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Abstract: The convergence properties of a recently deeglapcursive subspace identifi-
cation algorithm are investigated in this paper. The atborioperates on the basis of an
extended instrumental variable (EIV) version of the preagmethod for signal subspace
estimation. It is proved that, under weak conditions on tiui signal and the identified
system, the considerddDESP class of recursive subspace identification algorithm cayes

to a consistent estimate of the propagator and, by extensiothe state space system

matrices.

Keywords: Subspace methods, Recursive algorithms, fitation algorithms, State space

models, Tracking systems.

1. INTRODUCTION (DOA) estimation. Two points of view have been more
precisely suggested to find SVD alternatives in a re-
cursive framework:

Algorithms for recursive subspace model identifica-
tion (RSMI) have been extensively studied in recent
years (see, e.g., (Verhaegen and Deprettere, 1991; Cho
et al, 1994; Gustafsson, 1997; Loveed al, 2000;

Oku and Kimura, 2002; Mercest al,, 2004)).

So far, two main approaches to the RSMI problem
have been developed in the literature. First, some
works have proposed adaptations of subspace model
identification (SMI) algorithms in order to update the
singular value decomposition (SVD) (Verhaegen and
Deprettere, 1991; Chet al, 1994). Unfortunately,
these methods have the drawback of requiring the dis-
turbances acting on the system output to be spatially
and temporally white, which is obviously restrictive
in practice. The second approach (Lovetal., 2000;
Oku and Kimura, 2002; Mercéret al, 200b) relies

on the strong analogies between RSMI and signal
processing techniques dedicated to direction of arrival

e The first one consists in adapting the so-called

Yang's criterion (Yang, 1995) to the recursive
update of the observability matrix (Loveret

al., 2000; Oku and Kimura, 2002; Lovera, 2003).
In particular, DOA estimation algorithms have
been adjusted in order to deal with more general
types of perturbations than the ones arising in the
DOA framework thanks to the use of instrumen-
tal variables.

e The second one rests on the adaptation of an

other array signal processing technique: the
propagator method (Munier and Delisle, 1991).

The advantage of this approach over the previous
conception lies in the use of a linear operator and
unconstrained and unapproximated quadratic cri-
teria which lead to easy recursive least squares



algorithms (Mercéreet al, 2003; Mercéreet with f > ny, ' is the observability matrix
al., 2004%; Mercéreet al.,, 2005).

_ T T el
While a significant level of maturity has now been Fe=|C" (CA)" - (CATT) } ’ ©)
reached on the algorithmic side, very limited atten- Hs is the block Toeplitz matrix of the impulse re-
tion has been dedicated to the analysis of the conver-sponses fromu to y and bs = Gres with Gt the
gence properties of the proposed methods for the re-block Toeplitz matrix of the impulse responses from
cursive update of the subspace estimates. In (Oku ance to y. The class of algorithms considered herein is
Kimura, 2002), the developed gradient-based RSMI based on the application of the so-called propagator
technique was studied and conditions on the gain of method (Munier and Delisle, 1991) (first proposed in
the gradient iteration were derived. The convergencethe array signal processing literature) to the recursive
study, however, is based on assumptions on the signalestimation ofl ¢. To this purpose, note that letting
to-noise ratio which limit the validity of the results. Z¢(t) = yi(t) — Hug (t), @)

In. the Iigh'F of t'he apove discussion, the aim of equation (4) can be written as

this paper is to investigate the convergence proper-

ties of recursive implementations of tMOESP class zt(t) = Fx(t) + by (t). (8)

(Verhaegen, 1994) of subspace identification methods. ) )

In particular, the RSMI algorithms which operate on F_rom th_|s re_Iat|0n, a two-step proc_edure for the recur-

the basis of the IV version of the propagator method sive estimation of the system matrices can be devised:

for signal subspace estimation will be considered and (1) update of the “observation vector; from the

a convergence result for such techniques will be de- I/0 measurements by using (7) (see Section 3);

rived and discussed. (2) estimation of a basis @ from this observation
vector by using (8) (see Section 4).

2. PROBLEM FORMULATION AND NOTATION
3. RECURSIVE ESTIMATION OF THE

Assume that the true system can be described by the OBSERVATION VECTOR

discrete-time linear time-invariant state space model
in innovation form

X(t+1) = Ax(t) + Bu(t) + Ke(t)

The problem of estimating the observation vector can
be solved by adjusting ideas from offline subspace
identification to the recursive framework. For, let

y(t) = Cx(t) + Du(t) + e(t) @ Z¢e=Ys—HUs (9)
with ny outputsy, ny inputsu, ny states<. Assume also whereY; € R% N andU; € R™Wf*N are the Hankel
that: I/O data matrices defined as:

Al: the system (1) is asymptotically stable; Yi(®) = [ys(t) -+ yr(t+N-1)] (10)

A2: the pairs{A,C} and{A, B K]} are respectively _ _ L
observable and reachable: withN >> f > nandt =t+N—1. Then, itis easy to
A3: the inputu is a quasi stationary deterministic show that:
sequence with correlation function (Ljung, 1999) Zi(t) =Ys(t)—HiUs(t) = [Z5(t— 1) z:(t)] (11)

Ru(T) =E [u(t+ r)uT(t)] ) which proves that the update &f; leads to the ob-
servation vector at timé Since, in offline subspace

where N identification, Z¢ is calculated from the orthogonal
E[]=lim Y E[] (3)  Projection on the kernel dfi¢
N—oo
- Zi=YiNy, 1, (12)

andE is the expectation operator.
the proposed method consists in recursively updating

Th? algorithm considered in.this paper recursively this projection at each iteration. Several algorithms for
estimate the state space matri¢ésB,C,D} ateach 6 computation of this update have been developed in
new data acquisition. The proposed method is basedy,q |iterature (see, e.g., (Loveeaal, 2000; Oku and

on the estimation of a basis for the observability wimura. 2002: Merceret al. 2004)). In this paper
subspace from the input output (I/O) relation (Mercere 4, 5nnroach based on the matrix inversion lemma will

etal, 2004) be used, which has the advantage of providing an
yi(t) = Fex(t) + Hyug(t) + by (t) (4) explicit expression of the observation vector in terms
_ of the I/O data (Merceret al., 2004). The idea is to
where the stacked input and output vectarsgndys, recursively update the quantity

respectively) are defined as
ur(t)=[uT(t) - uT(t+f—1)] eRrmMH?
ye(t) =y () - yT(t+F-1)] eRV

Yf(t)l'luf(t—)L =
(5) Yo {1 -UF O (Ui OUTO) TUTO} @)



at each new data acquisition, knowing that 2000; Oku and Kimura, 2002)), in this paper, the
U (@) = [Uf(t_f 1) Uf(t_)] (14) focus will be on updating algorithms based on the

2 _ _ propagator concept (see also (Mercéral., 2004)).
Y (D) = [Y(E-1) yr (D] (15) _ . o
. Under assumption A2, sindes € R ™ with ny f >
by applying the matrix inversion Iemma(dLhU? ) ny, I 1 has at leasty linearly independent rows, which

It can be shown that the observation vector can be€an P€ gathered in a submatfiy,. Then, the comple-

recursively estimated with the following algorithm meml;thOf '+, can be exp:}esse.d as a.IineaIr_ combina-
(Mercereet al, 2004): tion of theseny rows. So, there is a unique linear op-

eratorPs € R™*(Wf-™%) named propagator (Munier
and Delisle, 1991), such that

M, =Pily. (20)
Furthermore, it is easy to verify that

1
Algorithm 3.1. Assume thatW; = (UfUI) and

Vi= YfUI have been estimated at tihe- 1. Then,

when a new I/O data sequen¢er (t),ys(t)} is ac-
quired, the observation vector is updated by the fol- M= |:rf1:| . { M, ] _ |:|nx} Fr,=Eol1,. (21)

lowing recursion: re,| ~ |Pily,
B (1) =W¢(t—1)us(t) (16a)  Thus, since rankl ¢, } =ny,
81 (f) = uf OB+ (©) (16b) spargo) {T'1} =spano{Eo}.  (22)
af () = 1 (16c) Equation (22) implies that it is possible to estimate the
+ Ot (t) observability matrix (in a particular basis) by estimat-

zi (D) = af(t_ yi() — V(- 1)Bf(t_)> (16d) ing the propagator. This_, operator can be d_ete_rmined
_ _ o from (8). Indeed, applying a data reorganization so
Vi(t) =Vt —1)+ys(t)us (t) (16€)  that the firstn, rows of ' are linearly independent,

Wi (D = (Wi(f- 1) - ar @B (087 (). (6 (8 canbe partitionedas

z1, (t) I'n, b, (t)
i} i 2000 = [200] - [ rxo+ [po] - o

Remark 3.1.Letting X(t) = [x(t) --- x(t)] and re- Z1, (1) ! by, (1)
placing in (16d)y: with (4) andY ; with (Verhaegen, wherez;, € RMxx1 andz, € RMYf-m)x1 gre the com-

1994) ponents ofz; respectively corresponding o, and
Yi(f-1) = It,. In the ideal noise free case, it is easy to show that
MiX({t—1)+HiUs(t—1)+Bs(t—1), (17) =Plzy,. (24)
it is easy to show that In the presence of noise, this relation no longer holds.
_ _ _ _ T _ However, an estimate d¢¥; can be obtained by min-
zi(t) = ar ()l (X(t) - X({t=1)Ug (t— 1)I3f(t)> imising the cost function
= = = = 2
+ar (@) (br(©) - Br (- DUF - 1B, (D)) I(Pt) = El|ze, — PTzs || (25)
= a (1) (M%) +bs (1)) It is easy to see from (23) that the estimateRuf

(18) obtained by minimising (25) is biased (Mercesé

al., 2004). This issue is normally circumvented in
the array signal processing literature by assuming that
to spagol {F'+}. the noise vectob; is spatially and temporally white
and simultaneously estimating the propagator and the
noise variance (see, e.g., (Maraatsal,, 1995)). Un-
fortunately, it is apparent from (18) that the nofse

is not white. So, it is necessary to modify the criterion
¢ (t) = [ (1) + b (D). (29) (25) to ensure that the propagator approach provides
unbiased estimates in this more general case. This is
obtained by introducing an instrumental varia$le
R in (25), assumed to be uncorrelated with the
noise but sufficiently correlated with the state vector
X, and by defining the new cost function

2
4. RECURSIVE UPDATE OF THE Iv(Py) = ‘ szzf _ P}-RZQEHF ) (26)

OBSERVABILITY MATRIX
Four algorithms I(VPM EI VPM El Vsqgrt PM and
Once the observation vector is estimated, the secondCO VPM(Mercéreet al, 2003; Merceret al., 2004;
step of the recursive subspace identification procedureMercereet al,, 2005)) have been developed to min-
consists in online updating the observability matrix. imise this criterion according to the number of in-
Unlike previous approaches (see, e.g., (Lowtral., struments in€. In this paper, in order to study the

It is apparent from the above equation thabelongs

Remark 3.2.In the following, the factora;, which
appears as a scaling factor in the expressian ofvill
be neglected for simplicitize.

Note that this simplification does not affect the prop-
erties of the algorithm since (19) provides all the in-
formation needed to estimate spgp{ '+ }.




convergence properties of the propagator associatedy introducing this equation in (31), we get
with an instrumental variable, thel VPM algorithm

is considered. This technique requires to construct an Rz, Esz £= z Plzy, (1) +n(t ))E (T )RIf £

instrumental variable such tha¢ > ny. By assuming t

that the input is sufficiently “rich” (see Section 5) so =Pl szlE( )RY 2 e+ Rpg(t )RT 2. () (34)
1 1

that szlf is full rank, the asymptotic least squares
estimate of the propagator is given by

Pl =R, ¢R!

and finally, from (29) and (34) we have
27) (PT(t) —PT)R(t) =Rpg(t )R-zrf () (35)

Along the lines of (Ljung and Soéderstrom, 1983,
Chapter 4), the convergence analysisEfVPM is
based on the analysis of (3%k.

Zf2

2, &
Then, a recursive version of (27) can be obtained
by adapting the overdetermined instrumental variable
technique first proposed in (Friedlander, 1984). The

resulting algorithm is given by (1) proving that(ﬁﬁ (t)— PI) R(t) —O0w.p.lag —
— R, #(D)E&(1) zg,(t °°?
9r(t) [ 22 ‘E( &) 26, )} (282) (2) deriving conditions under whiciR(t) — Ry
_ [ ()& ] (28b) ast — oo, with Rq full rank.
These two steps are considered in the following sub-
[R Zfl(t)} (28c)  sections.
— (A + 9T 0Lt - Wi(1) "

Wt)Ls(t—1) (280) 5.1 Convergence o(IADI (t)— P{) R(t)

T _pl
Pt () =Pi(t—1) (28e) From (35), it is easy to establish the following propo-

+ (g1 (t) — P (t— Wi (1)) K(t sition:
_ T
Ry & (0 = ARy g (t—1)+ 20 >£T(t) (280) Proposition 5.1.Consider algorithm (28) and assume
szzf (t) =A szZE (t l) + Zfz( )E (t) (289) that
1 e the inputu is uncorrelated with the innovatian
L+t L 1) -Li(t—DWHK¢(t
1t = A2 (Le(t=1)—L( JPOK: () (system in open loop);
(28h) o & c R"*! (ng > ny) is uncorrelated with the
. -1 ; noise but sufficiently correlated with the state
with L¢(t) = (sz fOR] 4 )) : (28i) D y

where 0< A < 1is a forgetting factor. Then (f:? (t)— p?) R(t) - 0w.p.1 ag — co.

5. CONVERGENCE ANALYSIS OFEl VPM Proof 5.1. Note that from (18)
18- 14
In this Section, the convergence conditions and the - bf(T)ET(T) =1 z (Gt (e (1)—
asymptotic distribution of the estimation error of the =1 =1 (36)
El VPMalgorithm are d_eri\{ed. For,_notg t_ha_t assuming Ef(1— 1)UI(T —1)B; (r)) ET(T)}
A =1, the quadratic criterion (26) is minimized By
such that tends to
A -1
p? (DOR(t) = [szzf(t)RIflf(t)} (29) Gy (Refg —RerusRy; Rufz) 37)
with w.p.1 whent — o where
_ T =
| R(t>.— [szle( IR, gt )} (30? Res =E [ef(r)zT(r)} =0 (38)
;Qe right hand side of (29) can be equivalently written Reju, = E [ef (T—ul (- 1)] —0  (39)
Ry; = E [ur(t — Duf(t - 1)] (40)
T _
Re, ez e [ 2 2T ] Rye- (B1) Ry = [ur(1)&(7)] (41)
Now, writing (19) in the propagator basis, we get according to the assumptions gnandu. Thus, we
1. b have
Eflgﬂ _ {F;‘TX} %(t) + {Eﬁgﬂ ) Ll
.le L b f2 = Z b¢(1)€ (1) -~ O0w.p.1ag — o (42)
Therefore, it is possible to writg, in terms of the true t 4
propagatoP¥ and, by extension
_pTl A _plh 1 t
2(1) = Przu () + be® —Pibu (). (3) S AME () —Owplat—w  (43)
=1

n



5.2 Convergence dR(t)

In order to complete the proof, we need to study under

which conditionsR(t) converges to a full rank matrix
in order to conclude tha] (t) — Pl w.p.1 agt — .

To this purpose, we just need to analyse the rank

of szlf ast — oo. Note that writing (19) in the
propagator basis gives (see (32))
2q, (t) = (1) +Br, 1),

Then, recalling the definition oK given in (18),
szl g (t) can be written as

(44)

t~
Rz &(t) tlrzlbfl(r)ET(r)Jr
t
tlzl[(X(T)—X(r—l) ( —1)Bf(r)) gT(T)},
7 (45)

Since (42) holds, the first term of the right hand side
of (45) can be neglected. Therefore, we have that

Ry, £(t) = Ry” = Ryg ~RuRyRyg  (46)
w.p.1 whent — o where

R =E [x(D)E" (1)] (7)

Rui; =E [X(T—1uf (T —1)] (48)

Ry =E [ur(n€" (1) (49)

According to the Schur Lemma (Golub and Van Loan,

1996), a sufficient condition that guarantees fhé{lz
is full rank is given by

rank{[RXf quf]}
RUfE Ruf

rank{]ﬁ [ |:J(f(zt)):| [ jf((tt))] T] } =n+fn,.  (50)

If the instrumental variable vector is constructed from
past input and output data, such as

E(t)=[yp(t) up(t)]

= [y (t=p) ~ yT(t-1) uT (t—p) - uT

T

T

], (51)

&(t) e RvtPx1  then equation (50) corresponds
to the so-callectritical relation for the consistency
of IV subspace identification algorithms, first derived

e the inputu is persistently exciting of ordef +
p-+ny;

e the inputu is uncorrelated with the innovatian
(system in open loop).

PI(t) — P} w.p.1ag — o (52)

In addition, convergence is also guaranted€ £ 0 in

a number of special cases (single input systems, white
noise input,ARMA input signal), see again (Jansson
and Wahlberg, 1998) for details.

6. SIMULATION EXAMPLE
Consider the fourth-order system (Van Overschee and

De Moor, 1995):

0.67 067 O 0
70 67 067

0 0
0 —067 067 | X(t)
0 0 067 —067
+{

0.6598
1.9698
43171

[-0.5749 10751 -0.5225 0183 X(t)

~2.643
-0.7139uU(t) 4 0.9706€(t).

X(t+1)=

0.1027

0+[ 358 ] e) 3
—0513
y(t) =
(54)
The inputu and the innovatiore are white Gaussian
noises with zero mean and variance 1 and 9 respec-
tively. This leads to a signal to noise ratio (of vari-
ances) at the output of.2 The initial estimates of
the system matrices are randomly generated under the
constraint that the absolute value of the maximum
eigenvalue ofA(0) is less than 1 (stability require-
ment). The forgetting factor is fixed at 1 in order to
meet the assumptions of the convergence study, while
the f andp parameters are equal to 6.

A simple way of checking the accuracy of the esti-
mated model consists in comparing the real parts esti-
mated eigenvalues @&f with the true onesg,e., +0.67.
Figure 1 illustrates this comparison by showing the
trajectories of the estimated eigenvalues obtained with
El VPM Despite the lack of forgetting, the algorithm
provides consistent estimates of the eigenvalues as
expected. Figure 2 shows the evolution of the singular
values of the matriR(t) on a sizeable lapse of time
relatively to the convergence speedabfVPM As can

be seen from this figure, the smallest singular value of
R(t) is always nonzero, which reinforces the fact that

in the classical paper (Jansson and Wahlberg, 1998)R(t) converges to a nonsingular matrix.

In particular, conditions under which (50) holds have
been derived in the cited paper and lead to the fol-
lowing general theorem for convergence of Eie/PM
algorithm.

Proposition 5.2.Consider theel VPMalgorithm (28)
and assume that:

e (A,B)isreachable;
e K =0 (i.e, no process noise);
® P>y

7. CONCLUDING REMARKS

The class of recursive subspace identification algo-
rithms of theMOESP class based on the EIV version
of the propagator method for signal subspace estima-
tion has been analysed and a convergence proof for
the EI VPMalgorithm has been derived. A simulation
example is used to illustrate the validity of the under-
lying assumptions.
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