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We establish estimates for the local and uniform moduli of continuity of the local time of multifractional Brownian motion, B H = (B H(t) (t), t ∈ R + ). An analog of the Chung's law of the iterated logarithm is studied for B H and used to obtain the pointwise Hölder exponent of the local time. A kind of local asymptotic self similarity is proved to be satisfied by the local time of B H .

Introduction

The multifractional Brownian motion (mBm), B H = (B H(t) (t), t ∈ R + ), is a Gaussian process which extends the fractional Brownian motion (fBm) by allowing the Hurst function to vary with time. This provides a tool to model systems whose regularity evolves in time, such as internet traffic or images. Recently, [START_REF] Boufoussi | On the local time of the multifractional Brownian motion[END_REF] have investigated, under mild regularity conditions on H(.), the existence of jointly continuous local times of mBm. Their objective was to explore the link between the pointwise regularity of the local time and the irregularity of the underling process. This effect of inverse regularity was observed by [START_REF] Berman | Local nondeterminism and local times of Gaussian processes[END_REF] for the case of uniform regularity.

The first aim of this paper is to establish estimates for the local and uniform moduli of continuity for the local time of mBm. Upper bounds for the moduli of continuity of local times have been obtained by [START_REF] Kôno | Hölder conditions for the local times of certain Gaussian processes with stationary increments[END_REF] for Gaussian processes with stationary increments, and more recently [START_REF] Csörgö | On moduli of continuity for local times of Gaussian processes[END_REF] have proved upper bounds for the moduli of continuity of the maximum of local times for stationary Gaussian processes and Gaussian processes with stationary increments. However, contrary to classical results, the moduli of continuity obtained in this paper depend on the point at which the regularity is studied. This is natural, since mBm has a regularity evolving in time. The approach of the present paper seems to be useful for extending the results of [START_REF] Kôno | Hölder conditions for the local times of certain Gaussian processes with stationary increments[END_REF] and [START_REF] Csörgö | On moduli of continuity for local times of Gaussian processes[END_REF] to Gaussian processes without stationary increments.

Chung's form of the law of iterated logarithm for mBm is established in section 4. This result is used to prove that the pointwise Hölder exponent of its local time with respect to time is equal to 1 -H(t) uniformly in x.

The second main objective of the paper concerns the question whether the sample path properties of mBm can be transferred to its local time. If H(.) is not constant, the mBm is no longer self-similar. However, it is proved by Lévy Véhel and Peltier (1995, Proposition 5) that if H is β-Hölder continuous and sup t∈R + H(t) < β, a property called local asymptotic self-similarity remains, and is defined as follows:

lim ρ-→0 + law B(t + ρu) -B(t) ρ H(t) , u ∈ R = law{B H(t) (u), u ∈ R}, (1) 
where B H(t) is fBm with Hurst parameter H(t). It is the purpose of section 5 to prove that the local time of mBm has a kind of local asymptotic self similarity. Through this result, we obtain some local limit theorems corresponding to the mBm. We will use C, C 1 , ... to denote unspecified positive finite constants which may not necessarily be the same at each occurrence.

Preliminaries

In this section, we present some notation and collect facts about multifractional Brownian motion and its local times.

Multifractional Brownian motion

The mBm was introduced independently by Lévy [START_REF] Véhel | Multifractional Brownian motion: definition and preliminary results[END_REF] and [START_REF] Benassi | Elliptic Gaussian random processes[END_REF]. The definition due to Lévy-Véhel and Peltier (1995) is based on the moving average representation of fBm, where the constant Hurst parameter H is replaced by a function H(t) as follows :

B H(t) (t) = 1 Γ(H(t) + 1/2) 0 -∞ [(t -u) H(t)-1/2 -(-u) H(t)-1/2 ] W (du) + t 0 (t -u) H(t)-1/2 W (du) ; t ≥ 0, (2) 
where 

H(t) : [0, ∞) -→ [µ, ν] ⊂ (0,
B H(t) (t) = R e itξ -1 |ξ| H(t)+1/2 d W (dξ), (3) 
where W (ξ) is the Fourier transform of the series representation of white noise with respect to an orthonormal basis of L 2 (R); we refer to [START_REF] Cohen | From self-similarity to local self-similarity : the estimation problem[END_REF] for the precise definition and for the fact that B H is real-valued.

Various properties of mBm have already been investigated in the literature, related, for instance, to its pointwise and uniform Hölder regularity as well as the local Hausdorff dimension of its sample paths. More precisely, it is known from Lévy Véhel and Peltier (1995, Proposition 8) that with probability one, for each t 0 ≥ 0 the Hölder exponent at t 0 of mBm is H(t 0 ). Recall that the pointwise Hölder exponent of a stochastic process X at t 0 is defined by

α X (t 0 , ω) = sup α > 0, lim ρ→0 X(t 0 + ρ, ω) -X(t 0 , ω) ρ α = 0 . (4) 
In addition, according to the same authors, the local Hausdorff dimension of the graph is

2 -min t∈[a,b] H(t), almost surely for each interval [a, b] ⊂ R + .
According to the previous results, the regularity of mBm depends on the regularity of H. Furthermore, by using Lemma 3.1 in [START_REF] Boufoussi | On the local time of the multifractional Brownian motion[END_REF] we can prove easily that the irregularity of H implies the irregularity of mBm. More precisely, the points of discontinuities of H are also discontinuities of B (see Ayache (2001) Proposition 1).

Local times

We end this section by briefly recalling some aspects of the theory of local times. For a comprehensive survey on local times of both random and non random vector fields, we refer to [START_REF] Geman | Occupation densities[END_REF], [START_REF] Dozzi | Occupation density and sample path properties of N-parameter processes[END_REF] and [START_REF] Xiao | Strong local nondeterminism and sample path properties of Gaussian random fields[END_REF].

Let X = (X(t), t ∈ R + ) be a real-valued separable random process with Borel sample functions. For any Borel set B ⊂ R + , the occupation measure of X on B is defined as follows

µ B (A) = λ{s ∈ B : X(s) ∈ A} for all A ∈ B(R),
where λ is the one-dimensional Lebesgue measure on R + . If µ B is absolutely continuous with respect to Lebesgue measure on R, we say that X has a local time on B and define its local time, L(B, .), to be the Radon-Nikodym derivative of µ B . Here x is the so-called space variable, and B is the time variable. By standard monotone class arguments, one can deduce that the local times have a measurable modification that satisfies the following occupation density formula: for every Borel set B ⊂ R + , and for every measurable function

f : R → R + , B f (X(t))dt = R f (x)L(B, x)dx.
Recently, [START_REF] Boufoussi | On the local time of the multifractional Brownian motion[END_REF] have proved that if the Hurst function is Hölder continuous with exponent β and if sup t≥0 H(t) < β, the mBm has a jointly continuous local time, i.e. the mapping (t, x) → L(t, x) is continuous. In addition, this local time has the following Hölder continuities : It satisfies for any compact U ⊂ R (i)

sup x∈U |L(t + h, x) -L(t, x)| |h| γ < +∞ a.s., (5) 
where γ < 1 -H(t) and |h| < η, η being a small random variable almost surely positive and finite, (ii) for any I ⊂ [0, T ] with small length, sup

x,y∈U,x =y

|L(I, x) -L(I, y)| |x -y| α < +∞ a.s., (6) 
where α <

  1 2 sup I H(t) - 1 2   ∧ 1.
These results have been used to obtain the local and pointwise Hausdorff dimension of the level sets of mBm. We refer to [START_REF] Boufoussi | On the local time of the multifractional Brownian motion[END_REF] for definition and results.

Moduli of continuity of the local time

Throughout this section, the Hurst function H : R + → [µ, ν] ⊂ (0, 1) is assumed to be measurable. The notation B = (B(t), t ≥ 0) means that either representation, (2) or (3) can be chosen. Moreover, we say that H satisfies the condition (H β ) if :

H is β-Hölder continuous with sup s≥0 H(s) < β.

We give the following improvement of Theorem 3.1 of [START_REF] Boufoussi | On the local time of the multifractional Brownian motion[END_REF]. Note that the first part reproduces this theorem without assuming (H β ). Theorem 3.1. Consider a measurable function H(.) : R + → [µ, ν] ⊂ (0, 1). The mBm with Hurst function H(.) given by (2) admits on any interval [a, b] ⊂ [0, ∞) a square integrable local time. Moreover for both representations (2) and (3), if (H β ) holds, the existence of square integrable local times implies that H(t) < 1 for almost all t.

Proof. Let us write for simplicity

B H(t) (t) = t -∞ K H(t) (t, u)dW (u),
where

K H(t) (t, u) = 1 Γ(H(t) + 1/2) (t -u) H(t)-1/2 + -(-u) H(t)-1/2 + .
For any t > s, taking the variance of B H(t) (t) -B H(s) (s), we get

V ar(B H(t) (t) -B H(s) (s)) ≥ V ar(B H(t) (t) -B H(s) (s)/W (u), u ≤ s) = V ar(B H(t) (t)/W (u), u ≤ s), (7) 
where the last equality follows from the fact that B H(s) (s) is measurable with respect to σ(W (u), u ≤ s). Moreover we can write

B H(t) (t) = t -∞ K H(t) (t, u)dW (u) = s -∞ K H(t) (t, u)dW (u) + t s K H(t) (t, u)dW (u).
Hence, by using the measurability of

s -∞ K H(t) (t, u)dW (u) with respect to σ(W (u)/ u ≤ s), we obtain V ar(B H(t) (t)/W (u), u ≤ s) = V ar t s K H(t) (t, u)dW (u)/W (u), u ≤ s = V ar t s K H(t) (t, u)dW (u) , (8) 
where, to obtain the last equality, we have used the fact that

t s K H(t) (t, u)dW (u) is independent of σ(W (u), u ≤ s)
(by the independence of the increments of the Brownian motion). Combining ( 7) and ( 8) and denote

C = sup u∈[µ,ν] Γ(1/2 + u), we obtain V ar(B H(t) (t) -B H(s) (s)) ≥ 1 Γ(1/2 + H(t)) 2 t s (t -r) 2H(t)-1 dr ≥ 1 2νC 2 (t -s) 2H(t) . Therefore [a,b] [a,b] E[B H(t) (t) -B H(s) (s)] 2 -1/2 dsdt ≤ √ 2νC [a,b] [a,b] |t -s| -sup r≥0 H(r) dsdt. (9)
The last integral is finite because sup r≥0 H(r) < 1. 

By
E(B(t) -B(s)) 2 ≤ C µ,ν |t -s| 2H(t) , for s, t ∈ [a, b]. (10) 
[E(B(t) -B(s)) 2 ] 1/2 dsdt.
Then, [START_REF] Dozzi | Occupation density and sample path properties of N-parameter processes[END_REF] 

implies that b a b a 1 (t -s) H(t) dsdt < ∞. Consequently, H(t) < 1 for almost all t ∈ [a, b]. Since R + is a countable union of small intervals, hence the result is proved.
In what follows, we are interested in the local and pointwise oscillations (at each t) of the local time of the mBm. Theorem 3.2. Let {B H(t) (t), t ≥ 0} be the mBm given in [START_REF] Ayache | Du mouvement Brownien fractionnaire au mouvement Brownien multifractionnaire[END_REF] with Hurst function H(.) satisfying the assumption (H β ). Then, for every t ∈ R + and any x ∈ R, there exist positive and finite constants C 1 and C 2 such that

lim sup δ→0 L(t + δ, B H(t) (t)) -L(t, B H(t) (t)) δ 1-H(t) (log log(δ -1 )) H(t) ≤ C 1 a.s. ( 11 
)
lim sup δ→0 L(t + δ, x) -L(t, x) δ 1-H(t) (log log(δ -1 )) H(t) ≤ C 2 a.s. (12) 
Proof. Let t ≥ 0 be a fixed point and 0 < h < 1 and denote H t,t+h = sup s∈[t,t+h] H(s).

According to the Fourier analytic approach of Berman (1969) (see also [START_REF] Davies | Local Hölder conditions for the local times of certain stationary Gaussian processes[END_REF], expression ( 27)), we have

E L(t + h, B H(t) (t)) -L(t, B H(t) (t)) m = 1 (2π) m [t,t+h] m R m E e i P m j=1 u j (B H(s j ) (s j )-B H(t) (t)) m j=1 du j m j=1 ds j . Let B(s) = B H(s) (s) -B H(t) (t), s ≥ 0 and denote by R(s 1 , ..., s m ) the covariance matrix of ( B(s 1 ), ..., B(s m )) for distinct s 1 , ..., s m . Let U = (u 1 , ..., u m ) ∈ R m and U T denote the transpose of U . According to (16) below we have, det R(s 1 , ..., s m ) > 0. Hence, the change of variable V = R 1/2 U , implies R m E e i P m j=1 u j e B(s j ) du 1 ...du m = (2π) m/2 (det R(s 1 , ..., s m )) 1/2 . Therefore E L(t + h, B H(t) (t)) -L(t, B H(t) (t)) m = 1 (2π) m/2 [t,t+h] m 1 (det R(s 1 , ...., s m )) 1/2 ds 1 ...ds m = m! (2π) m/2 t<s 1 <...<sm<t+h 1 (det R(s 1 , ...., s m )) 1/2 ds 1 ...ds m . (13) 
In addition

det R(s 1 , ..., s m ) = V ar( B(s 1 ))V ar( B(s 2 )/ B(s 1 ))....V ar( B(s m )/ B(s 1 ), ..., B(s m-1 )). ( 14 
)
Using similar arguments as in the proof of Theorem 3.1, we obtain for any r, s

∈ [t, t+h], such that r < s, V ar B(s)/ B(u), u ∈ A, u ≤ r ≥ V ar B(s) -B(r)/ W (u), u ≤ r ≥ V ar B H(s) (s)/ W (u), u ≤ r ≥ 1 2νC 2 (s -r) 2H(s) , (15) 
where C = sup x∈[µ,ν] Γ(x + 1/2). Combining ( 14) and ( 15) we obtain

det R(s 1 , ..., s m ) ≥ 1 (2νC 2 ) m m j=1 (s j -s j-1 ) 2H(s j ) ≥ 1 (2νC 2 ) m m j=1 (s j -s j-1 ) 2H t,t+h , (16) 
where s 0 = 0 and (s j -s j-1 ) H(s j ) ≥ (s j -s j-1 ) H t,t+h , since (s j -s j-1 ) < 1.

According to [START_REF] Jeganathan | Convergence of functionals of sums of fractionally integrated processes[END_REF] we have

E L(t + h, B H(t) (t)) -L(t, B H(t) (t)) m ≤ νC 2 π m/2 m! t<s 1 <...<sm<t+h m j=1 1 (s j -s j-1 ) H t,t+h ds 1 ...ds m .
Now, by an elementary calculation (cf. [START_REF] Ehm | Sample function properties of multi-parameter stable processes[END_REF]), for all m ≥ 1, h > 0 and b j < 1,

t<s 1 <...<sm<t+h m j=1 (s j -s j-1 ) -b j ds 1 ...ds m = h m- P m j=1 b j m j=1 Γ(1 -b j ) Γ(1 + m -m j=1 b j )
.

Therefore E L(t + h, B H(t) (t)) -L(t, B H(t) (t)) m ≤ m! νC 2 π m/2 h m(1-H t,t+h ) (Γ(1 -H t,t+h )) m Γ(1 + m(1 -H t,t+h ))
According to Stirling's formula, we have

(m!/Γ(1 + m(1 -H t,t+h ))) ≤ M m m! H t,t+h , m ≥ 2,
for a suitable finite number M . Therefore

E L(t + h, B H(t) (t)) -L(t, B H(t) (t)) h 1-H t,t+h m ≤ C m m! H t,t+h . (17) 
We shall now prove that for any K > 0 there exists a positive and finite constant A > 0, depending on t, such that for u small enough,

P L(t + h, B H(t) (t)) -L(t, B H(t) (t)) ≥ Ah 1-H t,t+h u H t,t+h ≤ exp(-K/u). (18) 
Consider u first of the form u = 1/m. Combining Tchebychev's inequality and ( 17) we obtain

P L(t + h, B H(t) (t)) -L(t, B H(t) (t)) h 1-H t,t+h ≥ Am H t,t+h ≤ E L(t + h, B H(t) (t)) -L(t, B H(t) (t)) Ah (1-H t,t+h ) m H t,t+h m ≤ C m A m ( 1 m ) mH t,t+h (m!) H t,t+h .
Using again Stirling's formula, the last expression is at most

C m A m (2πm) H t,t+h
/2 e -H t,t+h m . This can be written

exp m [log(C/A) -H t,t+h ] + H t,t+h 2 [log(m) + log(2π)] , (19) 
it suffices to take A > C and m 0 large such that for any m ≥ m 0 , ( 19) is dominated by e -2Km . Moreover for u sufficiently small, there exists m ≥ m 0 such that u m+1 < u < u m and since m ≥ 1,

m m + 1 ≥ 1 2
. This proves [START_REF] Lim | Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type[END_REF].

In addition, if we take u(h) = 1/ log log(1/h) and consider first h m of the form 2 -m , then [START_REF] Lim | Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type[END_REF] implies

P L(t + h m , B H(t) (t)) -L(t, B H(t) (t)) ≥ Ah 1-H t,t+hm m (log log(1/h m )) H t,t+hm ≤ m -2 ,
for large m. Consequently, by using the Borel-Cantelli lemma and monotonicity arguments, we obtain

L(t + h, B H(t) (t)) -L(t, B H(t) (t)) h 1-H t,t+h ≤ A (log log(1/h)) H t,t+h a.s.
In addition the Hölder regularity of H implies that

log log(1/h) H t,t+h log log(1/h) H(t) = e Kh β log log log 1/h → 1 as h → 0 + Therefore (log log(1/h)) H t,t+h ≤ K(log log(1/h)) H(t)
for h small enough. Moreover, using the same arguments (See Remark 3.7 in Boufoussi et al. ( 2006)), we obtain

h 1-H t,t+h ≤ Kh 1-H(t) . (20) 
This completes the proof of [START_REF] Ehm | Sample function properties of multi-parameter stable processes[END_REF]. Since [START_REF] Geman | Occupation densities[END_REF] is proved in a same manner, the proof is omitted here.

Remark 3.3. The result of the previous theorem, with sup s∈[t,t+h] H(s) instead of H(t), may be proved even when (H β ) is not satisfied.

We shall also prove the following uniform result.

Theorem 3.4. Let {B H(t) (t), t ∈ [0, 1]} be the mBm in [START_REF] Ayache | Du mouvement Brownien fractionnaire au mouvement Brownien multifractionnaire[END_REF] with arbitrary Hurst function and denote H 0,1 = sup s∈[0,1] H(s). Then for all x ∈ R, there exists C 3 > 0 such that lim sup

|t-s| 0 + t,s∈[0,1] |L(t, x) -L(s, x)| |t -s| 1-H 0,1 (log(1/|t -s|)) H 0,1 ≤ C 3 a.s. (21) 
Proof. By using the same arguments as above, without using the Hölder continuity of H, we show that with probability one, there exists m 0 (ω) such that for all m ≥ m 0 (ω) and k = 1, ....., 2 m , we have

L(k2 -m , x) -L((k -1)2 -m , x) ≤ A2 -(1-H 0,1 )m (m log(2)) H 0,1 . a.s.
Then by proceding essentially as in [START_REF] Kôno | Hölder conditions for the local times of certain Gaussian processes with stationary increments[END_REF] we prove [START_REF] Xiao | Strong local nondeterminism and sample path properties of Gaussian random fields[END_REF].

Remark 3.5. The results in this section are based on the following property of the mBm: 

V ar B H(t+h) (t + h)/B H(s) (s) : 0 ≤ s ≤ t ≥ Ch 2H t,t+h , (22) 
X(t) = 1 Γ(H(t) + 1/2) t 0 (t -u) H(t)-1/2 dW u .
So our results extend those of [START_REF] Kôno | Hölder conditions for the local times of certain Gaussian processes with stationary increments[END_REF] to Gaussian processes without stationary increments property. Remark 3.6. A closer examination of the proof of Theorem 2.1 in Csörgö et al. (1995) shows that the property of stationarity of increments is just used to prove two main ingredients presented in their Lemmas 3.1 and 3.3 and which can in our case be replaced easily by the following properties 1. Let A n be the covariance matrix of a Gaussian vector {ζ i ; 1 ≤ i ≤ n}. Then, it is known that the conditional variance can be written as

V ar(ζ i /ζ l , l = i, 1 ≤ l ≤ n) = |A n | |A (i) n | , where A (i)
n is the submatrix of A n obtained by deleting the ith row and column. 

T →∞ sup 0≤t≤b T L(t + a T , x) -L(t, x) a 1-H T (log(b T /a T ) + log log(a T + 1/a T )) H < C < ∞ a.s. ( 23 
)
where a T and b T are nonnegative functions in T ≥ 0 such that

1 + b T a T -→ +∞ as T → +∞.

Chung's law of the iterated logarithm

The following theorem establishes an analogue of Chung's law of the iterated logarithm for mBm. The result for fBm has been obtained by [START_REF] Monrad | Small values of Gaussian processes and functional laws of the iterated logarithm[END_REF].

Theorem 4.1. Let B be a multifractional Brownian motion, assume that H satisfies the condition (H β ). Then the following Chung type law of iterated logarithm holds:

lim inf δ→0 sup s∈[t 0 ,t 0 +δ] |B(s) -B(t 0 )| (δ/ log | log(δ)|) H(t 0 ) = C H(t 0 ) , a.s. ( 24 
)
where the constant C H(t 0 ) is the one appearing in Chung's law for the fBm of Hurst parameter H(t 0 ).

Proof. We first introduce the process { B(t) = B(t) -B H(t 0 ) (t), t ≥ 0}, where B H(t 0 ) denotes a fBm with Hurst parameter H(t 0 ). According to Theorem 3.3 of Monrad and Rootzén (1995), the fBm with Hurst exponent H(t 0 ) satisfies (24). Furthermore,

B(t) -B(t 0 ) = (B(t) -B H(t 0 ) (t)) + (B H(t 0 ) (t) -B H(t 0 ) (t 0 )), = B(t) + (B H(t 0 ) (t) -B H(t 0 ) (t 0 )).
Then (24) will be proved if we show that

lim δ→0 sup t∈[t 0 ,t 0 +δ] | B(t)| (δ/ log | log(δ)|) H(t 0 ) = 0. a.s.
On the other hand, Lemma 3.1 in [START_REF] Boufoussi | On the local time of the multifractional Brownian motion[END_REF], implies that there exists a positive constant K such that sup

t∈[t 0 ,t 0 +δ] E( B(t)) 2 ≤ Kδ 2β .
Hence, according to Theorem 2.1 in Adler (1990, p. 43) and a symmetry argument, we have

P sup t∈[t 0 ,t 0 +δ] | B(t)| ≥ u ≤ 2P sup t∈[t 0 ,t 0 +δ] B(t) ≥ u ≤ 4 exp    - u -E sup t∈[t 0 ,t 0 +δ] B(t) 2 Kδ 2β    . ( 25 
)
Denote for simplicity Λ = sup t∈[t 0 ,t 0 +δ] B(t). By (25) we obtain

E (Λ) ≤ +∞ 0 P sup t∈[t 0 ,t 0 +δ] | B(t)| > x dx ≤ 4 +∞ 0 exp - [x -EΛ] 2 Kδ 2β dx = 4 √ Kδ β √ 2 ∞ - √ 2/K EΛ δ β e -y 2 /2 dy ≤ 4 √ Kπδ β
It follows that

(u -EΛ) 2 ≥ 1 2 u 2 -(EΛ) 2 ≥ 1 2 u 2 -16Kπδ 2β
Consequently (25) becomes

P sup t∈[t 0 ,t 0 +δ] | B(t)| ≥ u ≤ C exp - u 2 Kδ 2β . ( 26 
)
Since H(t 0 ) < β, there exists 0 < ξ < β -H(t 0 ). Consider δ n = n 1/(2(ξ+H(t 0 )-β)) and u n = δ

H(t 0 )+ξ n
. Therefore, according to (26), we have

∞ n=1 P sup t∈[t 0 ,t 0 +δn] | B(t)| ≥ u n ≤ ∞ n=1 exp(- 1 K n) < ∞
It follows from the Borel Cantelli lemma that there exists n 0 = n 0 (ω) such that for all n ≥ n 0 , sup

s∈[t 0 ,t 0 +δn] | B(s)| ≤ δ H(t 0 )+ξ n almost surely. Furthermore, for δ n+1 ≤ δ ≤ δ n , we have almost surely sup s∈[t 0 ,t 0 +δ] | B(s)| ≤ sup s∈[t 0 ,t 0 +δn] | B(s)| ≤ δ H(t 0 )+ξ n ≤ δ H(t 0 )+ξ δ n δ n+1 H(t 0 )+ξ ≤ 2 θ δ H(t 0 )+ξ where θ = H(t 0 ) + ξ 2(β -H(t 0 ) -ξ)
. Hence

lim δ→0 sup t∈[t 0 ,t 0 +δ] | B(t)| (δ/ log | log(δ)|) H(t 0 ) ≤ lim δ→0 δ ξ (log | log(δ)|) H(t 0 ) = 0. a.s.
This completes the proof of the theorem.

Remark 4.2. Observe that by the ideas used to prove the previous theorem many laws of iterated logarithm (LIL) proved for fBm can now be obtained for mBm and with the same constants. For example, we have the following LIL (c.f. [START_REF] Li | Gaussian processes: inequalities, small ball probabilities and applications[END_REF], equation (7.5) for the fBm)

lim sup δ→0 sup s∈[t 0 ,t 0 +δ] |B(s) -B(t 0 )| δ H(t 0 ) (log | log(δ)|) 1/2 = √ 2V H(t 0 ) (B), a.s. ( 27 
)
where

V H(t 0 ) ( B) = π H(t 0 )Γ(2H(t 0 )) sin(πH(t 0 )) and V H(t 0 ) (B H ) = 0 -∞ (1 -s) H(t 0 )-1 2 -(-s) H(t 0 )-1 2 2 ds 1/2 + 1 2H(t 0 ) Γ(H(t 0 ) + 1/2) .
Other laws of iterated logarithm and uniform moduli of continuity have been obtained for B by Benassi et al. (1997, Theorem 1.7) via wavelet techniques.

Since the local time is a two parameter process, we precise the meaning of the pointwise Hölder exponent in time, uniformly in space. The pointwise Hölder exponent of sup x∈R L(., x) is defined by

α L (t) = sup α > 0, lim sup δ→0 sup x∈R L(t 0 + δ, x) -L(t 0 , x) δ α = 0 . (28) 
Since the fraction above is positive, the lim sup may be replaced by lim or lim inf.

We are now able to prove the following 

δ = R L([t 0 , t 0 + δ], x)dx ≤ sup x∈R L([t 0 , t 0 + δ], x) sup s,t∈[t 0 ,t 0 +δ] |B(s) -B(t)| ≤ 2 sup x∈R L([t 0 , t 0 + δ], x) sup s∈[t 0 ,t 0 +δ] |B(s) -B(t 0 )|. (29) 
Combining ( 24) and (29) we obtain that there exists a positive constant C such that

lim sup δ→0 sup x∈R L(t 0 + δ, x) -L(t 0 , x) δ 1-H(t 0 ) (log log(δ -1 )) H(t 0 ) ≥ C a.s.
Which with the definition of the pointwise Hölder exponent proves the result.

Asymptotic results

It is well known that techniques for proving limit theorems related to self similar processes use the self similarity of their local times. It is natural to expect the same when dealing with locally asymptotically self similar processes (lass for brevity). Thus it will be of some interest to know if the local times satisfy a kind of lass property.

Lass for local times

The answer to the preceding question is affirmative in the case of the mBm and the result is given by the following Theorem 5.1. Let B be a multifractional Brownian motion, assume that H satisfies the condition (H β ). Then, for any fixed t 0 , the local time of mBm is locally asymptotically self similar with parameter 1 -H(t 0 ), in the sense that for every x ∈ R, the processes

{Y ρ (t, x), t ∈ [0, 1]} ρ>0 defined by Y ρ (t, x) = L t 0 + ρt, ρ H(t 0 ) x + B(t 0 ) -L t 0 , ρ H(t 0 ) x + B(t 0 ) ρ 1-H(t 0 ) ,
converge in law to the local time, { (t, x), t ∈ [0, 1]}, of the fBm B H(t 0 ) with Hurst parameter H(t 0 ), i.e.

lim ρ→0 law{Y ρ (t, x), t ∈ [0, 1]} = law{ (t, x), t ∈ [0, 1]} ( 30 
)
where the convergence is in the space of continuous functions endowed with the norm of the uniform convergence.

The motivation to consider the processes Y ρ follows from the occupation density formula and the lass property (1) of mBm. Indeed, according to the occupation density formula, the local time has the following representation

L(t, x) = 1 2π +∞ -∞ e -iux
t 0 e iuB(s) ds du.

Consequently,

Y ρ (t, x) = 1 2πρ 1-H(t 0 ) R e -iy(ρ H(t 0 ) x+B(t 0 )) t 0 +ρt t 0 e iyB(s) dsdy.

Using the change of variables r = s -t 0 ρ and ρ H(t 0 ) y = v, the right hand side of the previous expression becomes

1 2π R e -ivx t 0 exp iv B(t 0 + ρr) -B(t 0 ) ρ H(t 0 ) drdv,
which is the local time of the Gaussian process

B ρ (r) = B(t 0 + ρr) -B(t 0 ) ρ H(t 0 ) , r ∈ [0, 1] .
We need the following lemma for the proof of the finite dimensional convergence. If {X n (t), t ∈ [0, 1]} n≥1 is a family of processes which converges in law in D([0, 1]) to X, then φ I (X n ) converges in law to φ I (X).

Proof. The lemma is a consequence of the continuity of the map X(.) → φ I (X(.)) in J 1 topology on D([0, 1]) at almost all sample points of the process X, which is proved on page 11 in [START_REF] Kesten | A limit theorem related to a new class of self similar Processes[END_REF].

Proof of Theorem 5.1. To prove the convergence in law, we proceed in two steps. First we prove the tightness of the family {Y ρ (t, x), t ∈ [0, 1]} ρ>0 in the space of continuous functions. By using [START_REF] Véhel | Multifractional Brownian motion: definition and preliminary results[END_REF] and [START_REF] Monrad | Small values of Gaussian processes and functional laws of the iterated logarithm[END_REF], for ρ small enough, we obtain

E |Y ρ (t, x) -Y ρ (s, x)| m = E L t 0 + ρt, ρ H(t 0 ) x + B(t 0 ) -L t 0 + ρs, ρ H(t 0 ) x + B(t 0 ) m ρ (1-H(t 0 ))m , ≤ C m |t -s| (1-H(t 0 ))m .
We can take m > 1-H(t 0 ) to get the tightness. Now, we prove the convergence of the finite dimensional distributions of Y ρ , as ρ tends to 0, to those of the local time of the fBm, B H(t 0 ) , with Hurst parameter H(t 0 ). We need to show that for any d ≥ 1, a 1 , ..., a d ∈ R and t 1 , ...., t d ∈ [0, 1], the following convergence holds,

d j=1 a j Y ρ (t j , x) W =⇒ d j=1
a j (t j , x) as ρ → 0.

We will show the convergence of the corresponding characteristic function. More precisely we prove that

E exp iλ d j=1 a j Y ρ (t j , x) -E exp iλ d j=1
a j (t j , x) -→ 0, as ρ → 0.

Let's introduce the following notation :

φ ε,x (X)(t) = 1 ε t 0 1 [x,x+ε] (X(s))ds, I ε,ρ 1 = E exp iλ d j=1 a j Y ρ (t j , x) -E exp iλ d j=1 a j φ ε,x (B ρ )(t j ) , I ε,ρ 2 = E exp iλ d j=1 a j φ ε,x (B H(t 0 ) )(t j ) -E exp iλ d j=1 a j φ ε,x (B ρ )(t j ) , and 
I ε 3 = E exp iλ d j=1 a j φ ε,x (B H(t 0 ) )(t j ) -E exp iλ d j=1 a j (t j , x) . Therefore E exp iλ d j=1 a j Y ρ (t j , x) -E exp iλ d j=1 a j (t j , x) ≤ I ε,ρ 1 + I ε,ρ 2 + I ε,ρ 3 . (31) 
On the other hand, Y ρ is the local time of B ρ and by using the mean value theorem and the occupation density formula we obtain

I ε,ρ 1 ≤ C max 1≤j≤d E |Y ρ (t j , x) -φ ε,x (B ρ )(t j )| = C max 1≤j≤d E 1 ε x+ε x Y ρ (t j , y)dy -Y ρ (t j , x) (32) 
Moreover, since the stochastic process {Y ρ (t, y), y ∈ R}, is almost surely continuous in y for every t, according to the dominated convergence theorem, (32) converges to zero as ε tends to zero independently of ρ.

We deal now with I ε,ρ 2 . Since the family of processes {B ρ (t), t ∈ [0, 1]} ρ>0 converges in distribution to the fBm B H(t 0 ) (t), t ∈ [0, 1] with Hurst parameter H(t 0 ), the second term converges to zero as ρ tends to 0 by Lemma 5.1 . The last term in (31) is treated in a similar way as the first and the proof of the finite dimensional convergence is complete .

Limit theorems

The following result is an immediate consequence of the lass property of mBm. Proposition 5.2. Let B be a multifractional Brownian motion, assume that H satisfies the condition (H β ) and denote by (t, x) the local time of the fBm with Hurst parameter H(t 0 ). Then for every f ∈ L 1 (R), locally Riemann integrable and with compact support such that R f (x)dx = 0, the following convergence in law holds

lim λ→∞ lim ρ→0 + 1 λ 1-H(t 0 ) λt 0 f B(ρs + t 0 ) -B(t 0 ) ρ H(t 0 ) ds = R f (x)dx • (t, 0).
If H is constant, B is a fBm. Being self similar with stationary increments, the term in left hand side of the previous formula is identical in law to 1 λ 1-H λt 0 f (B(s)) ds. We retrieve the result of [START_REF] Kasahara | A limit theorem for occupation times of fractional Brownian motion[END_REF] for the fBm.

Proof. The proof relies on the lass property and the self similarity of fBm. We sketch it for the sake of completeness. Combining the fact that f is locally Riemann integrable, the lass property of mBm and a result in Jeganathan [(2004), Theorem 6 and the comment after it], we obtain = denotes the equality in distribution. Then the result of the theorem follows from the continuity of (t, x, ω) with respect to the space variable.

However the presence of a double limit may be not convenient, and the result may be better if λ and ρ are dependent. We prove the following local limit theorem Theorem 5.3. Let B be a multifractional Brownian motion, assume that H satisfies the condition (H β ). Denote by (t, x) the local time of the fBm with Hurst parameter H(t 0 ) and consider f ∈ L 1 (R) such that : Proof. Using the occupation density formula we obtain

1 ψ(ρ) ρt+t 0 t 0 f B(s) -B(t 0 ) -ρ H(t 0 ) y θ(ρ) ds = R f (x) 
L(ρt + t 0 , θ(ρ)x + ρ H(t 0 ) y + B(t 0 )) -L(t 0 , θ(ρ)x + ρ H(t 0 ) y + B(t 0 )) ρ 1-H(t 0 ) dx = L(ρt + t 0 , ρ H(t 0 ) y + B(t 0 )) -L(t 0 , ρ H(t 0 ) y + B(t 0 )) ρ 1-H(t 0 ) × R f (x)dx (34) + R f (x) L(I 0 , θ(ρ)x + ρ H(t 0 ) y + B(t 0 )) -L(I 0 , ρ H(t 0 ) y + B(t 0 )) ρ 1-H(t 0 ) dx,

where we denote in the last expression I 0 = [t 0 , t 0 + ρt] for simplicity. According to Theorem 5.1, the expression (34) converges in distribution to (t, y) × R f (x)dx. It suffices now to prove that (35) converges to 0 in some strong sense. We have

E R f (x)
L(I 0 , θ(ρ)x + ρ H(t 0 ) y + B(t 0 )) -L(I 0 , ρ H(t 0 ) y + B(t 0 )) ρ 1-H(t 0 ) dx ≤ R |f (x)| L(I 0 , θ(ρ)x + ρ H(t 0 ) y + B(t 0 )) -L(I 0 , ρ H(t 0 ) y + B(t 0 ))

ρ 1-H(t 0 ) L 2 (Ω) dx. ( 36 
)
Using essentially the same arguments as when proving expression (22) and Remark 3.7 in [START_REF] Boufoussi | On the local time of the multifractional Brownian motion[END_REF], but for the process X(t) = B(t) -B(t 0 ) instead of the mBm, we obtain L(I 0 , θ(ρ)x + ρ H(t 0 ) y + B(t 0 )) -L(I 0 , ρ H(t 0 ) y + B(t 0 )) ρ 1-H(t 0 )

L 2 (Ω)

≤ Ct 1-H(t 0 )(1+ξ) |x| ξ θ(ρ) ρ H(t 0 ) ξ ,

  Theorem 22.1 in Geman and Horowitz (1980), B H has a local time L([a, b], .) ∈ L 2 (R). Let's now prove the second point : According to Boufoussi et al. (2006), we have for any interval [a, b] ⊂ [0, ∞) with small length,

  On the other hand, since the local time exists on the interval [a, b], then according to Geman and Horowitz [(1980), Theorem 22.1 expression (22.3)] the following integral is finite

Proposition 4 . 3 .

 43 Let B be a multifractional Brownian motion, and assume that H satisfies the condition (H β ). The pointwise Hölder exponent α L of sup x∈R L(., x) at t satisfiesα L (t) = 1 -H(t) a.s.Proof. The lower bound was already given inBoufoussi et al. (2006, Corollary 3.6). The upper bound is a consequence of Chung's law of the mBm. Indeed, since the local time vanishes outside the range of B, we obtain

Lemma 5 . 1 . 0 1

 510 Let {X(t), t ∈ [0, 1]} be a stochastic process in the Skorohod space D([0, 1]) and define for a fixed interval I = [a, b] ⊂ R the map φ I (X)(t) = t {X(s)∈I} ds.

1

 1 

  + t 0 ) -B(t 0 ) ρ H(t 0 )ds H(t 0 ) (s))ds as ρ → 0 + .Moreover, using the occupation density formula and the self similarity of fBm we obtain1 λ 1-H(t 0 ) λt 0 f (B H(t 0 ) (s))ds (d) = R f (x) (t, λ -H(t 0 ) x)dx,where(d)

Rf

  |f (x)||x| ξ dx < ∞ for some 0 < ξ < 1 2 sup t≥0 H(t) ) -B(t 0 ) -ρ H(t 0 ) (x)dx • (t, y), as ρ → 0 + ,where θ(.) and ψ(.) satisfy ψ(ρ) θ(ρ) = ρ 1-H(t 0 ) , and θ(ρ) ρ H(t 0 ) = o (1) .

  for h small enough. If H is constant, this property is called the one sided strong local nondeterminism; we refer to Monrad and Rootzén (1995 expression (2.2)) and the references therein for definition and applications. The property (22) is satisfied by many other processes with multifractal behavior, such as the Riemann-Liouville mBm {X(t), t ≥ 0} introduced in Lim (2001) by substituting, in the definition of the Riemann-Liouville fBm, the constant Hurst parameter H by a regular function as follows
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for ρ small enough and all 0 < ξ < 1 2 sup t≥0 H(t) -1 2 . Hence, (36) is dominated by

This last integral is finite by assumption (33), and then (37) tends to zero as ρ tends to zero. This completes the proof.