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An amended MaxEnt formulation for deriving
Tsallis factors, and associated issues
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Abstract.
An amended MaxEnt formulation for systems displaced from the conventional MaxEnt

equilibrium is proposed. This formulation involves the minimization of the Kullback-Leibler
divergence to a referenceQ (or maximization of ShannonQ-entropy), subject to a constraint that
implicates a second reference distributionP1 and tunes the new equilibrium. In this setting, the
equilibrium distribution is the generalized escort distribution associated toP1 andQ. The account
of an additional constraint, an observable given by a statistical mean, leads to the maximization
of Rényi/TsallisQ-entropy subject to that constraint. Two natural scenarii for this observation
constraint are considered, and the classical and generalized constraint of nonextensive statistics
are recovered. The solutions to the maximization of RényiQ-entropy subject to the two types
of constraints are derived. These optimum distributions, that are Levy-like distributions, are self-
referential. We then propose two ‘alternate’ (but effectively computable) dual functions, whose
maximizations enable to identify the optimum parameters. Finally, a duality between solutions and
the underlying Legendre structure are presented.

Key Words: Rényi entropy, Levy distributions, optimization, nonextensive thermodynamics,
duality

INTRODUCTION

The formalism of nonextensive statistical mechanics [1, 2] leads to a generalized
Boltzmann factor in the form of a Tsallis distribution (or factor) that depends on an
entropic index and recovers the classical Boltzmann factoras a special limit case [1].
This distribution is of high interest in many physical systems since it enables to model
power-law phenomena. In a wide variety of fields, experiments, numerical results and
analytical derivations fairly agree with the description by a Tsallis distribution.

Tsallis’ distributions (sometimes called Levy distributions) are derived by
maximization of Tsallis entropy [3], under suitable constraints. The present formulation
is as follows: maximize Tsallis’ entropy

Tα(P ) =
1

1−α

[∫
P (x)αdx−1

]
, (1)
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subject to

m =

∫
xP ∗(x)dx with P ∗(x) =

P (x)α

∫
P (x)αdx

, (2)

where the mean constraint is called a ‘generalized’ mean constraint in the nonextensive
litterature, andP ∗(x) is called the ‘escort’ distribution. This formulation was preferred
to the simple maximization with a classical mean constraintm =

∫
xP (x)dx because of

mathematical difficulties. The solution is given in the litterature as

P (x) =
1

Z

(
1−

(1−α)β

Z1−α
(x−m)

) 1
1−α

, (3)

whereZ is a partition function.
Of course, these distributions do not coincide with those derived by conventionnal

MaxEnt and consequently will not be justified from a probabilistic point of view, because
of the uniqueness of the rate function in the large deviations theory [4, 5]. Furthermore,
the status and interest of generalized expectations and of escort distributions is unclear.
Last, it is apparent that the expression of distribution (3) is implicit, so that both its
manipulation and determination of its parameterβ will be difficult.

However, in view of the success of nonextensive statistics,there should exist a
probabilistic setting that provides a justification for themaximization of Tsallis entropy.
There are now several indications that results of nonextensive statistics are physically
relevant for partially equilibrated or nonequilibrated systems, with a stationary state
characterized by fluctuations of an intensive parameter [6, 7]; for instance, the Tsallis
factor is obtained from the Boltzmann-Gibbs’ if the inverseof temperature fluctuates
according to a gamma distribution.

In this paper, I present a framework for the maximization of Rényi/TsallisQ−entropy,
that leads to the so-called Levy distribution (or Tsallis factor). The Rényi information
divergence, the opposite of RényiQ-entropy, is given by

Dα(P ||Q) =
1

α−1
log

∫
P (x)αQ(x)1−αdx, (4)

whereα is a real parameter called the entropic index. Using L’Hospital’s rule, the
Kullback-Leibler divergence is recovered forα → 1

D(P ||Q) =

∫
P (x) log

P (x)

Q(x)
dx. (5)

Its opposite is the ShannonQ−entropy, the correct, coordinate invariant, extension of the
classical Shannon entropy to the continuous case [8]. This divergence can be interpreted
as a “distance” between two distributions. Rényi and TsallisQ-entropies are related by
a simple monotonic function. Therefore, their maximization under the same constraint
lead to the same distribution.

In the following, I propose an amended MaxEnt formulation for systems with a
displaced equilibrium, find that the relevant entropy in this setting is the Rényi entropy,



interpret the mean constraints, derive the correct form of solutions, propose numerical
procedures for estimating the parameters of the Tsallis factor and characterize the
associated entropies. I will also indicate a duality between the solutions associated with
classical and generalized mean constraint. Finally I will discuss the underlying Legendre
structure of generalized thermodynamics associated to this setting.

THE AMENDED MAXENT FORMULATION

A key for the apparition of Levy distributions and a probabilistic justification might
be that it seems to appear in the case of modified, perturbated, or displaced classical
Boltzmann-Gibbs equilibrium. This means that the originalMaxEnt formulation “find
the closest distribution to a reference under a mean constraint” may be amended by
introducing for instance a new constraint that displaces the equilibrium. The partial
or displaced equilibrium may be imagined as an equilibrium characterized by two
references, sayP1 andQ. Instead of selecting the nearest distribution to a reference under
a mean constraint, we may look for a distributionP ∗ simultaneously close to two distinct
references: such a distribution will be localized somewhere ‘between’ the two references
P1 andQ. For instance, we may consider a global system composed of two subsystems
characterized by two prior reference distributions. The global equilibrium is attained for
some intermediate distribution, and the observable may be,depending on the viewpoint
or on the experiment, either the mean under the distributionof the global system or
under the distribution of one subsystem. This can model a fragmentation process: a
systemΣ(A,B) fragments intoA, with distributionP1, andB with distributionQ, and
the whole system is viewed with distributionP ∗ that is some intermediate betweenP1

andQ. This can also model a phase transition: a system leaves a stateQ towardP1 and
presents an intermediate distributionP ∗.

This can be stated as: findP ∗ such that the Kullback-Leibler divergence toQ,
D(P ||Q) is minimum (or equivalently the ShannonQ-entropy is maximum), but under
the constraint thatD(P ||Q) = D(P ||P1) + θ, where θ can be expressed as a log-
likelihood. The problem simply writes

{
minP D(P ||Q) = minP

∫
P (x) log P (x)

Q(x)
dx

s.t θ = D(P ||Q)−D(P ||P1) =
∫

P (x) log P1(x)
Q(x)

dx
(6)

and its solution was given by Kullback [9, page 39] as an illustration of his general
theorem on constrained minimization ofD(P ||Q):

P ∗(x) =
P1(x)αQ(x)1−α

∫
P1(x)αQ(x)1−αdx

, (7)

which is nothing else but the escort distribution (2) of nonextensive statistics [10]
(although it is generalized here with referenceQ). The parameterα is simply the
Lagrange parameter associated to the constraint, and it canbe shown that necessarily
α ≤ 1. Clearly, distributionP ∗ which is the geometric mean betweenP1andQ realizes



a trade-off, governed byα, between the two references. By dual attainment, we have
{

minP D(P ||Q)
s.t θ = D(P ||Q)−D(P ||P1)

= sup
α

(
αθ− log

(∫
P1(x)αQ(x)1−αdx

))
. (8)

In this last relation, the termlog
(∫

P1(x)αQ(x)1−αdx
)

is directly proportional to the
Rényi divergence (4).

Observable mean values

Observable values are as usual the statistical mean under some distributions.
Depending on the viewpoint, the observable may be a mean under distribution P1,
the distribution of an isolated subsystem, or underP ∗, the equilibrium distribution
betweenP andQ. Hence, the problem will be completed by an additionnal constraint,
and a possible approach would be to select distributionP1 by further minimizing the
Kullback-Leibler information divergenceD(P ||Q), but overP1(x) and subject to the
mean constraint. So, the whole problem writes

K =





minP1

{
minP D(P ||Q) = minP

∫
P (x) log P (x)

Q(x)
dx

subject to:θ =
∫

P (x) log P1(x)
Q(x)

dx

subject to:m = EP1
[X] or m = EP ∗ [X]

, (9)

whereEP [X] represents the statistical mean under distributionP : EP [X] =
∫

xP (x)dx.
This may be tackled in two steps: first minimize with respect to P taking into account
the mean log-likelihood constraint, and obtain (7), and second, minimize with respect to
P1. Taking into account (8), problem (9) becomes

K = sup
α

[
αθ−

{
maxP1

(α−1)Dα(P1||Q)
subject to:m = EP1

[X] or m = EP ∗[X]

]
(10)

and amounts to the extremization of Rényi information divergence under a mean
constraint. Therefore, we find that the amended MaxEnt formulation leads to the
maximization of Rényi (or equivalently Tsallis) entropy subject to a statistical mean
constraint. We can note that the second constraint,m = EP ∗ [X] is nothing else but the
‘generalized expectation’ of nonextensive statistics that has here a clear interpretation.

It is important to note that the minimization of Kullback-Leibler divergence with
respect toP andP1, subject to the two constraints, may not always reduce to the two-
steps procedure above.

SOLUTIONS TO THE MAXIMIZATION OF RÉNYI Q-ENTROPY

We now consider the maximization of RényiQ-entropy subject to the classical mean
constraint (C)m = EP1

[X] and the generalized mean constraint (G)m = EP ∗ [X] as we
obtained in (10). We first begin by some results on a general ‘Tsallis’ distribution, that
simplify the derivation of exact solutions (proofs are omitted to save space).



Preliminary results

Definition 1 DistributionP#
ν (x) is defined by:

P#
ν (x) = [γ(x−x)+1]ν Q(x)eDα(P#

ν ||Q), (11)

on domainD = DQ∩Dγ , whereDQ = {x : Q(x) ≥ 0} andDγ = {x : γ(x−x)+1 ≥ 0} .
In this expression,x is either (a) a fixed parameter, saym, and P#

ν (x) is a two
parameters distribution, (b) or some statistical mean withrespect toP#

ν (x), e.g.
its “classical” or “generalized” mean, and as such a function of γ. Observe that
distribution P#

ν (x) is not necessarily normalized to one. Associated withP#
ν (x), we

also define a partition function

Zν(γ,x) =

∫

D

[γ(x−x)+1]ν Q(x)dx. (12)

Notation 2 We will denote byEν [X] the statistical mean with respect to the probability
distribution associated withP#

ν (x), and byE(α)
ν [X] the generalizedα−mean. One can

observe that in the case of the Levy distribution (11), we haveE(α)
ν [X] = Eαν [X] . In the

special caseν = ±ξ, we obtainE(α)
±ξ [X] = E±(ξ+1) [X] , becauseξα = (ξ +1) = α

α−1
.

Theorem 3 The Levy distributionP#
ξ (x) with exponent ν = ξ, is normalized

to one if and only if x = Eξ [x] , the statistical mean of the distribution, and
Dα(P#

ξ ||Q) = − logZξ+1(γ,x) = − logZξ(γ,x).

In the same way, the Levy distributionP#
−ξ(x) with exponentν = −ξ, is normalized

to one if and only if x = E−ξ−1 [x] = E
(α)
−ξ [x] , the generalizedα−expectation

of the distribution, andDα(P#
−ξ||Q) = − logZ−(ξ+1)(γ,x) = − logZ−ξ(γ,x), with

αξ = (ξ +1).

Whenx is a fixed parameterm, this will be only true for a special valueγ∗ of γ such
thatEξ [x] = m or E

(α)
−ξ [x] = m, respectively in the first and second case.

Remark 4 Here takes place an important remark onthe mappingx ↔ γ. Consider the
normalized distributionP#

ξ
(x) with x = Eξ [x] . This distribution depends on the sole

parameterγ, andx is a function ofγ. But contrary to the intuition,the mappingx ↔ γ
is not necessarily one to one. This means that a specified value of the meanx = m may
correspond to several values ofγ, and conversely a specified value ofγ may give several
different meansx. This can be illustrated through numerical examples.

Lemma 5 Partition functionsZξ+1(γ,m) andZ−ξ(γ,m) are convex functions ofγ.

Solutions

The solutions to the maximization of RényiQ-entropy subject to the classical mean
constraint (C)m = EP1

[X] and the generalized mean constraint (G)m = EP ∗ [X] are



found using standard Lagrangian techniques The optimum solution, see for instance
[11], is a saddle point of the Lagrangian and we may proceed in twosteps: first minimize
the Lagrangian inP (x), and thus obtain a solution in terms of the Lagrange parameters,
and then maximize the resulting Lagrangian, the dual function, in order to exhibit
the optimum Lagrange parameters. Taking into account the normalization conditions
described above, these solutions are easily derived and simplified:

(C) PC(x) =
[γ(x−x)+1]ξ

Zξ(γ,x)
Q(x), with x = EPC

[X] = Eξ[X] (13)

(G) PG(x) =
(1+γ(x−x))−ξ

Z−ξ(γ,x)
Q(x) with x = EPG

[X] = E−(ξ+1)[X] (14)

whereξ = 1
α−1

, andZν(γ,x) is the partition function. It is important to emphasize thatx
in (13) is the statistical mean with respect toPC(x), x in (14) is the generalizedα-mean
with respect toPG(x), and as such a function ofγ. It is a common mistake in the large
majority of reported results and calculations to improperly take forx the fixed valuem
of the constaint, which is only correct for the optimum valueof the Lagrange parameter.

These optimum distributions appear to be self-referential, since their expressions
involve their statistical mean. Therefore, the direct determination of their parameters
is difficult, if not intractable.

Alternate dual functions

From the Lagrangian theory, one should maximize the dual function in order
to obtain the remaining Lagrange parameter. But in the present cases, the dual
functions are implicitely defined. Thus, in order to identify the value of the natural
parameter associated to the mean constraints, I propose two‘alternate’ (but effectively
computable) dual functions, whose numerical maximizations enable to exhibit the
optimum parameters.

For the classical mean, I just sketch the procedure. At the optimum, we haveD(γ∗) =

supγ supµ infP L(P,γ,µ). For any valuẽµ of µ, letting D̃(γ) = L(P ∗
γ,µ̃,γ, µ̃), we have

D(γ∗) ≥ D̃(γ). Thus, if D̃(γ∗) = D(γ∗) for the optimumγ∗, then D̃(γ∗) will be a
maximum ofD̃(γ) and the maximization of the dual function can be carried equivalently
via the maximization ofD̃(γ). Condition D̃(γ∗) = D(γ∗) is achieved withµ̃(γ) =
−(ξ +1)(1−γm) . Then, after some algebra, we obtain the very simple form

D̃C(γ) = − logZξ+1(γ,m) (15)

that is simply the expression of the divergence fromP#
ξ toQ, Dα(P#

ξ ||Q). We know that
Zξ+1(γ,m) is a convex function. Thus, ifZξ+1(γ,m) is defined on a continuous domain,
D̃C(γ) has an only maximum forγ = γ∗. If Zξ+1(γ,m) is defined (and convex) on
several intervals,̃DC(γ) may have a maximum on each of these intervals, and one has to



select the minimum of these maxima (that is the maximum associated with the minimum
divergence). Hence, the identification of the optimum parameterγ∗ simply amounts to
the unconstrained maximization of an unimodal functional,possibly in several intervals.

For the generalized mean, the rationale for an alternate dual function is as follows.
We know thatDα(P#

−ξ||Q) = − logZ−ξ(γ,m) when the generalized mean constraint

is satisfied. Sinced logZ
−ξ(γ,m)

dγ
= −ξ (x−m)

Z
−ξ−1(γ,m)

Z
−ξ(γ,m)

, − logZ−ξ(γ,m) is maximum
when the constraintx = m is satisfied. Hence, the search of the optimum Lagrange
parameter can be carried using the very simple alternate dual function

D̃G(γ) = − logZ−ξ(γ,m). (16)

The partition functionZ−ξ(γ,m) is a convex function forα ≤ 1. If it is defined on a
continuous domain,̃DG(γ) has an only maximum that is simply reached forγ∗ such that
m = E−ξ−1[x], the generalizedα-mean. If the domain is given by several intervals, then
D̃G(γ) may present several maxima, and the minimum of these maxima,associated with
the minimum divergenceDα(P#

−ξ||Q), has to be selected. We thus obtain two practical
numerical schemes for the identification of the distributions parameters, and it is also
possible to study the behaviour of entropies associated with some particular references
Q. We come to a close to this presentation by considering the relationship between the
two minimization problems and an underlying Legendre structure.

DUALITY AND LEGENDRE STRUCTURE

The α ↔ 1/α duality

The dual functions associated to the two problems are− logZξ1+1(γ,m) and
− logZ−ξ2(γ,m). Thus, we will have pointwise equality of dual functions, andof
course of the optima, ifξ1 +1 = −ξ2, that is if indexesα1 andα2 satisfyα1 = 1/α2. We
can also remark that with−ξ2 = ξ1 +1 = α1ξ1, we have the following relations between
the two optimum probability density functions:

PG =
P α1

C Q1−α1

Z1−α1

ξ1

and PC =
P α2

G Q1−α2

Z1−α2

ξ1

, with α2 = 1/α1, (17)

and using the fact thatZξ1+1(γ,m) = Zξ1(γ,m) for the optimum value ofγ. It means that
PG is the escort distribution ofPC with indexα1 and thatPC is the escort distribution
associated withPG and indexα2. It can be checked in the general case thatalways
have the equalityD 1

α
(P ∗||Q) = Dα(P1||Q) between the1/α Rényi divergence of the

escort distribution toQ and the standardα divergence Hence, the minimization of the
α Rényi divergence subject to the generalized mean constraint is exactly equivalent to
the minimization of the1/α Rényi divergence subject to the classical mean constraint
so that generalized and classical mean constraints can always be swapped, provided the
indexα is changed into1/α, as was argued in [12, 13].



The Legendre structure

In the study of alternative entropies, considerable efforts have been directed to the
analysis of associated thermodynamics. The concave entropies corresponding to our two
problems areSC = logZξ+1(−

λ
(ξ+1)

,x), andSG = logZ−ξ(λ/ξ,x). Let us consider the
general formS = logZν+1(γ,x).

In terms of the Lagrange multiplierλ, it can be shown that

dS

dλ
=

dS

dγ

dγ

dλ
= −γ (ν +1)

dx

dλ
. (18)

Specializing the result to the two entropies, we obtain in both cases the Euler formula:

dS

dλ
= λ

dx

dλ
. (19)

Next, the derivative of the entropy with respect to the mean is simply

dS

dx
=

dS

dλ

dλ

dx
= λ

dx

dλ

dλ

dx
= λ. (20)

Let us now introduce the Massieu potentialφ(λ) = S −λx (or equivalently the free
energy). Derivations with respect to the Lagrange parameter and to the mean give

dφ

dλ
= −x, and

dφ

dx
= −x

dλ

dx
. (21)

These four relations show thatS andφ are conjugated with variablesx andλ : S [x] ⇋ φ
[λ] , so that the basic Legendre structure of thermodynamics is preserved (but care must
be taken for interpretations, for instance a valid definition of temperature requires thatλ
always remains positive).
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