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Abstract: The convergence properties of a recently developed recursive subspace identifi-
cation algorithm are investigated in this paper. The algorithm operates on the basis of an
extended instrumental variable (EIV) version of the propagator method for signal subspace
estimation. It is proved that, under weak conditions on the input signal and the identified
system, the consideredMOESP class of recursive subspace identification algorithm converges
to a consistent estimate of the propagator and, by extension, of the state space system
matrices.
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1. INTRODUCTION

Algorithms for recursive subspace model identifica-
tion (RSMI) have been extensively studied in recent
years (see, e.g., (Verhaegen and Deprettere, 1991; Cho
et al., 1994; Gustafsson, 1997; Loveraet al., 2000;
Oku and Kimura, 2002; Mercèreet al., 2004b)).

So far, two main approaches to the RSMI problem
have been developed in the literature. First, some
works have proposed adaptations of subspace model
identification (SMI) algorithms in order to update the
singular value decomposition (SVD) (Verhaegen and
Deprettere, 1991; Choet al., 1994). Unfortunately,
these methods have the drawback of requiring the dis-
turbances acting on the system output to be spatially
and temporally white, which is obviously restrictive
in practice. The second approach (Loveraet al., 2000;
Oku and Kimura, 2002; Mercèreet al., 2004b) relies
on the strong analogies between RSMI and signal
processing techniques dedicated to direction of arrival

(DOA) estimation. Two points of view have been more
precisely suggested to find SVD alternatives in a re-
cursive framework:

• The first one consists in adapting the so-called
Yang’s criterion (Yang, 1995) to the recursive
update of the observability matrix (Loveraet
al., 2000; Oku and Kimura, 2002; Lovera, 2003).
In particular, DOA estimation algorithms have
been adjusted in order to deal with more general
types of perturbations than the ones arising in the
DOA framework thanks to the use of instrumen-
tal variables.

• The second one rests on the adaptation of an
other array signal processing technique: the
propagator method (Munier and Delisle, 1991).
The advantage of this approach over the previous
conception lies in the use of a linear operator and
unconstrained and unapproximated quadratic cri-
teria which lead to easy recursive least squares



algorithms (Mercèreet al., 2003; Mercèreet
al., 2004b; Mercèreet al., 2005).

While a significant level of maturity has now been
reached on the algorithmic side, very limited atten-
tion has been dedicated to the analysis of the conver-
gence properties of the proposed methods for the re-
cursive update of the subspace estimates. In (Oku and
Kimura, 2002), the developed gradient-based RSMI
technique was studied and conditions on the gain of
the gradient iteration were derived. The convergence
study, however, is based on assumptions on the signal-
to-noise ratio which limit the validity of the results.

In the light of the above discussion, the aim of
this paper is to investigate the convergence proper-
ties of recursive implementations of theMOESP class
(Verhaegen, 1994) of subspace identification methods.
In particular, the RSMI algorithms which operate on
the basis of the IV version of the propagator method
for signal subspace estimation will be considered and
a convergence result for such techniques will be de-
rived and discussed.

2. PROBLEM FORMULATION AND NOTATION

Assume that the true system can be described by the
discrete-time linear time-invariant state space model
in innovation form

x(t +1) = Ax(t)+Bu(t)+Ke(t)

y(t) = Cx(t)+Du(t)+e(t)
(1)

with ny outputsy, nu inputsu, nx statesx. Assume also
that:

A1: the system (1) is asymptotically stable;
A2: the pairs{A,C} and{A, [B K ]} are respectively

observable and reachable;
A3: the input u is a quasi stationary deterministic

sequence with correlation function (Ljung, 1999)

Ru(τ) = Ē
[
u(t + τ)uT(t)

]
(2)

where

Ē [.] = lim
N→∞

N

∑
t=1

E [.] (3)

andE is the expectation operator.

The algorithm considered in this paper recursively
estimate the state space matrices{A,B,C,D} at each
new data acquisition. The proposed method is based
on the estimation of a basis for the observability
subspace from the input output (I/O) relation (Mercère
et al., 2004b)

y f (t) = ΓΓΓ f x(t)+H f u f (t)+b f (t) (4)

where the stacked input and output vectors (u f andy f ,
respectively) are defined as

u f (t) =
[
uT(t) · · · uT(t + f −1)

]T
∈ R

nu f×1

y f (t) =
[
yT(t) · · · yT(t + f −1)

]T
∈ R

ny f×1
(5)

with f > nx, ΓΓΓ f is the observability matrix

ΓΓΓ f =
[

CT (CA)T · · ·
(
CA f−1)T

]T
, (6)

H f is the block Toeplitz matrix of the impulse re-
sponses fromu to y and b f = G f ef with G f the
block Toeplitz matrix of the impulse responses from
e to y. The class of algorithms considered herein is
based on the application of the so-called propagator
method (Munier and Delisle, 1991) (first proposed in
the array signal processing literature) to the recursive
estimation ofΓΓΓ f . To this purpose, note that letting

zf (t) = y f (t)−H f u f (t), (7)

equation (4) can be written as

zf (t) = ΓΓΓ f x(t)+b f (t). (8)

From this relation, a two-step procedure for the recur-
sive estimation of the system matrices can be devised:

(1) update of the “observation vector”zf from the
I/O measurements by using (7) (see Section 3);

(2) estimation of a basis ofΓΓΓ f from this observation
vector by using (8) (see Section 4).

3. RECURSIVE ESTIMATION OF THE
OBSERVATION VECTOR

The problem of estimating the observation vector can
be solved by adjusting ideas from offline subspace
identification to the recursive framework. For, let

Z f = Y f −H f U f (9)

whereY f ∈ R
ny f×N andU f ∈ R

nu f×N are the Hankel
I/O data matrices defined as:

Y f (t̄) =
[
y f (t) · · · y f (t +N−1)

]
(10)

with N >> f > n andt̄ = t +N−1. Then, it is easy to
show that:

Z f (t̄) = Y f (t̄)−H f U f (t̄) =
[
Z f (t̄ −1) zf (t̄)

]
(11)

which proves that the update ofZ f leads to the ob-
servation vector at timēt. Since, in offline subspace
identification,Z f is calculated from the orthogonal
projection on the kernel ofU f

Z f = Y f ΠΠΠU f
⊥ , (12)

the proposed method consists in recursively updating
this projection at each iteration. Several algorithms for
the computation of this update have been developed in
the literature (see, e.g., (Loveraet al., 2000; Oku and
Kimura, 2002; Mercèreet al., 2004a)). In this paper,
an approach based on the matrix inversion lemma will
be used, which has the advantage of providing an
explicit expression of the observation vector in terms
of the I/O data (Mercèreet al., 2004a). The idea is to
recursively update the quantity

Y f (t̄)ΠΠΠU f (t̄)
⊥ =

Y f (t̄)
{

I −UT
f (t̄)

(
U f (t̄)UT

f (t̄)
)−1

UT
f (t̄)

}

(13)



at each new data acquisition, knowing that

U f (t̄) =
[
U f (t̄ −1) u f (t̄)

]
(14)

Y f (t̄) =
[
Y f (t̄ −1) y f (t̄)

]
(15)

by applying the matrix inversion lemma to
(

U f UT
f

)−1
.

It can be shown that the observation vector can be
recursively estimated with the following algorithm
(Mercèreet al., 2004a):

Algorithm 3.1. Assume thatW f =
(

U f UT
f

)−1
and

V f = Y f UT
f have been estimated at timēt −1. Then,

when a new I/O data sequence
{

u f (t̄),y f (t̄)
}

is ac-
quired, the observation vector is updated by the fol-
lowing recursion:

βββ f (t̄) = W f (t̄ −1)u f (t̄) (16a)

δ f (t̄) = uT
f (t̄)βββ f (t̄) (16b)

α f (t̄) =
1

1+δ f (t̄)
(16c)

zf (t̄) = α f (t̄)
(

y f (t̄)−V f (t̄ −1)βββ f (t̄)
)

(16d)

V f (t̄) = V f (t̄ −1)+y f (t̄)uT
f (t̄) (16e)

W f (t̄) =
(

W f (t̄ −1)−α f (t̄)βββ f (t̄)βββ
T
f (t̄)

)

. (16f)

Remark 3.1.Letting X(t̄) =
[
x(t) · · · x(t̄)

]
and re-

placing in (16d)y f with (4) andY f with (Verhaegen,
1994)

Y f (t̄ −1) =

ΓΓΓ f X(t̄ −1)+H f U f (t̄ −1)+B f (t̄ −1), (17)

it is easy to show that

zf (t̄) = α f (t̄)ΓΓΓ f

(

x(t̄)−X(t̄ −1)UT
f (t̄ −1)βββ f (t̄)

)

+α f (t̄)
(

b f (t̄)−B f (t̄ −1)UT
f (t̄ −1)βββ f (t̄)

)

= α f (t̄)
(
ΓΓΓ f x̃(t̄)+ b̃ f (t̄)

)
.

(18)

It is apparent from the above equation thatzf belongs
to spancol

{
ΓΓΓ f

}
.

Remark 3.2.In the following, the factorα f , which
appears as a scaling factor in the expression ofzf , will
be neglected for simplicityi.e.

zf (t̄) = ΓΓΓ f x̃(t̄)+ b̃ f (t̄). (19)

Note that this simplification does not affect the prop-
erties of the algorithm since (19) provides all the in-
formation needed to estimate spancol

{
ΓΓΓ f

}
.

4. RECURSIVE UPDATE OF THE
OBSERVABILITY MATRIX

Once the observation vector is estimated, the second
step of the recursive subspace identification procedure
consists in online updating the observability matrix.
Unlike previous approaches (see, e.g., (Loveraet al.,

2000; Oku and Kimura, 2002)), in this paper, the
focus will be on updating algorithms based on the
propagator concept (see also (Mercèreet al., 2004b)).

Under assumption A2, sinceΓΓΓ f ∈ Rny f×nx with ny f >
nx, ΓΓΓ f has at leastnx linearly independent rows, which
can be gathered in a submatrixΓΓΓ f1. Then, the comple-
mentΓΓΓ f2 of ΓΓΓ f1 can be expressed as a linear combina-
tion of thesenx rows. So, there is a unique linear op-
eratorPf ∈ Rnx×(ny f−nx), named propagator (Munier
and Delisle, 1991), such that

ΓΓΓ f2 = PT
f ΓΓΓ f1. (20)

Furthermore, it is easy to verify that

ΓΓΓ f =

[
ΓΓΓ f1
ΓΓΓ f2

]

=

[
ΓΓΓ f1

PT
f ΓΓΓ f1

]

=

[
Inx

PT
f

]

ΓΓΓ f1 = EoΓΓΓ f1. (21)

Thus, since rank
{

ΓΓΓ f1

}
= nx,

spancol
{

ΓΓΓ f
}

= spancol{Eo} . (22)

Equation (22) implies that it is possible to estimate the
observability matrix (in a particular basis) by estimat-
ing the propagator. This operator can be determined
from (8). Indeed, applying a data reorganization so
that the firstnx rows of ΓΓΓ f are linearly independent,
(8) can be partitioned as

zf (t) =

[
zf1(t)
zf2(t)

]

=

[
Inx

PT
f

]

ΓΓΓ f1x(t)+

[
b f1(t)
b f2(t)

]

(23)

wherezf1 ∈ R
nx×1 andzf2 ∈ R

(ny f−nx)×1 are the com-
ponents ofzf respectively corresponding toΓΓΓ f1 and
ΓΓΓ f2. In the ideal noise free case, it is easy to show that

zf2 = PT
f zf1. (24)

In the presence of noise, this relation no longer holds.
However, an estimate ofPf can be obtained by min-
imising the cost function

J(Pf ) = E
∥
∥zf2 −PT

f zf1

∥
∥

2
. (25)

It is easy to see from (23) that the estimate ofPf

obtained by minimising (25) is biased (Mercèreet
al., 2004b). This issue is normally circumvented in
the array signal processing literature by assuming that
the noise vectorb f is spatially and temporally white
and simultaneously estimating the propagator and the
noise variance (see, e.g., (Marcoset al., 1995)). Un-
fortunately, it is apparent from (18) that the noiseb̃ f

is not white. So, it is necessary to modify the criterion
(25) to ensure that the propagator approach provides
unbiased estimates in this more general case. This is
obtained by introducing an instrumental variableξξξ ∈
R

nξ×1 in (25), assumed to be uncorrelated with the
noise but sufficiently correlated with the state vector
x, and by defining the new cost function

JIV (Pf ) =
∥
∥
∥Rzf2

ξξξ −PT
f Rzf1

ξξξ

∥
∥
∥

2

F
. (26)

Four algorithms (IVPM, EIVPM, EIVsqrtPM and
COIVPM (Mercèreet al., 2003; Mercèreet al., 2004a;
Mercèreet al., 2005)) have been developed to min-
imise this criterion according to the number of in-
struments inξξξ . In this paper, in order to study the



convergence properties of the propagator associated
with an instrumental variable, theEIVPM algorithm
is considered. This technique requires to construct an
instrumental variable such thatnξ ≥ nx. By assuming
that the input is sufficiently “rich” (see Section 5) so
that Rzf1

ξξξ is full rank, the asymptotic least squares
estimate of the propagator is given by

P̂T
f = Rzf2

ξξξ R†
zf1

ξξξ . (27)

Then, a recursive version of (27) can be obtained
by adapting the overdetermined instrumental variable
technique first proposed in (Friedlander, 1984). The
resulting algorithm is given by

gf (t) =
[

Rzf2
ξξξ (t)ξξξ (t) zf2(t)

]

(28a)

ΛΛΛ(t) =

[

−ξξξ T
(t)ξξξ (t) λ
λ 0

]

(28b)

ΨΨΨ f (t) =
[

Rzf1
ξξξ (t −1)ξξξ (t) zf1(t)

]

(28c)

K f (t) =
(
ΛΛΛ(t)+ΨΨΨT

f (t)L f (t −1)ΨΨΨ f (t)
)−1

ΨΨΨT
f (t)L f (t −1)

(28d)

PT
f (t) = PT

f (t −1)

+
(
gf (t)−PT

f (t −1)ΨΨΨ f (t)
)

K f (t)
(28e)

Rzf1
ξξξ (t) = λRzf1

ξξξ (t −1)+zf1(t)ξξξ
T
(t) (28f)

Rzf2
ξξξ (t) = λRzf2

ξξξ (t −1)+zf2(t)ξξξ
T
(t) (28g)

L f (t) =
1

λ 2

(
L f (t −1)−L f (t −1)ΨΨΨ(t)K f (t)

)

(28h)

with L f (t) =
(

Rzf1
ξξξ (t)RT

zf1
ξξξ (t)

)−1
. (28i)

where 0< λ ≤ 1 is a forgetting factor.

5. CONVERGENCE ANALYSIS OFEIVPM

In this Section, the convergence conditions and the
asymptotic distribution of the estimation error of the
EIVPM algorithm are derived. For, note that assuming
λ = 1, the quadratic criterion (26) is minimized byP̂f

such that

P̂T
f (t)R(t) =

[

Rzf2
ξξξ (t)RT

zf1
ξξξ (t)

]

(29)

with
R(t) =

[

Rzf1
ξξξ (t)RT

zf1
ξξξ (t)

]

. (30)

The right hand side of (29) can be equivalently written
as

Rzf2
ξξξ RT

zf1
ξξξ =

[

1
t

t

∑
τ=1

zf2(τ)ξξξ T
(τ)

]

RT
zf1

ξξξ . (31)

Now, writing (19) in the propagator basis, we get
[
zf1(t)
zf2(t)

]

=

[
Inx

PT
f

]

x̃(t)+

[
b̃ f1(t)
b̃ f2(t)

]

. (32)

Therefore, it is possible to writezf2 in terms of the true
propagatorPT

f

zf2(t) = PT
f zf1(t)+

(
b̃ f2(t)−PT

f b̃ f1(t)
)

︸ ︷︷ ︸

ηηη(t)

. (33)

By introducing this equation in (31), we get

Rzf2
ξξξ RT

zf1
ξξξ =

1
t

t

∑
τ=1

(
PT

f zf1(τ)+ηηη(τ)
)

ξξξ T
(τ)RT

zf1
ξξξ

= PT
f Rzf1

ξξξ (t)RT
zf1

ξξξ (t)+Rηηηξξξ (t)RT
zf1

ξξξ (t) (34)

and finally, from (29) and (34) we have
(
P̂T

f (t)−PT
f

)
R(t) = Rηηηξξξ (t)RT

zf1
ξξξ (t). (35)

Along the lines of (Ljung and Söderström, 1983,
Chapter 4), the convergence analysis ofEIVPM is
based on the analysis of (35),i.e.

(1) proving that
(

P̂T
f (t)−PT

f

)

R(t)→0 w.p.1 ast →
∞;

(2) deriving conditions under whichR(t) → R0

ast → ∞, with R0 full rank.

These two steps are considered in the following sub-
sections.

5.1 Convergence of
(

P̂T
f (t)−PT

f

)

R(t)

From (35), it is easy to establish the following propo-
sition:

Proposition 5.1.Consider algorithm (28) and assume
that

• the inputu is uncorrelated with the innovatione
(system in open loop);

• ξξξ ∈ R
nξ×1 (nξ ≥ nx) is uncorrelated with the

noise but sufficiently correlated with the state
vectorx.

Then
(

P̂T
f (t)−PT

f

)

R(t) → 0 w.p.1 ast → ∞.

Proof 5.1. Note that from (18)

1
t

t

∑
τ=1

b̃ f (τ)ξξξ T
(τ) =

1
t

t

∑
τ=1

[
G f

(
ef (τ)−

E f (τ −1)UT
f (τ −1)βββ f (τ)

)

ξξξ T
(τ)

]
(36)

tends to

G f

(

Ref ξξξ −Ref u f R
−1
u f

Ru f ξξξ

)

(37)

w.p.1 whent → ∞ where

Ref ξξξ = Ē

[

ef (τ)ξξξ T
(τ)

]

= 0 (38)

Ref u f = Ē
[
ef (τ −1)uT

f (τ −1)
]
= 0 (39)

Ru f = Ē
[
u f (τ −1)uT

f (τ −1)
]

(40)

Ru f ξξξ = Ē

[

u f (τ)ξξξ T
(τ)

]

(41)

according to the assumptions onξξξ and u. Thus, we
have

1
t

t

∑
τ=1

b̃ f (τ)ξξξ T
(τ) → 0 w.p.1 ast → ∞ (42)

and, by extension

1
t

t

∑
τ=1

ηηη(τ)ξξξ T
(τ) → 0 w.p.1 ast → ∞. (43)



5.2 Convergence ofR(t)

In order to complete the proof, we need to study under
which conditionsR(t) converges to a full rank matrix
in order to conclude that̂PT

f (t) → PT
f w.p.1 ast → ∞.

To this purpose, we just need to analyse the rank
of Rzf1

ξξξ as t → ∞. Note that writing (19) in the
propagator basis gives (see (32))

zf1(t) = x̃(t)+ b̃ f1(t). (44)

Then, recalling the definition of̃x given in (18),
Rzf1

ξξξ (t) can be written as

Rzf1
ξξξ (t) =

1
t

t

∑
τ=1

b̃ f1(τ)ξξξ T
(τ)+

1
t

t

∑
τ=1

[(

x(τ)−X(τ −1)UT
f (τ −1)βββ f (τ)

)

ξξξ T
(τ)

]

.

(45)

Since (42) holds, the first term of the right hand side
of (45) can be neglected. Therefore, we have that

Rzf1
ξξξ (t) → R1/2

0 = Rxξξξ −Rxu f R
−1
u f

Ru f ξξξ (46)

w.p.1 whent → ∞ where

Rxξξξ = Ē

[

x(τ)ξξξ T
(τ)

]

(47)

Rxu f = Ē
[
x(τ −1)uT

f (τ −1)
]

(48)

Ru f ξξξ = Ē

[

u f (τ)ξξξ T
(τ)

]

. (49)

According to the Schur Lemma (Golub and Van Loan,

1996), a sufficient condition that guarantees thatR1/2
0

is full rank is given by

rank

{[
Rxξξξ Rxu f

Ru f ξξξ Ru f

]}

=

rank

{

Ē

[[
x(t)
u f (t)

][
ξξξ (t)
u f (t)

]T
]}

= nx + f nu. (50)

If the instrumental variable vector is constructed from
past input and output data, such as

ξξξ (t) =
[
yT

p(t) uT
p(t)

]T

= [yT (t−p) ··· yT (t−1) uT (t−p) ··· uT (t−1) ]T , (51)

ξξξ (t) ∈ R
(ny+nu)p×1, then equation (50) corresponds

to the so-calledcritical relation for the consistency
of IV subspace identification algorithms, first derived
in the classical paper (Jansson and Wahlberg, 1998).
In particular, conditions under which (50) holds have
been derived in the cited paper and lead to the fol-
lowing general theorem for convergence of theEIVPM
algorithm.

Proposition 5.2.Consider theEIVPM algorithm (28)
and assume that:

• (A,B) is reachable;
• K = 0 (i.e., no process noise);
• p≥ nx;

• the inputu is persistently exciting of orderf +
p+nx;

• the inputu is uncorrelated with the innovatione
(system in open loop).

Then:
P̂T

f (t) → PT
f w.p.1 ast → ∞ (52)

In addition, convergence is also guaranteed ifK 6= 0 in
a number of special cases (single input systems, white
noise input,ARMA input signal), see again (Jansson
and Wahlberg, 1998) for details.

6. SIMULATION EXAMPLE

Consider the fourth-order system (Van Overschee and
De Moor, 1995):

x(t +1) =

[
0.67 0.67 0 0
−0.67 0.67 0 0

0 0 −0.67 −0.67
0 0 0.67 −0.67

]

x(t)

+

[ 0.6598
1.9698
4.3171
−2.6436

]

u(t)+

[−0.1027
0.5501
0.3545
−0.5133

]

e(t) (53)

y(t) = [−0.5749 1.0751−0.5225 0.183]x(t)
−0.7139u(t)+ 0.9706e(t). (54)

The inputu and the innovatione are white Gaussian
noises with zero mean and variance 1 and 9 respec-
tively. This leads to a signal to noise ratio (of vari-
ances) at the output of 2.2. The initial estimates of
the system matrices are randomly generated under the
constraint that the absolute value of the maximum
eigenvalue ofÂ(0) is less than 1 (stability require-
ment). The forgetting factor is fixed at 1 in order to
meet the assumptions of the convergence study, while
the f andp parameters are equal to 6.

A simple way of checking the accuracy of the esti-
mated model consists in comparing the real parts esti-
mated eigenvalues of̂A with the true ones,i.e.,±0.67.
Figure 1 illustrates this comparison by showing the
trajectories of the estimated eigenvalues obtained with
EIVPM. Despite the lack of forgetting, the algorithm
provides consistent estimates of the eigenvalues as
expected. Figure 2 shows the evolution of the singular
values of the matrixR(t) on a sizeable lapse of time
relatively to the convergence speed ofEIVPM. As can
be seen from this figure, the smallest singular value of
R(t) is always nonzero, which reinforces the fact that
R(t) converges to a nonsingular matrix.

7. CONCLUDING REMARKS

The class of recursive subspace identification algo-
rithms of theMOESP class based on the EIV version
of the propagator method for signal subspace estima-
tion has been analysed and a convergence proof for
theEIVPM algorithm has been derived. A simulation
example is used to illustrate the validity of the under-
lying assumptions.



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Samples

E
st

im
at

ed
 e

ig
en

va
lu

es
 o

f A

Fig. 1. Real parts of estimated eigenvalues ofA with
theEIVPM algorithm.
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Fig. 2. Singular values ofR(t).

8. REFERENCES

Cho, Y. M., G. Xu and T. Kailath (1994). Fast re-
cursive identification of state space models via
exploitation displacementstructure.Automatica
30, 45–60.

Friedlander, B. (1984). The overdetermined recursive
instrumental variable method.IEEE Transactions
on Automatic Control4, 353–356.

Golub, G. H. and C. F. Van Loan (1996).Matrix
computations. 3rd ed.. John Hopkins University
Press. Baltimore MD.

Gustafsson, T. (1997). Recursive system identification
using instrumental variable subspace tracking. In:
11th IFAC Symposium on System Identification.
Fukuoka, Japan.

Jansson, M. and B. Wahlberg (1998). On consistency
of subspace methods for system identification.
Automatica34, 1507–1519.

Ljung, L. (1999).System identification. Theory for the
user. 2nd ed.. PTR Prentice Hall Information and
System Sciences Series. T. Kailath,Series Editor.
Upper Saddle River.

Ljung, L. and T. Söderström (1983).Theory and prac-
tice of recursive identification. MIT Press. Cam-
bridge.

Lovera, M. (2003). Recursive subspace identification
based on projector tracking. In:13th IFAC Sym-
posium on System Identification. Rotterdam, The
Netherlands.

Lovera, M., T. Gustafsson and M. Verhaegen (2000).
Recursive subspace identification of linear and
non linear Wiener statespace models.Automatica
36, 1639–1650.

Marcos, S., A. Marsal and M. Benidir (1995). The
propagator method for source bearing estimation.
Signal Processing42, 121–138.

Mercère, G., S. Lecœuche and C. Vasseur (2003). A
new recursive method for subspace identification
of noisy systems: EIVPM. In:13th IFAC Sym-
posium on System Identification. Rotterdam, The
Netherlands.

Mercère, G., S. Lecœuche
and C. Vasseur (2004a). Robust adaptation of the
propagator method to recursive subspace identi-
fication(in french). In:Conférence International
Francophone d’Automatique. Douz, Tunisia.

Mercère, G., S. Lecœuche and C. Vasseur (2005).
Sequential correlation based propagator algo-
rithm for recursive subspaceidentification. In:
16th IFAC World Congress. Praha, Czech Repub-
lic.

Mercère, G., S. Lecœuche and M. Lovera (2004b).
Recursive subspace identification based on in-
strumental variable unconstrainedquadratic opti-
mization.International Journal of Adaptive Con-
trol and Signal Processing18, 771–797.

Munier, J. and G. Y. Delisle (1991). Spatial anal-
ysis using new properties of the cross spectral
matrix. IEEE Transactions on Signal Processing
39, 746–749.

Oku, H. and H. Kimura (2002). Recursive 4SID al-
gorithms using gradient type subspace tracking.
Automatica38, 1035–1043.

Van Overschee, P. and B. De Moor (1995). A unifying
theorem for three subspace system identification
algorithms.Automatica31, 1853–1864.

Verhaegen, M. (1994). Identification of the determin-
istic part of MIMO state space models givenin
innovations form from input output data.Auto-
matica30, 61–74.

Verhaegen, M. and E. Deprettere (1991). A fast recur-
sive MIMO state space model identification algo-
rithm. In:30th IEEE Conference on Decision and
Control. Brighton, United Kingdom.

Yang, B. (1995). Projection approximation subspace
tracking. IEEE Transactions on Signal Process-
ing 43, 95–107.


