
calculation of νm,v for v = 0 to obtain information on the actual expected overlaps, under
ν = νm,1, i.e. for v = 1.

Lemma 2.5. There exist two positive constants cn,q,β and c′n,q,β that depend only on n, q
and β, and are uniformly bounded in β for β ∈ [0, 1], such that if f is a positive function
on Σn

N then for all m ∈ CN ,

νm,v (f) ≤ cn,q,β ν (f) , (2.6)

and

|νm,v (f) − νm,0 (f)| ≤ c′n,q,ββ
2ν1/2

(

|f |2
)

[

∑

k∈Zd

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

]

. (2.7)

Proof. See [9, Propositions 2.4.6 and 2.4.7].

For v = 0, the expression of νv(f) can be simplified for a large class of functions f on
ΣN .

Lemma 2.6. For fixed m ∈ ΣN , let f be a function on Σn
N that does not depend on the

values σ1
m, σ

2
m, . . . , σ

n
m. Then for any subset I of {1, . . . , n} we have

νm,0

(

f
∏

l∈I

σl
m

)

= E
[

tanh (Y )|I|
]

νm,0 (f) ,

where Y is the Gaussian random variable defined as:

Y = βz
√
γ0r + h,

with a standard normal variable z.

Proof. See [9, Lemma 2.4.4].

On the other hand, some symmetry properties for v = 1 yield the following kind of
estimate:

Lemma 2.7. Set
δv ≡

∑

k∈Zd

γkνv

(

|R1,2
k |2

)

, for v ∈ [0, 1]. (2.8)

Then

δ1 = γ0ν
((

R1,2 − r
) (

σ1
mσ

2
m − r

))

+
1

N̂d

∑

k∈Zd
∗

∑

i∈CN

γke
ıπi·k/Nν

(

R̄1,2
k σ1

i σ
2
i

)

.
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Now, in order to exploit Lemma 2.6, we must modify the above expression for δ1 by
completing the following two tasks:

(i) estimate the error made by replacing the arguments of νi,0 by functions that are of
the same form as those in Lemma 2.6;

(ii) estimate the error made by replacing ν by νm,0 (or νi,0 as appropriate).

2.2.1 Task (i). Separation of cavity variable from others

It is sufficient to replace R1,2 by the same quantity with the m-th term omitted: define

R1,2
−,m :=

1

N̂d

∑

i∈Ĉm
N

σ1
i σ

2
i = R1,2 − 1

N̂d
σ1

mσ
2
m = R1,2 +O

(

1

N̂d

)

,

and similarly let

R1,2
k,−,m :=

1

N̂d

∑

i∈Ĉm
N

σ1
i σ

2
i e

ıπi·k/N

= R1,2
k − 1

N̂d
σ1

mσ
2
me

ıπm·k/N = R1,2
k +O

(

1

N̂d

)

.

Then we have the following relation, whose elementary proof is omitted:

Lemma 2.8. For any v ∈ [0, 1] and δv defined at (2.8), it holds that:

δ0 = γ0νm,0

((

R1,2
−,m − r

) (

σ1
mσ

2
m − r

))

+
∑

k∈Zd
∗

γk

N̂d

∑

i∈CN

νi,0

(

R̄1,2
k,−,iσ

1
i σ

2
i

)

eıπi·k/N +O
(

N̂−d
)

.

Thanks to a Lemma by Lattala and Guerra, we can now choose r in order to eliminate
one of the terms in our overlap calculation δ0 (at v = 0 with separated spins), as an
immediate consequence of Lemma 2.6.

Lemma 2.9. For any choice of the parameters β, γ0, h > 0, the equation

r = E
[

tanh2 (βz
√
γ0r + h)

]

(2.9)

has a unique solution r ∈ [0, 1], and we have

νm,0

((

R1,2
−,m − r

) (

σ1
mσ

2
m − r

))

= 0.

Let us take advantage of this relation, and try to write δ0 in terms of r: going back to
the expression in Lemma 2.8, we get

δ0 =
∑

k∈Zd
∗

γk

N̂d

∑

i∈CN

eıπi·k/Nνi,0

(

R̄1,2
k,−,iσ

1
i σ

2
i

)

+O

(

1

Nd

)

= r
∑

k∈Zd
∗

γk

(

A1
k + A2

k + A3
k

)

+O

(

1

Nd

)

, (2.10)

8



with

A1
k := Sk ν

(

R̄1,2
k

)

, A2
k :=

1

N̂d

∑

i∈CN

νi,0

(

R̄1,2
k,−,i − R̄1,2

k

)

eıπi·k/N

A3
k :=

1

N̂d

∑

i∈CN

[

νi,0

(

R̄1,2
k

)

− ν
(

R̄1,2
k

)]

eıπi·k/N ,

where we have set

Sk =
1

N̂d

∑

i∈CN

eıπi·k/N . (2.11)

We can bound now δ0 in the following way:

Lemma 2.10. Recall that Γ has been defined at (2.2). Then there exists a constant κ
that depends on β and q but is bounded for β bounded such that

|δ0| ≤ κ

(

Γ

N
+ β2ν1/2

(

∣

∣R1,2
k

∣

∣

2
)

[

∑

k∈Zd

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

])

. (2.12)

Proof. Go back to relation (2.10), and let us bound the terms Ak
1, A

k
2, A

k
3 for k ∈ Z

d. First
of all, the estimation of Ak

1 is controlled by Sk. However,

Sk =
1

N̂d

N
∑

j1=−N

· · ·
N
∑

jd=−N

d
∏

l=1

eıπkljl/N =
1

N̂d

d
∏

l=1

[

(−1)kl1(kl 6=0) + N̂1(kl=0)

]

,

by an elementary argument on sums of geometric sequences. Hence,

|Sk| ≤
κ

NZ(k)
, where Z(k) = number of components of k that are non-zero, (2.13)

and thus,
∣

∣

∣

∑

k∈Zd
∗

γkA
1
k

∣

∣

∣
=
∣

∣

∣
ν
(

R̄1,2
k

)

∑

k∈Zd
∗

γkSk

∣

∣

∣
≤ κΓ

N
. (2.14)

Furthermore, it is easily checked that

|A2
k| ≤

κ

N
and |A3

k| ≤ κβ2ν1/2
(

∣

∣R1,2
k

∣

∣

2
)

[

∑

k∈Zd

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

]

, (2.15)

by applying inequality (2.7) in Lemma 2.5. Our claim is then proved easily by putting
together (2.14) and (2.15).

Remark 2.11. In the remainder of the article, κ will stand for a positive constant de-
pending on β and q and that is uniformly bounded in the range of our parameter β; we
will allow κ to change from line to line

9



Notice that, for our result on the fluctuations of ZN , we will need an improved bound
on A1

k. This can be achieved under the following additional condition:

Hypothesis 2.12. Going back to the decomposition (2.2), we assume that there exists
an integer d̂ > d/2 such that, for every k ∈ Z

d
∗ such that γk 6= 0, the number Z(k) of

components of k that are non-zero satisfies Z(k) ≥ d̂.

Then Lemma 2.10 can be enhanced in the following way:

Corollary 2.13. Assume q satisfies Hypothesis 2.1 and 2.12. Then

|δ0| ≤ κ

(

Γ

N d̂
+ β2ν1/2

(

∣

∣R1,2
k

∣

∣

2
)

[

∑

k∈Zd

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

])

.

Proof. This is trivially checked by going through the computations of Lemma 2.10 again,
and taking into account (2.13).

2.2.2 Task (ii). Difference between the overlaps at v = 0 and v = 1

We are ready to state and prove the result which completes task (ii).

Lemma 2.14. There exists a constant κ that depends on β and q but is bounded for β
bounded, such that

|δ1 − δ0| ≤ +κβ2Γ
∑

k∈Zd

γkν
(

∣

∣R1,2
k

∣

∣

2
)

. (2.16)

Proof. We can first write, using Lemma 2.5,

∑

k∈Zd
∗

γk

∣

∣

∣

∣

∣

1

N̂d

∑

i∈CN

[

ν
(

R̄1,2
k σ1

i σ
2
i

)

− νi,0

(

R̄1,2
k σ1

i σ
2
i

)]

eıπi·k/N

∣

∣

∣

∣

∣

≤ κβ2
∑

k∈Zd
∗

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

[

∑

k∈Zd

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

]

. (2.17)

Similarly we can obtain

γ0

∣

∣ν
((

R1,2 − r
) (

σ1
mσ

2
m − r

))

− νi,0

((

R1,2 − r
) (

σ1
mσ

2
m − r

))∣

∣

≤ γ0κβ
2ν1/2

(

∣

∣R1,2
0

∣

∣

2
)

[

∑

k∈Zd

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

]

. (2.18)

We now get, by putting together (2.17) and (2.18) and applying Jensen’s inequality, that

|δ1 − δ0| = κβ2

[

∑

k∈Zd

γkν
1/2
(

∣

∣R1,2
k

∣

∣

2
)

]2

≤ κβ2Γ
∑

k∈Zd

γkν
(

∣

∣R1,2
k

∣

∣

2
)

,

which proves the lemma.
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2.2.3 Self-averaging overlap limit

We are now in a position to estimate δ1. We show that for small β, this expected total
overlap, which is recentered using the value r, converges to 0 at the speed 1/N as long as
q is a continuous function.

Proposition 2.15. Let β > 0 and let r = r (β) be the solution of (2.9). Let κ be the
constant defined in Lemma 2.8 and Lemma 2.14, i.e. κ is a constant that depends on β
and q but is bounded for β bounded. Assume that q satisfies Hypothesis 2.1, and that β is
so small that 2κβ2Γ < 1. In that case, we have, for N large enough, with R1,2

k defined by
relation (2.3),

0 ≤ ν

(

∑

k∈Zd

γk

∣

∣R1,2
k

∣

∣

2

)

≤ rΓ

(1 − 2κβ2Γ)N
.

Proof. We have, using (2.12) and (2.16),

0 ≤ δ1 = ν

(

∑

k∈Zd

γk

∣

∣R1,2
k

∣

∣

2

)

≤ |δ0 − δ1| + r|δ0|

≤ 2κβ2Γν

(

∑

k∈Zd

γk

∣

∣R1,2
k

∣

∣

2

)

+O

(

1

N

)

, (2.19)

where we recall that O(N−1) is a function that tends to zero as fast as N−1 and that
this convergence holds uniformly in all parameters. Moreover, since κ is bounded for β
bounded, for β sufficiently small we can make 2κβ2Γ smaller than 1. The result of the
proposition follows.

Corollary 2.16. Under the same assumptions as in Proposition 2.15, but assuming addi-
tionally that condition 2.12 holds true, then the conclusion of Proposition 2.15 holds with
N replaced by N d̂.

Proof. This follows trivially from the proof of Proposition 2.15 if we modify the argument
in order to take into account Corollary 2.13.

2.3 Consequence for the partition function

We can now apply the previous computations in order to get the simple limit of p̄N(β),
which recovers, in the high temperature region, the results contained in [2].

Theorem 2.17. Under the hypotheses of Proposition 2.15, we have

∣

∣

∣p̄N (β) − SK
(

γ
1/2
0 β, h

)∣

∣

∣ ≤ C (β)

N
, (2.20)

where the constant C depends on h, q, and β, and is bounded for β ∈ [0, β0].
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Proof. Recall from Proposition 2.2 that

∂β p̄N =
β

N̂2d

∑

(i,j)∈CN

q2
N(i− j)− β

2

∑

k∈Zd
∗

γkν
(

∣

∣R1,2
k

∣

∣

2
)

− β

2
γ0ν

(

∣

∣R1,2
0 + r

∣

∣

2
)

+
Γ

2N̂d
. (2.21)

The first term on the right-hand side can be handled easily: indeed, we have

1

N̂2d

∑

(i,j)∈CN

q2
N(i− j) =

1

N̂2d

∑

(i,j)∈CN

∑

k∈Zd

γke
ıπk·i/Ne−ıπk·j/N

=
1

2N̂2d

∑

i6=j

∑

k∈Zd

γke
ıπk·i/Ne−ıπk·j/N

=
1

2



γ0 +
∑

k∈Zd
∗

γk|Sk|2 −
Γ

N̂d



 ,

where Sk has been defined at (2.11). Thus,

∣

∣

∣

β

N̂2d

∑

(i,j)∈CN

q2
N(i− j) − βγ0

2

∣

∣

∣
≤ κ

N
,

and Proposition 2.15 then easily yields, for β < β0,
∣

∣

∣

∣

∂β p̄N − βγ0

2
− r2γ0β

2

∣

∣

∣

∣

≤ κ

N
+ γ0rβ

∣

∣ν
(

R1,2
0

)∣

∣ . (2.22)

Furthermore, it can be shown, along the same lines as in [9], that for β < β0, we have
∣

∣ν
(

R1,2
0

)∣

∣ ≤ K (β, q) /N,

where K (β, q) is bounded for β bounded. This inequality and (2.22) now imply
∣

∣

∣

∣

∂β p̄N − γ0β

2

(

1 − r2
)

∣

∣

∣

∣

≤ κ

N

where κ depends only on β, h, q and is bounded for β ∈ [0, β0]. The theorem follows
by integrating ∂β p̄N , and using trivial calculations and known facts about the function
SK.

The final result we present in this section shows that while the complete structure of q
does not seem to effect the limiting behavior of the partition function beyond the average
value γ0 of q2, the speed of convergence towards this value may depend heavily on the
behavior of q. We show that the speed can be increased to the order N−d̂ as long as the
hypotheses of Corollary 2.16 hold.

Corollary 2.18. Under the hypotheses of Corollary 2.16, we have

∣

∣

∣
p̄N (β) − SK

(

γ
1/2
0 β, h

)∣

∣

∣
≤ βC (β)

N d̂

where the constant C depends on h, q, and β, and is bounded for β ∈ [0, β0].
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Proof. In the proof of Theorem 2.17, some estimates are already of order N−d. For
the others, we may use Corollary 2.16 instead of Proposition 2.15 in all its occurrences.
This improves all estimates that were originally of order N−1 to the order N−d̂, with
the exception of the estimation of the first term on the right-hand side of (2.21). But

here again, one can easily check that this term is of order N−d̂ under the conditions of
Corollary 2.16.

3 Fluctuations of the free energy

In this section, we will turn to our main aim, that is the central limit theorem governing
the fluctuations of ZN . More specifically, we will get the following:

Theorem 3.1. For β small enough, t ∈ [0, 1], if q satisfies Hypothesis 2.1 and 2.12, then

(L) − lim
N→∞

N̂d/2 [pN(β) − p(β, h)] = Y,

where Y is a centered Gaussian random variable with variance τ , and τ is given by

τ = τ̂ − β2γ0r
2

2
, where τ̂ = Var [log(cosh(β

√
γ0rz + h))] (3.1)

with r defined by (2.9), and a standard Gaussian random variable z.

This kind of result is usually obtained by letting all the interactions between spins
tend to 0 at once, and this procedure can be somewhat simplified by considering the
computations from a stochastic calculus point of view. This leads us to consider a new
path t 7→ HN,t(σ) defined for t ∈ [0, 1] by

−HN,t(σ) =
β

N̂d/2

∑

(i,j)∈CN

Bi,j(t)qN(i− j)σiσj + βr̂1/2
∑

i∈CN

Xi(t)σi +
∑

i∈CN

hσi, (3.2)

where r̂ = γ0r and {Bi,j; (i, j) ∈ CN} is again a collection of independent standard
Brownian motions, and {Xi; i ∈ CN} is a family of independent reversed time Brownian
motion, which can be seen as the solution to some stochastic differential equations of the
form (2.4), for a family {ηi; i ∈ CN} (resp. {Wi; i ∈ CN}) of standard Gaussian random
variables (resp. of independent Brownian motions). Here again, we will assume that all
these objects are defined on the same probability space (Ω,F , P ). Notice that, in order
to spare notations, we have called this modified Hamiltonian HN,t again, like in Section 2,
hoping that this won’t lead to any confusion. We will also denote by ZN(t) and ρt(f) the
partition function and the Gibbs average associated with HN,t. Eventually, for t ∈ [0, 1],
we define

pβ,h,t =
β2γ0t

4
(1 − r)2 + log(2) + E [log(cosh(β

√
γ0rz + h))] ,

and we observe that pβ,h,1 = p(β, h). Once this path has been defined, the strategy which
leads to Theorem 3.1 can be summarized as follows: apply Itô’s formula in order to:

13



1. Compute the variations of t 7→ e−HN,t(σ).

2. Get an equation for the evolution of YN(t) ≡ N̂d/2[pN (β) − pβ,h,t].

3. Find a limit for E[eıuYN (t)] for any u ∈ R.

We will detail now this global strategy.

3.1 Preliminary computations

Let us first study the dynamics of t 7→ e−HN,t(σ):

Proposition 3.2. For t ∈ [0, 1] and σ ∈ ΣN , we have

e−HN,t(σ) = exp

(

∑

i∈CN

σi(βr̂
1/2ηi + h)

)

+ F 1
N (t) + F 2

N(t),

with

F 1
N(t) =

β

N̂d/2

∑

(i,j)∈CN

qN(i− j)σiσj

∫ t

0

e−HN,s(σ)dBi,j(s)

+βr̂1/2
∑

i∈CN

σi

∫ t

0

e−HN,s(σ)dWi(s),

and

F 2
N (t) = −βr̂1/2

∑

i∈CN

σi

∫ t

0

e−HN,s(σ) Xi

1 − s
ds

+
β2

2





1

N̂d

∑

(i,j)∈CN

q2
N(i− j) + r̂N̂d





∫ t

0

e−HN,s(σ)ds.

Proof. The exponential function being a C2 function with a nicely controlled growth, we
can apply Ito’s formula and we obtain

e−HN,t(σ) = e−HN,0(σ) −
∫ t

0

e−HN,s(σ)dHN,s(σ) +
1

2

∫ t

0

e−HN,s(σ)d〈HN,·〉s,

where 〈M〉t denotes the quadratic variation process of a semi-martingale M . Now, we
can evaluate the quantity 〈HN,·〉s, since all of the Bi,j , Wi are independent and using the
fact that any finite variation process have a null quadratic variation. We get

〈HN,·〉t =
β2

N̂d

∑

(i,j)∈CN

q2
N(i− j)(σiσj)

2t+ β2r̂
∑

i∈CN

σ2
i t

=
β2

N̂d

∑

(i,j)∈CN

q2
N(i− j)t+ β2r̂N̂dt,

from which our claim is easily shown.
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We will turn now to the fluctuations of pN(β). Namely set, for t ∈ [0, 1],

YN(t) = N̂d/2

(

1

N̂d
log(ZN(t)) − pβ,h,t

)

, (3.3)

and define also the function Φ : R → R by

Φ(x) = log(cosh(βr̂1/2x+ h)).

Then the semi-martingale YN can be decomposed in the following way:

Proposition 3.3. Recall that Γ =
∑

k∈Zd γk. Then, for t ∈ [0, 1], YN(t) satisfies:

YN(t) = UN +
∑

l≤2

Ml,N(t) − (V1,N(t) − V2,N(t)) + V3,N(t),

where the random variable UN and the processes Ml,N and Vk,N are defined by:

UN = N̂d/2

(

1

N̂d

∑

i∈CN

Φ(ηi) − EΦ(z)

)

M1,N (t) =
β

N̂d

∑

(i,j)∈CN

qN(i− j)

∫ t

0

ρs(σiσj)dBi,j(s)

M2,N (t) =
βr̂1/2

N̂d/2

∑

i∈CN

∫ t

0

ρs(σi)dWi(s)

V1,N(t) =
βr̂1/2

N̂d/2

∑

i∈CN

∫ t

0

ρs(σi)
Xi(s)

1 − s
ds

V2,N(t) =
β2r̂

N̂d/2

∑

i∈CN

∫ t

0

ρs(1 − σ1
i σ

2
i )ds

V3,N(t) =





Γ

N̂d/2
+

2

N̂3d/2

∑

(i,j)∈CN

q2
N(i− j) − γ0N̂

d/2





β2t

4

− N̂d/2β2

4

∑

k∈Zd

γk

∫ t

0

ρs

(

∣

∣R1,2
k

∣

∣

2
)

ds.

Proof. Notice that ZN(t) is almost surely a strictly positive random variable. Thus, Itô’s
formula can be applied to log(ZN(t)), and we obtain

log(ZN(t)) = log(ZN(0)) +

∫ t

0

dZN(s)

ZN(s)
− 1

2

∫ t

0

d〈ZN〉s
Z2

N(s)
. (3.4)

The first two terms in the right hand side of (3.4) are easily computed. Indeed, it is easily
checked that

log(ZN(0)) = N̂d log 2 +
∑

i∈CN

log[cosh(βr̂1/2ηi + h)]. (3.5)
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Furthermore, invoking the fact that ZN(t) =
∑

σ∈ΣN
e−HN,t(σ) and Proposition 3.2, we

have
∫ t

0

dZN(s)

ZN(s)
=

β

N̂d/2

∑

(i,j)∈CN

qN(i− j)

∫ t

0

ρs(σiσj)dBi,j(s) + βr̂1/2
∑

i∈CN

∫ t

0

ρs(σi)dWi(s)

− βr̂1/2
∑

i∈CN

∫ t

0

ρs(σi)
Xi(s)

1 − s
ds+





β2

2N̂d

∑

(i,j)∈CN

q2
N(i− j) +

β2r̂N̂d

2



 t. (3.6)

Thus, putting together (3.4), (3.5) and (3.6), we have obtained that

YN(t) = UN +M1,N(t) +M2,N (t) − V1,N(t) + Ṽ2,N(t) − 1

2N̂d/2

∫ t

0

d〈ZN〉s
Z2

N(s)
, (3.7)

where

Ṽ2,N(t) =





β2

2N̂3d/2

∑

(i,j)∈CN

q2
N(i− j) +

β2r̂N̂d/2

2



 t− β2γ0N̂
d/2t

4
(1 − r)2 .

Let us compute now the term d〈ZN〉s/Z2
N(s): according to Proposition 3.2, ZN(t) is a

continuous semi-martingale, whose martingale part is

M̂N (t) =
β

N̂d/2

∑

σ∈ΣN

∑

(i,j)∈CN

qN(i− j)σiσj

∫ t

0

e−HN (s)dBi,j(s)

+βr̂1/2
∑

σ∈ΣN

∑

i∈CN

σi

∫ t

0

e−HN (s)dWi(s).

Hence,
∫ t

0

1

Z2
N(s)

d〈ZN〉s =

∫ t

0

1

Z2
N(s)

d〈M̂N〉s

= β2r̂
∑

i∈CN

∫ t

0

ρs(σ
1
i σ

2
i )ds+

β2

N̂d

∑

(i,j)∈CN

q2
N(i− j)

∫ t

0

ρs

(

σ1
i σ

1
jσ

2
i σ

2
j

)

ds.

Recall now that q2(x) can be decomposed into q2(x) =
∑

k∈Zd γke
ıπk·x. Thus,

∫ t

0

d〈ZN〉s
Z2

N(s)
=

β2

N̂d

∑

(i,j)∈CN

∑

k∈Zd

γke
ıπk·(i−j)/N

∫ t

0

ρs

(

σ1
i σ

1
jσ

2
i σ

2
j

)

ds

+ β2r̂
∑

i∈CN

∫ t

0

ρs(σ
1
i σ

2
i )ds.

In order to simplify this last expression, we will use the elementary identity
∣

∣

∣

∣

∣

∑

i∈CN

zi

∣

∣

∣

∣

∣

2

=
∑

i∈CN

|zi|2 + 2
∑

(i,j)∈CN

zizj, (3.8)
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valid for any family of complex numbers, and applied here to zi = eıπk·i/Nσ1
i σ

2
i . Recalling

furthermore the definition (2.3) of R1,2
k , we end up with

∫ t

0

d〈ZN〉s
Z2

N(s)
=
N̂dβ2

2

∑

k∈Zd
∗

γk

∫ t

0

ρs

(

∣

∣R1,2
k

∣

∣

2
)

ds− β2Γt

2

+
β2γ0N̂

d

2

∫ t

0

ρs

(

(

R1,2
)2
)

ds+ β2N̂dr̂

∫ t

0

ρs(R
1,2)ds.

Let us introduce now artificially the quantity R1,2
0 , by writing (R1,2)2 = (R1,2

0 )2 +2rR1,2
0 +

r2. This gives

∫ t

0

d〈ZN〉s
Z2

N(s)
=
N̂dβ2

2

∑

k∈Zd

γk

∫ t

0

ρs

(

∣

∣R1,2
k

∣

∣

2
)

ds− β2Γt

2

− β2N̂dγ0r
2t

2
+ 2β2N̂dr̂

∫ t

0

ρs(R
1,2)ds. (3.9)

Similarly to [8], let us notice that, since Xi(s) ∼ N (0, 1 − s), a simple Gaussian
integration by parts yields

E

[

ρs(σi)
Xi(s)

1 − s

]

= E
[

∂Xi(s)ρs(σi)
]

= βr̂1/2E
[

ρs(1 − σ1
i σ

2
i )
]

. (3.10)

This elementary consideration will induce us to add and subtract β2r̂

N̂d/2

∑

i ρs(1−σ1
i σ

2
i ) to

the expression (3.7). By plugging moreover (3.9), we get

YN(t) = UN +M1,N(t) +M2,N(t) − (V1,N(t) − V2,N(t)) + V̂3,N(t), (3.11)

where

V̂3,N(t) = − β2r̂

N̂d/2

∑

i∈CN

∫ t

0

ρs(1 − σ1
i σ

2
i )ds+

β2

2N̂3d/2

∑

(i,j)∈CN

q2
N(i− j)t

+
β2r̂

2
N̂d/2t− N̂d/2β2

4

∑

k∈Zd

γk

∫ t

0

ρs

(

∣

∣R1,2
k

∣

∣

2
)

ds+
β2Γt

4N̂d/2

+
β2N̂d/2γ0r

2t

4
− β2N̂d/2r̂

∫ t

0

ρs(R
1,2)ds− β2γ0N̂

d/2t

4
(1 − r)2 .

This last expression can be simplified a little to give

V̂3,N(t) =





Γ

N̂d/2
+

2

N̂3d/2

∑

(i,j)∈CN

q2
N(i− j) − γ0N̂

d/2





β2t

4

− N̂d/2β2

4

∑

k∈Zd

γk

∫ t

0

ρs

(

∣

∣R1,2
k

∣

∣

2
)

ds,

that is V̂3,N(t) = V3,N(t). By reporting this equality in (3.11), the proof is now complete.
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The last preliminary result we will need in order to establish our CLT is a self-averaging
result for R1,2

k under the measure ρt at a fixed value of the parameter t ∈ [0, 1].

Proposition 3.4. Under the hypotheses of Corollary 2.16, let t ∈ [0, 1]. Then

∑

k∈Zd

γkE
[

ρt(|R1,2
k |2)

]

= O

(

1

N d̂

)

, (3.12)

for d̂ > d/2, uniformly in t.

Proof. This is an easy elaboration of the computations leading to Proposition 2.15, by
considerering the path v ∈ [0, t] 7→ HN,t,v(σ) defined by

−HN,t,v(σ) = −Hm
N,t(σ) +

β

N̂d/2

∑

i∈Cm
N

Bi,m(v)qN(i−m)σiσm + βr̂1/2Xm(v)σm + hσm,

with obvious notations.

3.2 Proof of Theorem 3.1

For an arbitrary u ∈ R, we will try to control ΦN,u(t) ≡ E[eıuYN (t)]. To this purpose, we
will apply Itô’s formula to the complex valued C2

b function x 7→ eıux. We obtain, for any
t ∈ [0, 1],

eıuYN (t) = D1,N +

8
∑

m=2

Dm,N(t),

where

D1,N = eıuUN

D2,N(t) =
ıuβ

N̂d

∑

(i,j)∈CN

qN(i− j)

∫ t

0

eıuYN (s)ρs(σiσj)dBi,j

D3,N(t) =
ıuβr̂1/2

N̂d/2

∑

i∈CN

∫ t

0

eıuYN (s)ρs(σi)dWi

D4,N(t) = − ıuβr̂
1/2

N̂d/2

∑

i∈CN

∫ t

0

eıuYN (s)ρs(σi)
Xi(s)

1 − s
ds

D5,N(t) =
ıuβ2r̂

N̂d/2

∑

i∈CN

∫ t

0

eıuYN (s)ρs(1 − σ1
i σ

2
i )ds,

and

D6,N(t) =
ıuβ2

4





Γ

N̂d/2
+

2

N̂3d/2

∑

(i,j)∈CN

q2
N(i− j) − γ0N̂

d/2





∫ t

0

eıuYN (s)ds

− ıuN̂d/2β2

4

∑

k∈Zd

γk

∫ t

0

eıuYN (s)ρs

(

∣

∣R1,2
k

∣

∣

2
)

ds.
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The terms D7,N(t) and D8,N(t)are the ones associated with the quadratic variation process
of YN(t), that is:

D7,N (t) = − u2β2

2N̂2d

∑

(i,j)∈CN

q2
N(i− j)

∫ t

0

eıuYN (s)ρs(σ
1
i σ

1
jσ

2
i σ

2
j )ds

= − u2β2

2N̂2d

∑

(i,j)∈CN

∑

k∈Zd

γke
ıπk·(i−j)/N

∫ t

0

eıuYN (s)ρs(σ
1
i σ

1
jσ

2
i σ

2
j )ds

D8,N (t) = −u
2β2r̂

2N̂d

∑

i∈CN

∫ t

0

eıuYN (s)ρs(σ
1
i σ

2
i )ds = −u

2β2r̂

2

∫ t

0

eıuYN (s)ρs(R
1,2)ds.

Let us find some estimates for the expected value of all the terms we have obtained in
this decomposition. First of all, the usual central limit theorem for IID random variables
yields

E[D1,N(t)] = e−τ̂2u2/2 +O

(

1

Nd/2

)

, (3.13)

where τ̂ is defined at (3.1). Furthermore, the terms D2,N(t) and D3,N(t) are obviously of
zero mean.

In order to control D4,N(t), let us perform again the Gausssian integration by parts
(3.10), which can be read here as

E[D4,N(t)] = − ıuβr̂
1/2

N̂d/2

∑

i∈CN

∫ t

0

E
[

∂Xi(s)(e
ıuYN (s)ρs(σi))

]

ds

=
u2βr̂1/2

N̂d/2

∑

i∈CN

∫ t

0

E
[

∂Xi(s)(YN(s))eıuYN (s)ρs(σi)
]

ds−E[D5,N(t)].

Furthermore,

∂Xi(s)(YN(s)) =
∂Xi(s)(ZN(s))

Nd/2ZN(s)
=
βr̂1/2

Nd/2
ρs(σi),

and therefore, we obtain

E[D4,N(t) +D5,N (t)] = u2β2r̂

∫ t

0

E
[

eıuYN (s)ρs(R
1,2)
]

ds

= u2β2γ0r
2

∫ t

0

ΦN,u(s)ds+O

(

1

N d̂

)

, (3.14)

owing to Proposition 3.4.

Let us turn now to the estimation of D6,N(t): notice that, under Hypothesis 2.1 and
2.12, it is easily checked that

∣

∣

∣

∣

∣

∣

1

N̂2d

∑

(i,j)∈CN

q2
N(i− j) − γ0

2

∣

∣

∣

∣

∣

∣

= O

(

1

N̂ d̂

)

,
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which together with a direct application of Proposition 3.4, shows that

E[D6,N(t)] = O

(

1

N̂ ǫ

)

,

where ǫ = d̂− d/2.

As far as D7,N(t) is concerned, notice that by relation (3.8), we have

D7,N (t) = −u
2β2

4

∑

k∈Zd
∗

γk

∫ t

0

eıuYN (s)ρs

(

|R1,2
k |2

)

ds

− u2β2γ0

4

∫ t

0

eıuYN (s)ρs

(

|R1,2|2
)

ds+
u2β2Γ

4N̂d

∫ t

0

eıuYN (s)ds, (3.15)

and thanks to proposition 3.4, we get

D7,N(t) = −u
2β2γ0r

2

4

∫ t

0

eıuYN (s)ds+O

(

1

N d̂

)

, (3.16)

and thus

E[D7,N(t)] = −u
2β2γ0r

2

4

∫ t

0

ΦN,u(s)ds+O

(

1

N d̂

)

.

Eventually, in a similar way we have

E [D8,N(t)] = −u
2β2γ0r

2

2

∫ t

0

ΦN,u(s)ds+O

(

1

N̂ d̂

)

.

Putting together the previous estimates on E[D1,N(t)], . . . ,E[D8,N(t)], we have finally:

ψN,u(t) = e−
ν2u2

2 +
(uβ

√
γ0r)

2

4

∫ t

0

ψN,u(s)ds+ R̂N,u(t),

with
∣

∣

∣
R̂N,u(t)

∣

∣

∣
≤ κ

N ǫ
,

which ends the proof by a Gronwall type argument.
�
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