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On Disturbance Decoupled
Observers for a Class of
Bilinear Systems
In this paper, the class of bilinear systems subjected to
unknown inputs for which there exists a disturbance
decoupled observer with linear error dynamics is
characterised. It is shown that the design of this kind of
observer is equivalent to the design of a disturbance
decoupled observer for a linear system. This result simplifies
considerably the observer design comparatively to those
proposed in the literature, and the observer existence
conditions can be easily deduced. As a corollary of this
result, necessary and sufficient conditions for the existence of
disturbance decoupled linear observers for bilinear systems
subjected to unknown inputs are derived. This approach is
extended to the fault detection of bilinear systems.

1 Introduction
Many important processes in engineering, biology, socio-economic and ecology may be modelled by

bilinear systems when linear models are inadequate (Mohler, 1991). This is particularly true in
modelling of biological (Williamson, 1977) and hydraulic processes (Hac, 1992).

The design of observers for bilinear systems have received more attention in the past years. As
shown in Williamson (1977), the existence of observer for bilinear systems depends on the control
inputs. Observers of bilinear systems are designed according to the requirement on the tracking error
(Hara and Furuta, 1976; Grasselli and Isidori, 1981) or a performance index to be minimised (Bornard
et al., 1988). The proposed observers in the literature fall into the following classes : observers
requiring differentiators of the control input (Williamson, 1977), observers requiring on-line
integration of some differential Riccati or Lyapunov matrix equation (Bornard et al., 1988), observers
with input dependant error dynamics based on Lyapunov stability (Funahashi, 1979) and observers
with linear error dynamics (Hara and Furuta, 1976).
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Like linear systems, bilinear ones are sometimes affected by time-varying unknown disturbances.
Such unknown inputs can arise in the dynamical equation of the bilinear system due to actuator
failures, plant disturbances, etc. Based on results in Hara and Furuta (1976), Hac (1992) and Saif
(1993) considered the design of disturbance decoupled observers for bilinear systems with linear error
dynamics.

This paper deals with the design of state observers for a class of bilinear systems affected by
unmeasurable disturbances. It is shown that the design of a disturbance decoupled observer for a class
of bilinear system can be reduced to the design of a disturbance decoupled observer for a
corresponding linear system with additional virtual unknown inputs. This result simplifies significantly
the observer design comparatively to those proposed by Hac (1992) and Saif (1993). Then conditions
for the existence of this observer are given in terms of transmission zeros. This approach is extended
to the design of linear disturbance decoupled observers for bilinear systems. The fault detection
problem is treated by applying this approach to the design of disturbance decoupled residual
observers.

This paper is organised as follows. The disturbance decoupled state observation problem for bilinear
systems is formulated in Section 2. Section 3 is devoted to the analysis of the conditions for the
existence of reduced-order and full-order disturbance decoupled observers for bilinear systems with
linear error dynamics. Section 4 presents the characterisation of a class of bilinear systems subjected to
unknown inputs for which there exists a linear disturbance decoupled observer and extends the results
in Section 3 to the failure detection and isolation of bilinear systems. Finally in Section 5, the results
are illustrated for a vehicle semi-active suspension and an electromechanical actuator.

2 Problem Formulation
Consider bilinear systems described by

x·   = Ax + ∑
i=1

m
   Diui x + BU + Fd (1)

y = Cx + Gd (2)
where the state vector x(t) ∈ Rn, the control input UT(t) = [ ]u1(t) … um(t)   ∈ Rm, the unknown
input vector d(t) ∈ Rq and the output y(t) ∈ Rp. The aim of this paper is the analysis of the existence
of an observer for the system (1)-(2) with the following structure

z·   = Hz + Ly + JU +  ∑
i=1

m
   Niuiy (3)

x̂  = Mz + Py (4)
where z(t) ∈ R j (j ≤ n) and x̂(t)  ∈ Rn. H, L, Ni, J, M and P are unknown matrices of appropriate
dimensions. The observer (3)-(4) which is linear up to an output injection leads to the following
definition (Hara and Furuta, 1976).

Definition 1. The system (3)-(4) is said to be a disturbance decoupled observer (DDO) of system
(1)-(2) if and only if
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lim
t→∞

  
dk

dtk
  (x(t) - x̂(t))  = 0 (k = 0, 1, 2, …) (5)

independently of U(t), d(t), x0 and z0.

In non-linear systems, specially in bilinear systems, there exist many kinds of observers, defined by a
constraint on the observer error (Funahashi, 1979; Grasselli and Isidori, 1981; Hara and Furuta, 1976).

From definition 1, matrices H, L, Ni, J, M and P must be determined such that the state estimate x̂(t) 
converges to x(t) asymptotically, without the knowledge of the external disturbance d(t). The rate of
convergence of the observation error must be independent of initialisations x0 and z0, control input
U(t) and unknown input d(t).

To simplify the convergence analysis of the DDO, it is interesting to isolate the free disturbance
measurement. To do that, assume without loss of generality that p ≥ q with

rank 



F

G   = q and rank G = q1 ≤ q.

Then, there exist an orthogonal matrix V and a non singular matrix W such that

VTGW = 



Iq1 0

0 0  . (6)

According to (6), the state and the measurement equations (1)-(2) are equivalent to

x·   = A1x +  ∑
i=1

m
   Diuix + BU + F1y1 + F2d2 (7)

y1 = C1x + d1 (8)
y2 = C2x (9)

where A1 = A - F1C1, 





d1

d2
  = W 

-1d, with d1 ∈ Rq1, d2 ∈ Rq2 (q1 + q2 = q), 





y1

y2
  = VTy, with y1 ∈

Rq1, y2 ∈ Rv (q1 + v = p), [ ]F1 F2   = FW and 





C1

C2
  = VTC.

Without loss of generality, consider that matrix [ ]C G   is of full row rank, then C2 is of full row
rank.

Note that equations (8)-(9) are obtained by multiplying (2) by VT and by using (6). Then equation
(7) is deduced by inserting (8) in (1). As in Hara and Furuta (1976) and Hac (1992) we assume
without loss of generality that the bilinear system (7)-(9) (or equivalently (1)-(2)) has no stable
uncontrollable states with respect to the inputs U(t) and d(t) (see appendix).

3 Disturbance Decoupled Observer Design
By rewriting equation (2) in an equivalent form given by (8)-(9), the measurement y(t) has been

decomposed in two parts : y1(t) and y2(t). y1(t) is completely corrupted by the disturbance d1(t). Then
like U(t), y1(t) is considered as a known input in the state equation (7). y2(t) is the disturbance-free
part of the measurement y(t) which can be injected in the DDO in order to reconstruct the state x(t).
Then if the system (1)-(2) is written in the form (7)-(9), the DDO (3)-(4) becomes
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z·   = Hz + L1y1 + L2y2 + JU +  ∑
i=1

m
   N2,iuiy2 (10)

x̂  = Mz + P2y2 (11)

with [ ]L1 L2   = LV, [ ]0 N2,i   = NiV and [ ]0 P2   = PV.

3.1 Full-order Observer. For the full-order case, the state observer z(t) is of dimension n, i.e. j = n
and M = In. The reconstruction error between x̂(t)  in (11) and x(t) in (7) is given by

ef = x̂  - x = z - x + P2y2. (12)
The time derivative of ef (t) according to (7) and (11) is

e·  f = Hef + (HS - SA1 + L2C2)x + (J - SB)U - SF2d2

+ ∑
i=1

m
  ui(N2,iC2 - SDi)x + (L1 - SF1)d1 (13)

where
S = In - P2C2. (14)

From relation (13), the following lemma gives the necessary and sufficient conditions for the observer
error (13) to satisfy definition 1 (Hara and Furuta, 1976; Hac, 1992).

Lemma 1. The system (10)-(11) is a full-order DDO for the bilinear system (7)-(9) (or (1)-(2)) in
accordance with definition 1 if and only if H is Hurwitz and the following constraints are satisfied

HS - SA1 + L2C2 = 0 (15)
N2,iC2 - SDi = 0 i = 1, …, m (16)

SF2 = 0 (17)
J = SB (18)

L1 = SF1 (19)
where S is given by (14).

Proof. It is easy to see that if constraints (15)-(19) are satisfied, relation (13) reduces to
e·  f = Hef (20)

which vanishes exponentially if and only if H is Hurwitz. Then (5) in definition 1 is satisfied for all k
since all the time derivatives of ef (t) are governed by (20). From (13) and (14), condition (5) in
definition 1 holds independently of U(t), d(t), x0 and z0 only if (15)-(19) are satisfied.

Note that equations (15) and (17)-(19) correspond to constraints to be satisfied for the design of
DDO for linear systems (Darouach et al., 1994; Hou and Müller, 1992; Kudva et al., 1980; Kurek,
1983) and constraints (16) relate to the bilinear part. In the following, an equivalent form of constraints
(16)-(17) is proposed and conditions for the existence of the DDO are deduced. This equivalent form
is based on the matrix Φ defined as

Φ = [ ]F2 DaK (C2a)  (21)

and



5

da = 





d2

db
 (22)

where Da = [ ]D1 D2 … Dm  , db(t) is a virtual unknown input representing the effect of
bilinearities,

C2a = 






C2 0 … 0

0 C2 … 0
… … … …
0 0 … C2

  ∈ R(v.m)×(n.m)

and K (·) spans the basis of the right-kernel of the corresponding matrix. Now, the constraints given in
lemma 1 can be expressed equivalently in terms of matrix Φ.

Corollary 1. The system (10)-(11) is a full-order DDO for the bilinear system (7)-(9) (or (1)-(2)) in
accordance with definition 1 if and only if H is Hurwitz and the following constraints are satisfied

HS - SA1 + L2C2 = 0 (15)

N2a = SDaC
+
2a (23)

SΦ = 0 (24)
J = SB (18)

L1 = SF1 (19)

where N2a = [ ]N2,1 N2,2 … N2,m  , S is given by (14) and C+
2a  is a generalised inverse of C2a

(A+ is defined by A = AA+A).
Proof. The system (10)-(11) is a full-order DDO for the bilinear system (7)-(9) (or (1)-(2)) in

accordance with definition 1 if and only if lemma 1 holds. Inserting equation (14) into relations (16)
and (17) yields

[ ]P2 N2a  





C2F2 C2Da

0 C2a
  = [ ]F2 Da  . (25)

Since C2 is of full row rank, the matrix 





C+
2a K (C2a)   is non-singular, then equation (25) is

equivalent to

[ ]P2 N2a  





C2F2 C2Da

0 C2a
 








Iq2 0 0

0 C+
2a K (C2a)   = [ ]F2 Da  









Iq2 0 0

0 C+
2a K (C2a)  . (26)

Equation (26) can be rewritten as

[ ]P2 N2a  










C2F2 C2DaC
+
2a C2DaK (C2a)

0 Iv×m 0
  = 





F2 DaC
+
2a DaK (C2a)  . (27)

Then, by using relation (21), equation (27) gives
N2a = - (P2C2 - In) DaC

+
2a (28)

(P2C2 - In) Φ = 0 (29)
which are equivalent to constraints (23)-(24). Then lemma 1 and corollary 1 are equivalent.
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Since equations (16)-(17) have been expressed in a similar form as those of DDO constraints for
linear systems, the following theorem can be stated.

Theorem 1. The system (10)-(11) (or (3)-(4)) is a DDO for the bilinear system (7)-(9) (or (1)-(2))
in accordance with definition 1 if and only if the following system

z·   = Hz + L1y1 + L2y2 + JU (30)
x̂  = Mz + P2y2 (31)

is a stable DDO for the linear system described by
x·   = A1x + BU + F1y1 + Φda (32)

y1 = C1x + d1 (33)
y2 = C2x. (34)

Proof. It is easy to see that if constraints in corollary 1 are satisfied, then the system (30)-(31) is a
stable DDO for the linear system (32)-(34).

Based on the previous theorem, the conditions for the existence of the DDO (10)-(11) (or (3)-(4))
can be formulated in terms of invariant zeros as expressed by the following lemma.

Lemma 2. The system (10)-(11) (or (3)-(4)) is a full-order DDO for the bilinear system (7)-(9) (or
(1)-(2)) if and only if the following conditions are satisfied

rank





sIn-A -F -ϕ1 … -ϕm

C G 0 … 0   = n + rank





F ϕ1 … ϕm

G 0 … 0  , ∀ s ∈ C, Re(s) ≥ 0 (35a)

and

rank





G CF Cϕ1 … Cϕm

0 G 0 … 0   = rankG + rank





F ϕ1 … ϕm

G 0 … 0  

(35b)
with

ϕi = DiK ([0    Ip2]VTC). (36)
Proof. Using theorem 1, the DDO exists if and only if the pair (SA1,C2) is detectable and

rankC2Φ = rankΦ which are equivalent to conditions (35a) and (35b) respectively (Darouach et al.
1994). Note that the pair (SA1,C2) is detectable if and only if the invariant zeros of the triple
(A1,Φ,C2) are stable (Darouach et al. 1994). Using matrices given in (6), conditions (35a) and (35b)
are equivalent to

rank





sIn-A1 Φ

C2 0   = n + rankΦ, ∀ s ∈ C, Re(s) ≥ 0 (35c)

and
rankC2Φ = rankΦ (35d)

respectively.
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Remark 1. Following Darouach et al. (1994), the fixed modes of the matrix H in (20) are the
invariant zeros given by condition (35a) or (35c).

Remark 2. The necessary and sufficient conditions for the existence of the observer (without
unknown input) proposed by Hara and Furuta (1976) are given by lemma 2 with F = 0, G = 0 and
ϕi = D iK (C) (i.e. C = C2 and Φ = [ ]ϕ1 … ϕm   in (21) if F = 0).

3.2 Reduced-order Observer. For the reduced-order DDO (j < n), the minimal order is attained
when j = n - v. C2 being of full row rank, there exists a matrix T ∈ Rj×n such that

det 



T

C2
  ≠ 0. (37)

Let the state of the DDO be defined by z(t) = Tx̂(t) , the reconstruction error can be written as
er = T(x̂  - x) = z - Tx. (38)

The time derivative of er(t) according to (7) and (11) is
e·  r = Her + (HT - TA1 + L2C2)x + (J - TB)U - TF2d2

+ ∑
i=1

m
  ui(N2,iC2 - TDi)x + (L1 - TF1)d1. (39)

Then like for the full-order case, the following lemma can be stated for the reduced-order one.

Lemma 3. The system (10)-(11) (or (3)-(4)) is a reduced-order DDO for the bilinear system (7)-(9)
(or (1)-(2)) in accordance with definition 1 if and only if H is a stability matrix and the following
constraints are satisfied

HT - TA1 + L2C2 = 0 (40)
N2,iC2 - TDi = 0 i = 1, …, m (41)

TF2 = 0 (42)





T

C2
 [ ]M P2   = 






In-v 0

0 Iv
 (43)

J = TB (44)
L1 = TF1. (45)

Proof. If constraints (40)-(45) are satisfied then the observation error (39) reduces to
e·  r = Her (46)

which vanishes exponentially if and only if H is Hurwitz. Then (5) in definition 1 is satisfied for all k
since all the time derivatives of er(t) are governed by (46).

Since T ∈ R j×n, equation (43) implies that relation (37) holds. Then from (11), for each pair
(z(t),y2(t)), there exists an unique x̂(t) . Conversely, for each x̂(t)  in Rn, there exists an unique pair
(z(t),y2(t)). Then from (39), condition (5) in definition 1 holds independently of U(t), d(t), x0 and z0

only if (40)-(45) are satisfied. This ends the proof.

From (37), note that (43) can be equivalently rewritten as
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MT + PC2 = In. (43bis)
Using the same approach as for the full-order DDO, the necessary and sufficient constraints to be

satisfied for the DDO problem can be simplified as follows.

Corollary 2. The system (10)-(11) (or (3)-(4)) is a reduced-order DDO for the bilinear system (7)-
(9) (or (1)-(2)) in accordance with definition 1 if and only if H is a stability matrix and the following
constraints are satisfied

HT - TA1 + L2C2 = 0 (40)

N2a = TDaC
+
2a (47)

TΦ = 0 (48)





T

C2
 [ ]M P2   = 






In-v 0

0 Iv
 (43)

J = TB (44)
L1 = TF1. (45)

Proof. The system (10)-(11) is a reduced-order DDO for the bilinear system (7)-(9) (or (1)-(2)) in
accordance with definition 1 if and only if lemma 3 holds. Equation (41) can be rewritten as follows

N2aC2a = TDa. (49)

The matrix 





C+
2a K (C2a)   being non-singular, relation (49) is equivalent to

N2aC2a 





C+
2a K (C2a)   = TDa 





C+
2a K (C2a)  (50)

which yields
N2a = TDaC

+
2a (47)

and TDaK (C2a) = 0. (51)
Then using equations (42) and (51), one obtains equation (48) which ends the proof.

Note that the reduced-order DDO constraints (40)-(45) are closed to those of the full-order DDO
(see (14)-(19)) if S is replaced by T and the constraint on S and P2 (14) by the constraint on T, M and
P2 (43).

One can see that theorem 1 can be also applied to the reduced-order DDO. Indeed, lemma 2 gives the
necessary and sufficient conditions for the existence of both reduced-order and full-order DDO for
bilinear systems. Note that if only the full and the minimal-order cases have been considered here, all
reduced-order cases can be straightforwardly deduced. In addition, it has been shown that, by the use
of matrix Φ (21), the design of a DDO for bilinear systems in accordance with definition 1 is reduced
to the design of DDO for linear systems (see Kudva and al., 1980; Kurek, 1983; Hou and Müller,
1992; Darouach et al., 1994) which can be directly applied to the bilinear case.

Remark 3.  Note that the existence of a linear DDO (i.e. with N2a = 0) implies the existence of a
bilinear DDO (i.e. with N2a ≠ 0), but the converse is not true. Indeed, if N2a = 0, the constraints to be
satisfied for the stability of the observation error are then given by corollaries 1 or 2 using
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Φ = [ ]F2 Da  (52)
in (24), instead of matrix Φ given in (21). Applying again theorem 1, necessary and sufficient
conditions for the existence of the linear DDO for bilinear systems are given by lemma 2 with

ϕi = Di. (53)
If conditions of lemma 2 are satisfied with ϕi given by (53) then these conditions are also satisfied with
ϕi given by (36).

4 Application to Disturbance Decoupled Residual Observer Design
The main idea in this paper is to transform the bilinear systems state observation problem into an

equivalent one for linear systems in accordance with definition 1. This approach simplifies
significantly the DDO design. It is easy to extend this approach to the design of disturbance
decoupling residual observer (DDRO). As stated in Frank (1993) and in Kinnaert et al. (1995), the
failure detection and isolation (FDI) problem can be formulated as a DDRO design since each residual
must be sensitive to certain failure and insensitive to the other ones which can be seen as unknown
inputs.

Assume that the bilinear system (7)-(9) is affected by fault vector f(t) ∈ Rµ as follows

x·   = A1x + ∑
i=1

m
   Diuix + BU + F1y1 + F2d2 + Rf (54)

y1 = C1x + d1 (8)
y2 = C2x. (9)

The aim is to design a DDRO of the following form

z·   = Hz + L1y1 + L2y2 + JU + ∑
i=1

m
   N2,iuiy2 (55)

r = Mz + P2y2 (56)
such that the residual r(t) satisfies the following definition.

Definition 2. The system (55)-(56) is said to be a DDRO of system (54)-(8)-(9) if and only if

lim
t→∞

  
dk

dtk
   r(t) = 0 if f(t) = 0 (k = 0, 1, 2, …) (57)

lim
t→∞

  
dk

dtk
   r(t) ≠ 0 if f(t) ≠ 0 (k = 0, 1, 2, …) (58)

independently of U(t), d(t), x0 and z0.

This definition is an extension of definition 1 to the FDI problem.
Let ed(t) = z(t) - Tdx(t) be the observation error; then the residual r(t) can be expressed in terms of

the observation error ed(t) and the state x(t)
r = Med + (P2C2 + MTd) x. (59)

Then the constraints to be fulfilled such that r(t) satisfies the conditions given in definition 2 are given
by corollary 2 by replacing condition (43) (or (43bis)) by the following



1 0

P2C2 + MTd = 0. (60)
If constraints (40)-(42), (44)-(45) (see lemma 3) and (60) hold, then the time derivative of ed(t) is

reduced to
e·  d = Hed - TdRf. (61)

By using the matrix Φ given in (21), constraints (41)-(42) can be replaced by (47)-(48) (see
corollary 2). Definition 2 holds since the error ed(t) is linear.

The main difference between the DDO and the DDRO designs is that the determinant constraint (37)
is not verified for DDRO since (43) is replaced by (60). But, as in the previous section, the bilinear
DDRO problem in accordance with definition 2 is once again reduced to the design of a DDRO for
the linear system (32)-(34) (see theorem 1) by the use of matrix Φ. For the design of a DDRO in the
linear case, the reader can refer to Chang and Hsu (1993).

Note that the DDRO in the discrete-time case proposed by Yu and Shields (1995, 1996) and Yu et al.
(1996) correspond to definition 2 since this definition implies linear observation error dynamics (see
(61)). In Kinnaert et al. (1995), this is not the case since the reconstruction error dynamics is bilinear.

5 Examples
In this section two examples are given to illustrate the above developments. The first example

concerns the quarter-car semi-active suspension worked out by Hac (1992) and the second an
electromechanical actuator (Malassé et al., 1994; Rugh, 1991).

5.1 Semi-active suspension model (Hac, 1992). Consider the model of vehicle with a semi-active
suspension

x·   = Ax + D1 u1 x +  F d
y = C x

where A = 






0 1 0 0

-k1/m1 0 -k1/m1 0
0 -1 0 1
0 0 -k2/m2 0

 , F = 






-1

0
0
0

 , D = 






0 0 0 0

0 -1/m1 0 1/m1
0 0 0 0
0 1/m2 0 -1/m2

  and C = 








1 0 1 0

0 1 0 0
0 0 1 0

 

with m1 = 40[kg], m2 = 250[kg], k1 = 10[N/m], k2 = 5000[N/m].
The state components are the wheel displacement relative to the road, the wheel velocity, the body

displacement relative to the wheel and the body velocity. The input variable u1(t) is the damping ratio of
an electronically controlled shock absorber and the unmeasured disturbance d(t) is the rate of change
of road elevation.

It is easy to see that this system satisfies the existence conditions (35a)-(36b) given in lemma 2 with
ϕ1 = D1 (see (53)), then a linear DDO can be designed for this bilinear system. This result is closely
related to the one of Hac (1992) but without computing the bilinear part of the DDO (N1 = 0). The
design is the reduced to the pole placement of the matrix H using the linear DDO design given by
Darouach et al. (1994) or Kurek (1983) for example.
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5.2 Electromechanical actuator (Malassé et al., 1994; Rugh, 1981). The second numerical
example is an electromechanical actuator frequently used in robotics and constituting of a direct-
current motor with an elastic coupling and the load shaft as shown in the figure 1.

This plant can be described by the following bilinear state-space model
x·   = Ax + D1 u1 x + B U +  F d

y = C x

where A = 








-Ra/La 0 0 0 0

0 -Fm/Jm 0 -kr /(NJm) 0
0 1 0 0 0
0 1/N 0 0 -1
0 0 0 kr /Jc -Fc /Jc

 , x = 






ia

ωm
θm
ΔΓ
ωc

 , F = 








0

0
0
0

-1/Jc

 ,

D1 = 








0 -ka/La 0 0 0

ka/Jm 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B = 








0 1/La

0 0
0 0
0 0
0 0

 , C = 








1 0 0 0 0

0 0 1 0 0
0 0 0 0 1

  and U = 


ie

va
  = 



u1

u2
 .

The state variables are the armature current ia(t), the motor shaft velocity ωm(t), the motor shaft
angular position θm(t), the angular rotation ΔΓ(t) between the motor shaft and the load shaft due to the
elastic coupling and the load shaft angular velocity ωc(t). The control inputs are the stator current ie(t)
and the armature voltage va(t). The unknown input d(t) is the torque due to the Coulomb frictions and
the load reactions. In the state space description, Jm and Jc represent the motor and the load shaft
inertia, Fm and Fc the motor and the load viscous friction coefficients, ka the motor torque constant, kr

the coupling rigidity coefficient and N the gear ratio. The numerical values of these parameters are N =
20, Ra = 1[Ω], La = 0.05[H], ka = 0.156[m2 kgsec-2 A-2 ], kr = 37.7[m2 kgsec-2 ], Fm = 0.0032[m2

kgsec-1 ], Fc ≅ 0[m2 kgsec-1 ], Jm = 2.4e-4[m2 kg], Jc = 0.0825[m2 kg].
Note that since the output equation is not affected by the unknown input, the output transformation

(6) is not necessary (i.e. C = C2 and F = F2). It can be shown that a linear DDO cannot be designed
since conditions (35a)-(35b) given in lemma 2 are not satisfied with ϕ1 = D1 (see (53)) :

the invariant zero of the triple (A,[F   D1],C) is {0}

and rank[ ]CF CD1   ≠ rank[ ]F D1  .
Now, conditions (35a)-(35b) given in lemma 2 are satisfied with ϕ1 = D1K (C) (see (36)) since :

the triple (A,[F   D1K (C)],C) has no invariant zero

and rank[ ]CF CD1K (C)   = rank[ ]F D1K (C)   = 2.

Then, a reduced-order bilinear DDO can be designed by the approach proposed for linear systems
by Kudva et al. (1980) or Hou and Müller (1992). The matrices of this DDO ((3)-(4)) are

M = 








0 0

1 0
0 0
0 1
0 0

 , P = 








1 0 0

0 286.6667 0
0 1 0
0 -2.4964 0
0 0 1

 , H = 



-300 -7854.2

2.5464 0  , L = 



0 -66393 0

0 729.9735 -1  ,
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J = 



0 0

0 0  , N1 = 



650 0 0

0 0 0  , with T = 



0 1 -286.6667 0 0

0 0 2.4964 1 0   and Φ = 






0 -3.12 0

0 0 0
0 0 0
0 0 0

-12.1212 0 0

 .

In figures 2 and 3 are displayed the actual value (solid line) and the estimated value (dashed line) of
the unmeasured state components ωm(t) and ΔΓ(t) respectively.

6 Conclusion
The main objective of this paper has been the characterisation of a class of bilinear systems subjected

to unknown disturbances for which there exists a DDO with linear error dynamics. By the use of an
instrumental matrix Φ, it was shown that the design of this kind of DDO is equivalent to the design of
DDO for a linear system. Necessary and sufficient conditions for the existence of full-order and
reduced-order DDO are then easily deduced in terms of invariant zero. This result simplifies
significantly the DDO design with regard to those proposed by Hac (1992) and Saif (1993) since
synthesis of DDO for linear systems proposed in the literature can be applied directly. Using the
properties of the matrix Φ, this approach is extended to the characterisation of a class of bilinear
systems for which there exists a linear DDO and to the fault detection of bilinear systems. These
results have been illustrated for a vehicle semi-active suspension and an electromechanical actuator.
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APPENDIX
The bilinear system (7)-(9) has some stable uncontrollable states with respect to the inputs U(t) and

d(t) when equation (7) can be decomposed as follows (Hara and Furuta, 1976; Hac, 1992)









x· 1

x· 2
  = 






A11 A12

0 A22
 





x1

x2
  + 

∑

i=1
m 



D11,i D12,i

0 0  





x1

x2
  ui + 



B1

0   U + 



F11

0   y1 + 



F21

0   d2. (A.1)

According to (A.1), equations (8) and (9) can be rewritten as
y1 = C11 x1 + C12 x2 + d1 (A.2)

y2 = C21 x1 + C22 x2. (A.3)
As pointed out by Hara and Furuta (1976) and Hac (1992), an observer may exist for the bilinear

system (A.1)-(A.3), even if the Sylvester equations (15) or (40) do not hold. But, in this case, a
necessary condition is that the matrix A22 is Hurwitz. Indeed if lemma 1 or 3 are satisfied except for
(15) or (40) which are replaced by
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HT - TA1 + L2C2 = 



0 0

0 Ξ22
 (A.4)

where Ξ22 ≠ 0 is a matrix of appropriate dimension (T is replaced by S for the full-order case), then
the time derivative of the reconstruction error e(t) (13) or (39) can be rewritten as

e·   = H e + 



0 0

0 Ξ22
 



0

x2
 . (A.5)

The observation error (A.5) with Ξ22 ≠ 0 (i.e. when (15) or (40) do not hold) verifies condition (5) in
definition (1) since the dynamics of the uncontrollable state x2 is linear and exponentially stable (i.e.
A22 is Hurwitz) and H is Hurwitz.

A22 being an Hurwitz matrix, the DDO design with Ξ22 = 0 yields no loss of generality since, for
the bilinear system (A.1)-(A.3), there exists a DDO if and only if the constraints (15)-(19) for the full-
order case or the constraints (40)-(45) for the reduced-order case can be solved. Indeed, according to
the partition of x(t) in (A.1) and choosing the observer matrices as follows

H = 





H11 H12

0 H22
 , T = 



T11 T12

0 I  , M = 



M11 M12

0 I  , N2,i = 



N21,i

0  , P2 = 



P21

0  ,

L1 = 



L11

0  , L2 = 



L21

0   and J = 



J1

0  

with H11 and H22 Hurwitz (for the full-order case, M11 = I, M12 = 0 and T is replaced by S) and
using relation (A.4) yields

H22 = A22 +  Ξ22. (A.6)
Then a DDO of x(t) satisfying lemmas 1 or 3 (Ξ22 = 0) can be always designed in three steps since
A22 is Hurwitz.

Step 1. Set H22 = A22.
Step 2. Determine matrices H11, T11, L21, M11 and P21 by designing a DDO of x1(t) for system
(A.1)-(A.3) by setting x2(t) = 0.
Step 3. (i) Determine T12 by solving N21,iC22 - T12D12,i = 0.

(ii) Set M12 = -  





T12

C22
 





T11

C21
 
-1

.

(iii) Set H12 = T11A12 + T12A22 - H11T12 - L21C22.

Note that (i) in step 3 may always been solved even if Ξ22 ≠ 0 (i.e. when (15) or (40) do not hold)
since this constraint is deduced from (16) or (41). In step 2, the constraint (37) holds by replacing T
and C2 by T11 and C21 respectively, then M12 can be obtained by (ii) in step 3.

For the full order case, T11 and T12 are replaced by S11 and S12 respectively. In step 3, (i) becomes
S12 = - P21C22 and (ii) is reduced to M12 = 0.

Step 1 yields Ξ22 = 0 in (A.4), guaranteeing the Sylvester equations (15) or (40) hold. But if H22 is
an Hurwitz such that H22 ≠ A22 (i.e. Ξ22 ≠ 0), then the observation error e(t) in (A.5) satisfies the
condition (5) in definition 1 since the uncontrollable state x2(t) is generated by a stable autonomous
linear process (see (A.1)).
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Remark. The bilinear systems (1)-(2) and (7)-(9) have the same uncontrollable states since, using the
notations in (A.1)-(A.3) with relation (6), matrices in (1)-(2) are given by

A = 





A11+F11C11 A12+F11C12

0 A22
 , F = 



F11 F21

0 0   W 
-1,

C = V 





C11 C12

C21 C22
  and G = V 



Iq1 0

0 0   W 
-1.
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Figure 1: electromechanical actuator
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Figure 2: motor shaft velocity ωm(t) : actual value (solid line), estimated value (dashed line)
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Figure 3: angular rotation ΔΓ(t) : actual value (solid line), estimated value (dashed line)


