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Abstract : We establish estimates for the local and uniform moduli of continuity of
the local time of the multifractional Brownian motion, BH = (BH(t)(t), t ∈ R+). An
analog of the Chung law of the iterated logarithm is studied for BH and used to obtain
the pointwise Hölder exponent of the local time. A kind of local asymptotic self similarity
is proved to be satisfied by the local time of BH .
Key words: Multifractional Brownian motion, Local asymptotic self similarity, LIL of

type Chung, Local times.

1 Introduction
The multifractional Brownian motion (mBm), BH = (BH(t)(t), t ∈ R+), is a Gaussian
process which extends the fractional Brownian motion (fBm) by allowing the Hurst func-
tion to vary along the time. This provides a tool to model systems whose regularity
evolves in time, such as Internet traffic or images. Recently, Boufoussi et al. (2006) have
investigated, under mild regularity conditions on H(.), the existence of jointly continuous
local times of mBm. Their objective was to explore the link between the pointwise regu-
larity of the local time and the irregularity of the underling process. This effect of inverse
regularity was observed by Berman (1973) for the case of uniform regularity.

The first aim of this paper is to establish estimates for the local and uniform moduli
of continuity for the local time of the mBm. Upper bounds for the moduli of continuity
of local times have been obtained by Kôno (1977) for Gaussian processes with stationary
increments, and more recently Csörgö et al. (1995) have proved upper bounds for the
moduli of continuity of the maximum of local times for stationary Gaussian processes and
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Gaussian processes with stationary increments. However, contrary to the classical results,
the moduli of continuity obtained in this paper will depend on the point on which the
regularity is studied. This is natural, since the mBm has a regularity evolving in time.
The approach of the present paper seems to be useful to extend the results of Kôno (1977)
and Csörgö et al. (1995) to Gaussian processes without stationary increments.

Chung’s form of the law of iterated logarithm for the mBm is established in section
4. This result is used to prove that the pointwise Hölder exponent of its local time with
respect to time is equal to 1−H(t) uniformly in x.

The second main objective of the paper concerns the question whether the sample path
properties of the mBm can be transferred to its local time. If H(.) is not constant, the
mBm will be no more self similar. However, it is proved by Lévy Véhel and Peltier (1995,
Proposition 5) that if H is β−Hölder continuous and supt∈R+ H(t) < β, a local form of
self similarity remains, called local asymptotic self similarity and defined as follows:

lim
ρ−→0+

law

{
B(t+ ρu)−B(t)

ρH(t)
, u ∈ R

}
= law{BH(t)(u), u ∈ R}, (1)

where BH(t) is a fBm with Hurst parameter H(t). It is the purpose of section 5 to prove
that the local time of mBm has a kind of local asymptotic self similarity. Through this
result, we obtain some local limit theorems corresponding to the mBm.

We will use C, C1, ... to denote unspecified positive finite constants which may not
necessarily be the same at each occurrence.

2 Preliminaries
In this section, we present some notations and collect facts about multifractional Brownian
motion and its local times.

2.1 Multifractional Brownian motion

The mBm was introduced independently by Lévy Véhel and Peltier (1995) and Benassi
et al. (1997). The definition due to Lévy Véhel and Peltier (1995) is based on the moving
average representation of fBm, where the constant Hurst parameter H is substituted by
a function H(t) as follows :

BH(t)(t) =
1

Γ(H(t) + 1/2)

(∫ 0

−∞
[(t− u)H(t)−1/2 − (−u)H(t)−1/2]W (du)

+

∫ t

0

(t− u)H(t)−1/2W (du)

)
; t ≥ 0, (2)

where H(t) : [0,∞) −→ [µ, ν] ⊂ (0, 1) is a Hölder continuous function, W is the standard
Brownian motion defined on (−∞,+∞). Benassi et al. (1997) defined the mBm by means
of the harmonisable representation of fBm as follows :

B̂H(t)(t) =

∫
R

eitξ − 1

|ξ|H(t)+1/2
dŴ (dξ), (3)
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where Ŵ (ξ) is the Fourier transform of the series representation of white noise with respect
to an orthonormal basis of L2(R); we refer to Cohen (1999) for the precise definition and
for the fact that B̂H is real-valued. Moreover, it is proved in Cohen (1999) that the
two representations of mBm are equivalent in law up to a multiplicative deterministic
function. The value of this function and the fact that it is bounded away from zero
have been obtained by Boufoussi et al. (2006). This equivalence played a crucial role for
computing the moments of local times of B̂.

Various properties of mBm have already been investigated in the literature, related,
for instance, to its pointwise and uniform Hölder regularity as well as the local Hausdorff
dimension of its sample paths. More precisely, it is known from Lévy Véhel and Peltier
(1995, Proposition 10) that, with probability one, for each t0 ≥ 0 the Hölder exponent at
t0 of the mBm is equal to H(t0). Recall that the pointwise Hölder exponent of a stochastic
process X at t0 is defined by

αX(t0, ω) = sup

{
α > 0, lim

ρ→0

X(t0 + ρ, ω)−X(t0, ω)

ρα
= 0

}
. (4)

In addition, according to the same authors, the local Hausdorff dimension of the graph is
2−mint∈[a,b]H(t), almost surely for each interval [a, b] ⊂ R+.

According to the previous results, the regularity of the mBm depends on the regularity
of H. Furthermore, by using Lemma 3.1 in Boufoussi et al. (2006) we can prove easily
that the irregularity of H implies the irregularity of the mBm. More precisely, the points
of discontinuities of H are also discontinuities of B (see Ayache (2001) Proposition 1).

2.2 Local times

We end this section by briefly recalling some aspects on the theory of local times. For a
comprehensive survey on local times of both random and non random vector fields, we
refer to Geman and Horowitz (1980), Dozzi (2003) and Xiao (2005).

Let X = (X(t), t ∈ R+) be a real valued separable random process with Borel sample
functions. For any Borel set B ⊂ R+, the occupation measure of X on B is defined as
follows

µB(A) = λ{s ∈ B : X(s) ∈ A} for all A ∈ B(R),

where λ is the one dimensional Lebesgue measure on R+. If µB is absolutely continuous
with respect to the Lebesgue measure on R, we say that X has a local time on B and
define its local time, L(B, .), to be the Radon-Nikodym derivative of µB. Here x is the
so-called space variable, and B is the time variable.

By standard monotone class arguments, one can deduce that the local times have a
measurable modification that satisfies the following occupation density formula: for every
Borel set B ⊂ R+ and for every measurable function f : R → R+∫

B

f(X(t))dt =

∫
R
f(x)L(B, x)dx.
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Recently, Boufoussi et al. (2006) have proved that if the Hurst function is Hölder
continuous with exponent β and if supt≥0H(t) < β, the mBm has a jointly continuous
local time, i.e. the mapping (t, x) → L(t, x) is continuous. In addition, this local time
has the following Hölder continuities : It satisfies for any compact U ⊂ R
(i)

sup
x∈U

|L(t+ h, x)− L(t, x)|
|h|γ

< +∞ a.s., (5)

where γ < 1−H(t) and |h| < η, η being a small random variable almost surely positive
and finite,
(ii) for any I ⊂ [0, T ] with small length,

sup
x,y∈U,x 6=y

|L(I, x)− L(I, y)|
|x− y|α

< +∞ a.s., (6)

where α <

 1

2 sup
I
H(t)

− 1

2

 ∧ 1.

These results have been used to obtain the local and pointwise Hausdorff dimension of
the level sets of the mBm. We refer to Boufoussi et al (2006) for definition and results.

3 Moduli of continuity of the local time
Throughout this section, the Hurst function H : R+ → [µ, ν] ⊂ (0, 1) is assumed to be any
measurable function. The notation B = (B(t), t ≥ 0) means that both representations,
the moving average and the harmonisable one, can be chosen. Moreover, we say that H
satisfies the condition (Hβ) if :

H is β- Hölder continuous with sups≥0H(s) < β.

We give the following improvement of Theorem 3.1 of Boufoussi et al. (2006). Note
that the first part reproduces this theorem without assuming (Hβ).

Theorem 3.1. Consider a measurable function H(.) : R+ → [µ, ν] ⊂ (0, 1). The mBm
with Hurst function H(.) admits on any interval [a, b] ⊂ [0,∞) a square integrable local
time. Moreover, if (Hβ) holds, the existence of square integrable local times implies that
H(t) < 1 for almost all t.

Proof. We first prove the result for the mBm given by the moving average representation,
and the result for B̂ will follow from the equivalence in law proved by Cohen (1999).
Let us write for simplicity

BH(t)(t) =

∫ t

−∞
KH(t)(t, u)dW (u),
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where

KH(t)(t, u) =
1

Γ(H(t) + 1/2)

[
(t− u)

H(t)−1/2
+ − (−u)H(t)−1/2

+

]
.

For any t > s, taking the variance of BH(t)(t)−BH(s)(s), we get

V ar(BH(t)(t)−BH(s)(s)) ≥ V ar(BH(t)(t)−BH(s)(s)/W (u), u ≤ s)

= V ar(BH(t)(t)/W (u), u ≤ s), (7)

where the last equality follows from the fact that BH(s)(s) is measurable with respect to
σ(W (u), u ≤ s). Moreover we can write

BH(t)(t) =

∫ t

−∞
KH(t)(t, u)dW (u) =

∫ s

−∞
KH(t)(t, u)dW (u) +

∫ t

s

KH(t)(t, u)dW (u).

Hence, by using the measurability of
∫ s

−∞KH(t)(t, u)dW (u) with respect to σ(W (u)/ u ≤
s), we obtain

V ar(BH(t)(t)/W (u), u ≤ s) = V ar

(∫ t

s

KH(t)(t, u)dW (u)/W (u), u ≤ s

)
= V ar

(∫ t

s

KH(t)(t, u)dW (u)

)
, (8)

where, to obtain the last equality, we have used the fact that
∫ t

s

KH(t)(t, u)dW (u) is

independent of σ(W (u), u ≤ s) (by the independence of the increments of the Brownian
motion). Combining (7) and (8) and denote C = supu∈[µ,ν] Γ(1/2 + u), we obtain

V ar(BH(t)(t)−BH(s)(s)) ≥ 1

Γ(1/2 +H(t))2

∫ t

s

(t− r)2H(t)−1dr

≥ 1

2νC2
(t− s)2H(t).

Therefore∫
[a,b]

∫
[a,b]

(
E[BH(t)(t)−BH(s)(s)]2

)−1/2
dsdt ≤

√
2νC

∫
[a,b]

∫
[a,b]

|t− s|− supr≥0 H(r)dsdt. (9)

The last integral is finite because supr≥0H(r) < 1. By Theorem 22.1 in Geman and
Horowitz (1980), BH has a local time L([a, b], .) ∈ L2(R).
For the mBm B̂H(t) given by the representation (3), we use the equivalence between BH(t)

and B̂H(t) up to a multiplicative deterministic function ψ(.); i.e. B̂H(t)(t) = ψ(t)BH(t)(t)
in law. First,

V ar(B̂H(t)(t)− B̂H(s)(s)) = V ar(ψ(t)BH(t)(t)− ψ(s)BH(s)(s))

≥ ψ2(t)V ar(BH(t)(t)/W (u), u ≤ s)

≥ ψ2(t)

2νC2
(t− s)2H(t).
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Furthermore, according to Boufoussi et al. [(2006), Appendix], the function ψ(t) is
bounded away from zero, i.e. there exist K1 > 0 and K2 > 0 such that K1 ≤ ψ2(t) ≤ K2.
Hence

V ar(B̂H(t)(t)− B̂H(s)(s)) ≥ K1

2νC2
(t− s)2H(t).

The remainder is the same as (9) and the statements after it.
Let us now prove the second point : According to Boufoussi et al. (2006), we have for

any interval [a, b] ⊂ [0,∞) with small length,

E(B(t)−B(s))2 ≤ Cµ,ν |t− s|2H(t), for s, t ∈ [a, b]. (10)

On the other hand, since the local time exists on the interval [a, b], then according to
Geman and Horowitz [(1980), Theorem 22.1 expression (22.3)] the following integral is
finite ∫ b

a

∫ b

a

1

[E(B(t)−B(s))2]1/2
dsdt.

Then, (10) implies that ∫ b

a

∫ b

a

1

(t− s)H(t)
dsdt <∞.

Consequently H(t) < 1 for almost all t ∈ [a, b]. Since R+ is a countable union of small
intervals, the result is proved.

In what follows, we are interested in the local and pointwise oscillations (at each t) of
the local time of the mBm.

Theorem 3.2. Let {B(t), t ≥ 0} be a mBm with Hurst function H(.) satisfying the
assumption (Hβ). Then, for every t ∈ R+ and any x ∈ R, there exist positive and finite
constants C1 and C2 such that

lim sup
δ→0

L(t+ δ, B(t))− L(t, B(t))

δ1−H(t)(log log(δ−1))H(t)
≤ C1 a.s. (11)

lim sup
δ→0

L(t+ δ, x)− L(t, x)

δ1−H(t)(log log(δ−1))H(t)
≤ C2 a.s. (12)

Proof. Let t ≥ 0 be a fixed point and 0 < h < 1 and denote Ht,t+h = sups∈[t,t+h]H(s).
According to the Fourier analytic approach of Berman (1969) (see also Davies (1976),
expression (27)), we have

E [L(t+ h,B(t))− L(t, B(t))]m

=
1

(2π)m

∫
[t,t+h]m

∫
Rm

E
(
ei

Pm
j=1 uj(B(sj)−B(t))

) m∏
j=1

duj

m∏
j=1

dsj.
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Let B̃(s) = B(s) − B(t), s ≥ 0 and denote by R(s1, ..., sm) the covariance matrix of
(B̃(s1), ..., B̃(sm)) for distinct s1, ..., sm. Let U = (u1, ..., um) ∈ Rm and UT denote the
transpose of U . According to (16) below we have, detR(s1, ..., sm) > 0. Hence, the change
of variable V = R1/2U , implies∫

Rm

E
(
ei

Pm
j=1 uj(B(sj)−B(t))

)
du1...dum =

(2π)m/2

(detR(s1, ..., sm))1/2
.

Therefore

E [L(t+ h,B(t))− L(t, B(t))]m =
1

(2π)m/2

∫
[t,t+h]m

1

(detR(s1, ...., sm))1/2
ds1...dsm

=
m!

(2π)m/2

∫
t<s1<...<sm<t+h

1

(detR(s1, ...., sm))1/2
ds1...dsm. (13)

In addition

detR(s1, ..., sm) = V ar(B̃(s1))V ar(B̃(s2)/B̃(s1))....V ar(B̃(sm)/B̃(s1), ..., B̃(sm−1)). (14)

In order to estimate the previous conditional variances, we distinguish two cases :
Case 1 : The mBm is given by the moving average representation.
Using similar arguments as in the proof of Theorem 2.1, we obtain for any r, s ∈ [t, t+h],
such that r < s,

V ar
(
B̃(s)/B̃(u), u ∈ A, u ≤ r

)
≥ V ar

(
B̃(s)− B̃(r)/ W (u), u ≤ r

)
≥ V ar

(
BH(s)(s)/ W (u), u ≤ r

)
≥ 1

2νC2
(s− r)2H(s), (15)

where C = supx∈[µ,ν] Γ(x+ 1/2). Combining (14) and (15) we obtain

detR(s1, ..., sm) ≥ 1

(2νC2)m

m∏
j=1

(sj − sj−1)
2H(sj)

≥ 1

(2νC2)m

m∏
j=1

(sj − sj−1)
2Ht,t+h , (16)

where s0 = 0 and (sj − sj−1)
H(sj) ≥ (sj − sj−1)

Ht,t+h , since (sj − sj−1) < 1.

Case 2 : The mBm is given by the harmonizable representation.
Using the equivalence in law between the representations (2) and (3), we obtain

B̃(s) = B̂H(s)(s)− B̂H(t)(t)
(d)
= ψ(s)BH(s)(s)− ψ(t)BH(t)(t),

where
(d)
= stands for the equality in distribution. Therefore, denotingB(s) = ψ(s)BH(s)(s)−

ψ(t)BH(t)(t), s ∈ [t, t+ h], we obtain

detR(s1, ..., sm) = detCov(B(s1), ..., B(sm))

= V ar(B(s1))V (B(s2)/B(s1))....V ar(B(sm)/B(s1), ..., B(sm−1)).(17)
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On the other hand, for any r, s ∈ [t, t+ h], such that r < s,

V ar
(
B(s)/B(u), u ∈ A, u ≤ r

)
≥ V ar

(
ψ(s)BH(s)(s)/ W (u), u ≤ r

)
≥ K1

2νC2
(s− r)2H(s). (18)

Combining (17), (18) and similar arguments as when proving (16), we obtain

detR(s1, ..., sm) ≥ Km
1

(2νC2)m

m∏
j=1

(sj − sj−1)
2Ht,t+h , (19)

Therefore, we have in both cases

detR(s1, ..., sm) ≥ K̃m

(2νC2)m

m∏
j=1

(sj − sj−1)
2Ht,t+h , (20)

where K̃ = min(K1, 1). Hence, the remainder of the proof does not depend on the
representation.
According to (13) and (20), we have

E [L(t+ h,B(t))− L(t, B(t))]m

≤
(
νC2

K̃π

)m/2

m!

∫
t<s1<...<sm<t+h

m∏
j=1

1

(sj − sj−1)Ht,t+h
ds1...dsm.

Now, by an elementary calculation (cf. Ehm (1981)), for all m ≥ 1, h > 0 and bj < 1,∫
t<s1<...<sm<t+h

m∏
j=1

(sj − sj−1)
−bjds1...dsm = hm−

Pm
j=1 bj

∏m
j=1 Γ(1− bj)

Γ(1 +m−
∑m

j=1 bj)
.

Therefore

E [L(t+ h,B(t))− L(t, B(t))]m ≤ m!

(
νC2

K̃π

)m/2

hm(1−Ht,t+h) (Γ(1−Ht,t+h))
m

Γ(1 +m(1−Ht,t+h))

According to Stirling’s formula, we have (m!/Γ(1 +m(1−Ht,t+h))) ≤Mmm!Ht,t+h , m ≥ 2,
for a suitable finite number M . Therefore

E

[
L(t+ h,B(t))− L(t, B(t))

h1−Ht,t+h

]m

≤ Cmm!Ht,t+h . (21)

We shall now prove that for any K > 0 there exists a positive and finite constant A > 0,
depending on t, such that for u small enough,

P

(
L(t+ h,B(t))− L(t, B(t)) ≥ Ah1−Ht,t+h

uHt,t+h

)
≤ exp(−K/u). (22)
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Consider u first of the form u = 1/m. Combining Tchebychev’s inequality and (21) we
obtain

P
(
L(t+ h,B(t))− L(t, B(t))

h1−Ht,t+h
≥ AmHt,t+h

)
≤ E

[
L(t+ h,B(t))− L(t, B(t))

Ah(1−Ht,t+h)mHt,t+h

]m

≤ Cm

Am
(

1

m
)mHt,t+h(m!)Ht,t+h .

Using again Stirling’s formula, the last expression is at most
Cm

Am
(2πm)Ht,t+h/2e−Ht,t+hm.

This can be written

exp

(
m [log(C/A)−Ht,t+h] +

Ht,t+h

2
[log(m) + log(2π)]

)
, (23)

it suffices to take A > C and m0 large such that for any m ≥ m0, (23) is dominated by
e−2Km. Moreover for u sufficiently small, there exists m ≥ m0 such that um+1 < u < um

and since m ≥ 1,
m

m+ 1
≥ 1

2
. This proves (22).

In addition, if we take u(h) = 1/ log log(1/h) and consider first hm of the form 2−m, then
(22) implies

P
(
L(t+ hm, B(t))− L(t, B(t)) ≥ Ah

1−Ht,t+hm
m log log(1/hm)Ht,t+hm

)
≤ m−2,

for large m. Consequently, by using Borel Cantelli lemma and monotonicity arguments,
we obtain

L(t+ h,B(t))− L(t, B(t))

h1−Ht,t+h
≤ A log log(1/h)Ht,t+h a.s.

In addition the Hölder regularity of H implies that

log log(1/h)Ht,t+h

log log(1/h)H(t)
= eKhβ log log log 1/h → 1 as h→ 0+

Therefore
log log(1/h)Ht,t+h ≤ K log log(1/h)H(t)

for h small enough. Moreover, using the same arguments (See Remark 3.7 in Boufoussi
et al (2006)), we obtain

h1−Ht,t+h ≤ Kh1−H(t). (24)

This completes the proof of (11). Since (12) is proved in a same manner, the proof is
omitted here.

Remark 3.3. The result of the previous theorem, with sups∈[t,t+h]H(s) instead of H(t),
may be proved even when (Hβ) is not satisfied.

We shall also prove the following uniform result.
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Theorem 3.4. Let {B(t), t ∈ [0, 1]} be a mBm with arbitrary Hurst function and denote
H0,1 = sups∈[0,1]H(s). Then, for all x ∈ R, there exists C3 > 0 such that

lim sup
|t−s|↘0+

t,s∈[0,1]

|L(t, x)− L(s, x)|
|t− s|1−H0,1(log(1/|t− s|))H0,1

≤ C3 a.s. (25)

Proof. By using the same arguments as above, without using the Hölder continuity of H,
we show that, with probability one, there exists m0(ω) such that for all m ≥ m0(ω) and
k = 1, ....., 2m

L(k2−m, x)− L((k − 1)2−m, x) ≤ A2−(1−H0,1)m(m log(2))H0,1 . a.s.

Then by proceding essentially as in Kôno (1977) we prove (25).

Remark 3.5. The results in this section are based on the following property of the mBm:

V ar (B(t+ h)/B(s) : 0 ≤ s ≤ t) ≥ Ch2Ht,t+h , (26)

for h small enough. If H is constant, this property is called the one sided strong local
nondeterminism; we refer to Monrad and Rootzén (1995 expression (2.2)) and the refer-
ences therein for definition and applications. The property (26) is satisfied by many other
processes with multifractal behavior, such as the Riemann-Liouville mBm {X(t), t ≥ 0}
introduced in Lim (2001) by substituting, in the definition of the Riemann-Liouville fBm,
the constant Hurst parameter H by a regular function as follows

X(t) =
1

Γ(H(t) + 1/2)

∫ t

0

(t− u)H(t)−1/2dWu.

So our results extend those of Kôno (1977) to Gaussian processes without stationary
increments.

Remark 3.6. A closer examination of the proof of Theorem 2.1 in Csörgö et al. (1995)
shows that the property of stationarity of increments is just used to prove two main in-
gredients presented in their Lemmas 3.1 and 3.3 and which can in our case be replaced
easily by the following properties

1. Let An be the covariance matrix of a Gaussian vector {ζi; 1 ≤ i ≤ n}. Then, it is
known that the conditional variance can be written as

V ar(ζi/ζl, l 6= i, 1 ≤ l ≤ n) =
|An|
|A(i)

n |
,

where A(i)
n is the submatrix of An obtained by deleting the ith row and column.

2. If a stochastic process has the property (26), with H constant, then according to (14)
its covariance matrix satisfies

detR(t1, ...., tm) ≥ Cm

m∏
j=1

(tj − tj−1)
2H , for t < t1 < .... < tm < t+ h and t0 = 0.
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Then the arguments of Csörgö et al. (1995, Theorem 2.1) can be adapted to prove that
the class of processes satisfying (26) with H constant satisfies

lim sup
T→∞

sup
0≤t≤bT

L(t+ aT , x)− L(t, x)

a1−H
T (log(bT/aT ) + log log(aT + 1/aT ))H

< C <∞ a.s. (27)

where aT and bT are nonnegative functions in T ≥ 0 such that
1 + bT
aT

−→ +∞ as

T → +∞.

4 Chung’s law of the iterated logarithm
The following theorem establishes an analogue of the Chung law of iterated logarithm for
the mBm. The result for the fBm has been obtained by Monrad and Rootzén (1995).

Theorem 4.1. Let B be a multifractional Brownian motion, assume that H satisfies the
condition (Hβ). Then the following Chung type law of iterated logarithm holds:

lim inf
δ→0

sup
s∈[t0,t0+δ]

|B(s)−B(t0)|
(δ/ log | log(δ)|)H(t0)

= CH(t0), a.s. (28)

where the constant CH(t0) is the one appearing in Chung’s law for the fBm of Hurst
parameter H(t0).

Proof. We first introduce the process {B̃(t) = B(t) − BH(t0)(t), t ≥ 0}, where BH(t0)

denotes a fBm with Hurst parameter H(t0). According to Theorem 3.3 of Monrad and
Rootzén (1995), the fBm with Hurst exponent H(t0) satisfies (28). Furthermore,

B(t)−B(t0) = (B(t)−BH(t0)(t)) + (BH(t0)(t)−BH(t0)(t0)),

= B̃(t) + (BH(t0)(t)−BH(t0)(t0)).

Then (28) will be proved if we show that

lim
δ→0

sup
t∈[t0,t0+δ]

|B̃(t)|
(δ/ log | log(δ)|)H(t0)

= 0. a.s.

On the other hand, Lemma 3.1 in Boufoussi et al (2006), implies that there exists a
positive constant K such that

sup
t∈[t0,t0+δ]

E(B̃(t))2 ≤ Kδ2β.

Hence, according to Theorem 2.1 in Adler (1990, p. 43) and a symmetry argument, we
have

P

(
sup

t∈[t0,t0+δ]

|B̃(t)| ≥ u

)
≤ 2P

(
sup

t∈[t0,t0+δ]

B̃(t) ≥ u

)

≤ 4 exp

−
(
u− E

(
supt∈[t0,t0+δ] B̃(t)

))2

Kδ2β

 . (29)
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Denote for simplicity Λ = sup
t∈[t0,t0+δ]

B̃(t). By (29) we obtain

E (Λ) ≤
∫ +∞

0

P

(
sup

t∈[t0,t0+δ]

|B̃(t)| > x

)
dx

≤ 4

∫ +∞

0

exp

(
− [x− EΛ]2

Kδ2β

)
dx

=
4
√
Kδβ

√
2

∫ ∞

−
√

2/K EΛ

δβ

e−y2/2dy

≤ 4
√
Kπδβ

It follows that
(u− EΛ)2 ≥ 1

2
u2 − (EΛ)2 ≥ 1

2
u2 − 16Kπδ2β

Consequently (29) becomes

P

(
sup

t∈[t0,t0+δ]

|B̃(t)| ≥ u

)
≤ C exp

(
− u2

Kδ2β

)
. (30)

Since H(t0) < β, there exists 0 < ξ < β − H(t0). Consider δn = n1/(2(ξ+H(t0)−β)) and
un = δ

H(t0)+ξ
n . Therefore, according to (30), we have

∞∑
n=1

P

(
sup

t∈[t0,t0+δn]

|B̃(t)| ≥ un

)
≤

∞∑
n=1

exp(− 1

K
n) <∞

It follows from the Borel Cantelli lemma that there exists n0 = n0(ω) such that for all
n ≥ n0, sup

s∈[t0,t0+δn]

|B̃(s)| ≤ δH(t0)+ξ
n almost surely. Furthermore, for δn+1 ≤ δ ≤ δn, we

have almost surely

sup
s∈[t0,t0+δ]

|B̃(s)| ≤ sup
s∈[t0,t0+δn]

|B̃(s)|

≤ δH(t0)+ξ
n ≤ δH(t0)+ξ

(
δn
δn+1

)H(t0)+ξ

≤ 2θδH(t0)+ξ

where θ =
H(t0) + ξ

2(β −H(t0)− ξ)
. Hence

lim
δ→0

sup
t∈[t0,t0+δ]

|B̃(t)|
(δ/ log | log(δ)|)H(t0)

≤ lim
δ→0

δξ (log | log(δ)|)H(t0) = 0. a.s.

This completes the proof of the theorem.
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Remark 4.2. Observe that by the ideas used to prove the previous theorem many laws of
iterated logarithm (LIL) proved for the fBm can now be obtained for the mBm and with
the same constants. For example, we have the following LIL (c.f. Li and Shao (2001),
equation (7.5) for the fBm)

lim sup
δ→0

sup
s∈[t0,t0+δ]

|B(s)−B(t0)|
δH(t0) (log | log(δ)|)1/2

=
√

2VH(t0)(B), a.s. (31)

where
VH(t0)(B̂) =

√
π

H(t0)Γ(2H(t0)) sin(πH(t0))

and

VH(t0)(B
H) =

(∫ 0

−∞

[
(1− s)H(t0)− 1

2 − (−s)H(t0)− 1
2

]2
ds

)1/2

+ 1
2H(t0)

Γ(H(t0) + 1/2)
.

Other laws of iterated logarithm and uniform moduli of continuity are obtained for B̂ by
Benassi et al. (1997, Theorem 1.7) via wavelet technics.

We are now able to prove the following

Proposition 4.3. Let B be a multifractional Brownian motion, assume that H satisfies
the condition (Hβ). The pointwise Hölder exponent αL of sup

x∈R
L(., x) at t satisfies

αL(t) = 1−H(t) a.s.

Proof. The lower bound was already given in Boufoussi et al. (2006, Corollary 3.6). The
upper bound is a consequence of the Chung’s law of the mBm. Indeed, since the local
time vanishes outside the range of B, we obtain

δ =

∫
R
L([t0, t0 + δ], x)dx

≤ sup
x∈R

L([t0, t0 + δ], x) sup
s,t∈[t0,t0+δ]

|B(s)−B(t)|

≤ 2 sup
x∈R

L([t0, t0 + δ], x) sup
s∈[t0,t0+δ]

|B(s)−B(t0)|. (32)

Combining (28) and (32) we obtain that there exists a positive constant C such that

lim sup
δ→0

sup
x∈R

L(t0 + δ, x)− L(t0, x)

δ1−H(t0)(log log(δ−1))H(t0)
≥ C a.s.

Which with the definition of the pointwise Hölder exponent proves the result.

5 Asymptotic results
It is well known that technics for proving limit theorems related to self similar processes
use the self similarity of their local times. It is natural to expect the same when dealing
with locally asymptotically self similar processes (lass for brevity). Thus it will be of some
interest to know if the local times satisfy a kind of lass property.
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5.1 Lass for local times

The answer to the preceding question is affirmative in the case of the mBm and the result
is given by the following

Theorem 5.1. Let B be a multifractional Brownian motion, assume that H satisfies the
condition (Hβ). Then, for any fixed t0, the local time of the mBm is locally asymptotically
self similar with parameter 1 − H(t0), in the sense that for every x ∈ R, the processes
{Yρ(t, x), t ∈ [0, 1]}ρ>0 defined by

Yρ(t, x) =
L
(
t0 + ρt, ρH(t0)x+B(t0)

)
− L

(
t0, ρ

H(t0)x+B(t0)
)

ρ1−H(t0)
,

converge in law to the local time, {`(t, x), t ∈ [0, 1]}, of a fBm Z with Hurst parameter
H(t0), i.e.

lim
ρ→0

law{Yρ(t, x), t ∈ [0, 1]} = law{`(t, x), t ∈ [0, 1]}, (33)

where the convergence is in the space of continuous functions endowed with the norm of
the uniform convergence.

The motivation to consider the processes Yρ follows from the occupation density formula
and the lass property (1) of the mBm. Indeed, according to the occupation density
formula, the local time has the following representation

L(t, x) =
1

2π

∫ +∞

−∞
e−iux

(∫ t

0

eiuB(s)ds

)
du.

Consequently,

Yρ(t, x) =
1

2πρ1−H(t0)

∫
R
e−iy(ρH(t0)x+B(t0))

∫ t0+ρt

t0

eiyB(s)dsdy.

Using the change of variables r =
s− t0
ρ

and ρH(t0)y = v, the right hand side of the

previous expression becomes

1

2π

∫
R
e−ivx

∫ t

0

exp

(
iv
B(t0 + ρr)−B(t0)

ρH(t0)

)
drdv,

which is the local time of the Gaussian process
{
Bρ(r) =

B(t0 + ρr)−B(t0)

ρH(t0)
, r ∈ [0, 1]

}
.

We need the following lemma for the proof of the finite dimensional convergence.

Lemma 5.1. Let {X(t), t ∈ [0, 1]} be a stochastic process in the Skorohod space D([0, 1])
and define for a fixed interval I = [a, b] ⊂ R the map

φI(X)(t) =

∫ t

0

1{X(s)∈I}ds.

If {Xn(t), t ∈ [0, 1]}n≥1 is a family of processes which converges in law in D([0, 1]) to X,
then φI(Xn) converges in law to φI(X).
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Proof. The lemma is a consequence of the continuity of the map X(.) → φε(X(.)) in J1

topology on D([0, 1]) at almost all sample points of the process X, which is proved on
page 11 in Kesten and Spitzer (1979).

Proof of Theorem 5.1. To prove the convergence in law, we proceed in two steps. First
we prove the tightness of the family {Yρ(t, x), t ∈ [0, 1]}ρ > 0 in the space of continuous
functions. By using (21) and (24), for ρ small enough, we obtain

E |Yρ(t, x)− Yρ(s, x)|m =
E
[
L
(
t0 + ρt, ρH(t0)x+B(t0)

)
− L

(
t0 + ρs, ρH(t0)x+B(t0)

)]m
ρ(1−H(t0))m

,

≤ Cm|t− s|(1−H(t0))m.

We can take m > 1
1−H(t0)

to get the tightness.
Now, we prove the convergence of the finite dimensional distributions of Yρ, as ρ tends to
0, to those of the local time ` of a fBm, Z, with Hurst parameter H(t0). We need to show
that for any d ≥ 1, a1, ..., ad ∈ R and t1, ...., td ∈ [0, 1], the following convergence holds,

d∑
j=1

ajYρ(tj, x)
W

=⇒
d∑

j=1

aj`(tj, x) as ρ→ 0.

We will show the convergence of the corresponding characteristic function. More precisely
we prove that∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj, x)

]
− E exp

[
iλ

d∑
j=1

aj`(tj, x)

]∣∣∣∣∣ −→ 0, as ρ→ 0.

Let’s introduce the following notations

Iε,ρ
1 =

∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj, x)

]
− E exp

[
iλ

d∑
j=1

ajφε,x(B
ρ(tj))

]∣∣∣∣∣ ,
Iε,ρ
2 =

∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajφε,x(Z(tj))ds

]
− E exp

[
iλ

d∑
j=1

ajφε,x(B
ρ(tj))ds

]∣∣∣∣∣ ,
and Iε

3 =

∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajφε,x(Z(tj))ds

]
− E exp

[
iλ

d∑
j=1

aj`(tj, x)

]∣∣∣∣∣ .
Therefore∣∣∣∣∣E exp

[
iλ

d∑
j=1

ajYρ(tj, x)

]
− E exp

[
iλ

d∑
j=1

aj`(tj, x)

]∣∣∣∣∣ ≤ Iε,ρ
1 + Iε,ρ

2 + Iε,ρ
3 . (34)
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On the other hand, Yρ is the local time of Bρ and by using the mean value theorem and
the occupation density formula we obtain

Iε,ρ
1 ≤ C max

1≤j≤d
E |Yρ(tj, x)− φε,x(B

ρ(tj))|

= C max
1≤j≤d

E

∣∣∣∣1ε
∫ x+ε

x

Yρ(tj, y)dy − Yρ(tj, x)

∣∣∣∣ (35)

Moreover, since the stochastic process {Yρ(t, y), y ∈ R}, is almost surely continuous in y
for every t, according to the dominated convergence theorem, (35) converges to zero as ε
tends to zero independently of ρ.
We deal now with Iε,ρ

2 . Since the family of processes {Bρ(t), t ∈ [0, 1]}ρ>0 converges in
distribution to the fBm {Z(t), t ∈ [0, 1]} with Hurst parameter H(t0), the second term
converges to zero as ρ tends to 0 by Lemma 5.1 .
The last term in (34) is treated in a similar way as the first and the proof of the finite
dimensional convergence is complete . �

5.2 Limit theorems

The following result is an immediate consequence of the lass of the mBm.

Proposition 5.2. Let B be a multifractional Brownian motion, assume that H satisfies
the condition (Hβ) and denote by `(t, x) the local time of a fBm with Hurst parameter
H(t0). Then for every f ∈ L1(R), locally Riemann integrable and with compact support
such that

∫
R f(x)dx 6= 0, the following convergence in law holds

lim
λ→∞

lim
ρ→0+

1

λ1−H(t0)

∫ λt

0

f

(
B(ρs+ t0)−B(t0)

ρH(t0)

)
ds =

∫
R
f(x)dx · `(t, 0).

If H is constant, B is a fBm. Being self similar with stationary increments, the term on
the left side of the previous formula is, for H constant, equal in law to 1

λ1−H

∫ λt

0
f(B(s))ds.

We retrieve the result by Kasahara and Kosugi (1997) for the fBm.

Proof. The proof of the proposition relies on the lass property and standard limit theorem
for the fBm. We sketch it for the sake of completeness.
Combining the fact that f is locally Riemann integrable, the lass property of the mBm
and a result in Jeganathan [(2004), Theorem 6 and the comment after it], we obtain∫ λt

0

f

(
B(ρs+ t0)−B(t0)

ρH(t0)

)
(d)−→
∫ λt

0

f(BH(t0)(s))ds as ρ→ 0+.

Moreover, using the occupation density formula and the self similarity of the fBm we
obtain

1

λ1−H(t0)

∫ λt

0

f(BH(t0)(s))ds
(d)
=

∫
R
f(x)`(t, λ−H(t0)x)dx,

where
(d)
= denotes the equality in distribution. Then the result of the theorem follows from

the continuity of `(t, x, ω) with respect to the space variable.
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However the presence of a double limit may be not convenient, and the result may be
better if λ and ρ are dependent. We prove the following local limit theorem

Theorem 5.3. Let B be a multifractional Brownian motion, assume that H satisfies the
condition (Hβ). Denote by `(t, x) the local time of a fBm with Hurst parameter H(t0) and
consider f ∈ L1(R) such that :∫

R
|f(x)||x|ξdx <∞ for some 0 < ξ <

1

2 supt≥0H(t)
− 1

2
, and

∫
R
f(x)dx 6= 0 (36)

Then, the following convergence in law holds

1

ψ(ρ)

∫ ρt+t0

t0

f

(
B(s)−B(t0)− ρH(t0)y

θ(ρ)

)
ds

(d)−→
∫

R
f(x)dx · `(t, y), as ρ→ 0+,

where θ(.) and ψ(.) satisfy
ψ(ρ)

θ(ρ)
= ρ1−H(t0), and

θ(ρ)

ρH(t0)
= o (1) .

Proof. Using the occupation density formula we obtain

1

ψ(ρ)

∫ ρt+t0

t0

f

(
B(s)−B(t0)− ρH(t0)y

θ(ρ)

)
ds

=

∫
R
f(x)

L(ρt+ t0, θ(ρ)x+ ρH(t0)y +B(t0))− L(t0, θ(ρ)x+ ρH(t0)y +B(t0))

ρ1−H(t0)
dx

=
L(ρt+ t0, ρ

H(t0)y +B(t0))− L(t0, ρ
H(t0)y +B(t0))

ρ1−H(t0)
×
∫

R
f(x)dx (37)

+

∫
R
f(x)

L(I0, θ(ρ)x+ ρH(t0)y +B(t0))− L(I0, ρ
H(t0)y +B(t0))

ρ1−H(t0)
dx, (38)

where we denote in the last expression I0 = [t0, t0 + ρt] for simplicity. According to
Theorem 5.1, the expression (37) converges in distribution to `(t, y) ×

∫
R f(x)dx. It

suffices now to prove that (38) converges to 0 in some strong sense. We have

E

∣∣∣∣∫
R
f(x)

L(I0, θ(ρ)x+ ρH(t0)y +B(t0))− L(I0, ρ
H(t0)y +B(t0))

ρ1−H(t0)
dx

∣∣∣∣
≤
∫

R
|f(x)|

∥∥∥∥L(I0, θ(ρ)x+ ρH(t0)y +B(t0))− L(I0, ρ
H(t0)y +B(t0))

ρ1−H(t0)

∥∥∥∥
L2(Ω)

dx. (39)

Using essentially the same arguments as when proving expression (22) and Remark 3.7 in
Boufoussi et al (2006), but for the process X(t) = B(t)− B(t0) instead of the mBm, we
obtain∥∥∥∥L(I0, θ(ρ)x+ ρH(t0)y +B(t0))− L(I0, ρ

H(t0)y +B(t0))

ρ1−H(t0)

∥∥∥∥
L2(Ω)

≤ Ct1−H(t0)(1+ξ)|x|ξ
(
θ(ρ)

ρH(t0)

)ξ

,
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for ρ small enough and all 0 < ξ < 1
2 supt≥0 H(t)

− 1
2
. Hence, (39) is dominated by

Ct1−H(t0)(1+ξ)

∫
R
|f(x)||x|ξdx×

(
θ(ρ)

ρH(t0)

)ξ

. (40)

This last integral is finite by assumption (36), and then (40) tends to zero as ρ tends to
zero. This completes the proof.
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