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Abstract. This paper presents a solution to the problem of trajectory tracking with external distur-
bance attenuation in robotics systems via a reduced-order output feedback controller, without velocity
measurement. The proposed control law ensures both asymptotic stability of the closed-loop system and
external disturbance attenuation. The approach is based on the notion of the L2-gain and requires to
solve two algebraic Riccati inequalities. The proposed controller design is illustrated by a simulation
example.
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1 Introduction

The design of robot controllers [LEW 93, SPO 89] is usually based on complete state feedback, the
measurements of both joint angular positions and joint angular velocities are required. The joint angular
position measurements can be obtained by means of encoders or resolvers, which can give very accurate
measurements of the joint displacements. But, joint angular velocities obtained from of tachometers are
often contaminated by noise. One solution to this problem is to reconstruct the joint angular velocity
signal via an observer [BER 93a, BER 93b, CAN 92, KHE 96, NIC 93] and then to use the estimated
signal in the control loop.

The problem of external disturbance attenuation was not discussed in these references. For linear sys-
tems, the H∞ control theory has been revealed to be a powerful tool to solve the disturbance attenuation
problem. By solving two coupled algebraic Riccati equalities, full-order H∞ output feedback compen-
sators were given first in [DOY 89] and [SAM 90]. In [HSU 94], a reduced-order version was proposed.
For the nonlinear case, an approach based on Hamilton-Jacobi equalities was introduced in [VDS 92],
[ISI 92] and [KRE 94] to develop an H∞ state feedback controller and an H∞ output feedback controller,
respectively. In the nonlinear case, the notion of L2-gain generalizes the H∞ norm of a linear transfer
function. Note that, in these works, the controller is obtained by solving equations (of Riccati (linear
case) or Hamilton-Jacobi (nonlinear case) types) while the disturbance attenuation constraint requires
only to solve inequalities. The use of the L2-gain approach in the nonlinear disturbance attenuation
problem is treated in Knobloch et al. [KNO 93], van der Schaft [VDS 96] and references therein.

Recently, in [AST 94] the nonlinear H∞ control theory was used in robotics control to treat the problem
of state feedback stabilization in the presence of unknown torque disturbances and to derive an upper
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bound on the L2-gain of the closed-loop system. Point-to-point control for a robot manipulator with
disturbance attenuation has been treated in [ZAS 96] via a reduced-order output feedback controller.

In this paper, we present a systematic method to design a reduced-order output feedback controller
for rigid robot manipulators. The proposed controller provides a solution to the problem of external
disturbance attenuation in a L2-gain sense and guarantees an asymptotic stability of the closed-loop
system with a trajectory tracking control for an n-degrees-of-freedom (n-D.O.F) rigid robot manipulator.
By using the Lipschitz property of the robot model, the controller design is based on the solution of two
algebraic Riccati inequalities. This approach avoids to need to solve a Hamilton-Jacobi equation. Note
that the solution of a Hamilton-Jacobi equation is often obtained by means of a linearization technique
for which the neighborhood of validity is unknown [VDS 92].

This paper is organized as follows. In section 2, we recall the dynamic model of an n-D.O.F rigid robot
manipulator, define the reduced-order controller structure dedicated to the trajectory tracking objective,
and formulate the problem of external disturbance attenuation (in a L2-gain sense). In section 3, we
show that the external disturbance attenuation can be ensured by an algebraic Riccati inequality, and
that this inequality implies the closed-loop asymptotic stability. Then a solution of this algebraic Riccati
inequality is given. For this control law, a domain contained into the attraction domain is determined.
The proposed control design procedure is summarized in section 4 and illustrated by a simulation example
in section 5.

Notation. Throughout this paper, ‖x(t)‖ =
√

xT (t)x(t) denotes the Euclidean vector norm and L2[0,∞)

represents the space of square integrable functions over [0,∞) : x(t) ∈ L2[0,∞) if
∞
∫
0
‖x(t)‖2 dt < ∞. In

denotes the (n× n) identity matrix, the subscript is dropped if no confusion may arise.

2 Problem Formulation

The equations of motion of an n-link rigid robot manipulator in the joint space and in the presence of
external disturbances can be written as [SPO 89]

H(q)q̈ + C(q, q̇)q̇ + Fv q̇ + G(q) = Γ + w0 (1)

where q ∈ IRn is the vector of generalized joint coordinates, Γ ∈ IRn is the vector of torques/forces acting
at each joint, w0 ∈ IRn denotes the vector of external disturbances, H(q) ∈ IRn×n is the symmetric and
positive definite inertia matrix, C(q, q̇)q̇ ∈ IRn represents the centrifugal and Coriolis forces, Fv ∈ IRn×n

is the diagonal matrix of the viscous coefficients, G(q) ∈ IRn is the vector of gravitational forces. The
dynamic equation (1) has the following properties [LEW 93] which are used in the control design

h1I ! H(q) ! h2I with h1 > 0 and h2 > 0 (2a)
C(q, x1)x2 = C(q, x2)x1 for all x1, x2 ∈ IRn (2b)
‖C(q, x)‖ ! ρ‖x‖ with ρ > 0 for all x ∈ IRn (2c)

((2a) and (2c) are for a revolute joint robot). In addition, we make the assumption that w0 belongs to
L2[0,∞).

Considering a trajectory tracking control law [NIC 93], the control torque Γ is composed of two terms
: the first one introduced to compensate partially the effect of the nonlinearities in the robot model (1)
and the second one, called Γr, used for tracking, disturbance attenuation and stability purposes. Hence
this control law is defined as

Γ = H(q)q̈d + C(q, q̇)q̇d + Fv q̇d + G(q) + Γr (3)

where qd, q̇d and q̈d are the known and bounded vectors of the desired angular positions, the desired
angular velocities and the desired angular accelerations respectively. In this paper, we assume that only
the joint angular position vector q is measured, then the joint angular velocity vector q̇ in the control law
(3) must be replaced by its “estimate” ̂̇q. Define
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q̃ = q − qd

and
˙̃q = q̇ − q̇d,

as the angular position tracking and angular velocity tracking errors respectively. Introduce the state
vector x, the reference vector xd, the “state estimate” vector x̂, the reference vector and the measured
output vector y given by

x =
[
q̃
˙̃q

]
,

xd =
[
qd

q̇d

]
,

x̂ =
[
q̂ − qd
̂̇q − q̇d

]

and
y = q̃.

Then from equations (1) and (3) the following state-space model is obtained

ẋ = Ax + B1w + B2u + D (α(x + xd)− Φ(x̂ + xd, xd, C2(x + xd))) (4a)
v = C1x + D12u (4b)
y = C2x (4c)

where the vector v is the controlled output. Then in (4), the control input vector u, the disturbance
input vector w and the nonlinear functions α(x + xd) and Φ(x̂ + xd, xd, C2(x + xd)) are given by

u = H−1(q)Γr (5a)
w = H−1(q)w0 (5b)
α(x + xd) = H−1(q)(C(q, q̇)q̇ + Fv q̇) (5c)
Φ(x̂ + xd, xd, C2(x + xd)) = H−1(q)(C(q, ̂̇q)q̇d + Fv q̇d) (5d)

respectively. Note that w belongs to L2[0,∞) since w0 belongs to L2[0,∞) and the inverse of the inertia
matrix H−1(q) is bounded (see (2a)). Matrices

A =
[
0 In

0 0

]
, B1 = B2 =

[
0
In

]
, D =

[
0
−In

]
and C2 =

[
In 0

]

are of appropriate dimensions. The nonlinear functions α(x + xd) and Φ(x̂ + xd, xd, C2(x + xd)) satisfy
α(0) = 0 and Φ(0, xd, C2(x + xd)) = 0 (see (2c)). C1 and D12 are given real constant matrices of
appropriate dimensions. From (2a)-(2c), the following properties which are useful in the controller design
can be deduced.

Property 1. [BER 93b, NIC 93] For any vectors ξ1 =
[

ζ1
η1

]
and ξ2 =

[
ζ2
η2

]
, where ζ1, η1, ζ2 and η2 ∈ IRn,

verifying ‖η1‖ ! ηmax and ‖η2‖ ! ηmax, there exists some constant κ > 0 such that

‖α(ξ1)− α(ξ2)‖ ! κ‖ξ1 − ξ2‖. (6)

Using relation (2b), the constant κ can be majorized as follows : κ ! 2h−1
1 (ρ + ‖Fv‖)ηmax.

Property 2. For any vector ξ =
[

ζ
η

]
, where ζ and η ∈ IRn, verifying ‖η‖ ! ηmax, we have

‖H−1(ζ)(C(ζ, η) + Fv)‖ ! h−1
1 (ρ + ‖Fv‖)ηmax = κ1. (7)

Property 3. For any vector ξ =
[

ζ
η

]
, where ζ and η ∈ IRn, verifying ‖η‖ ! ηmax, we have

‖H−1(ζ)C(ζ, η)‖ ! h−1
1 ρηmax = κ2. (8)
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The order of the proposed controller is m − p, where m = 2n and p = n are the dimensions of the
state x and the measured output y, respectively. The reduced-order controller is given by

ż = Nz + Ly + g(z, xd, y) + Fu (9a)
x̂ = Mz + Ey (9b)
u = −Kx̂ (9c)

(z ∈ IRn and x̂ ∈ IR2n) under the two following constraints

det
[
M E

]
'= 0 (10a)

y = C2x̂. (10b)

Matrices N , L, F , M , E, K and the function g(z, xd, y) are computed to achieve the closed-loop
stability and to attenuate the influence of the external disturbance w on the controlled output v. Notice
that this controller is not based on an observer since the convergence of x̂ to x is guaranteed only in
closed-loop. From constraints (10a) and (10b), there exists a matrix T such that

[
M E

] [
T
C2

]
=

[
T
C2

] [
M E

]
= I, (11)

then z = T x̂. (12)

Therefore, with the following state variable

X =
[

x
z − Tx

]
=

[
x
e

]
, (13)

and using relation (11), the closed-loop system is given by

Ẋ = AX + β(x, x̂, xd) + Bw (14a)
v = CX, (14b)

where
A =

[
A11 A12

A21 A22

]
=

[
A−B2K −B2KM

f(T ) (TB2 − F )KM + N

]
(15a)

B =
[
B1

B2

]
=

[
B1

−TB1

]
(15b)

C =
[
C1 C2

]
=

[
C1 −D12K −D12KM

]
(15c)

β(x, x̂, xd) =
[

D (α(x + xd)− Φ(x̂ + xd, xd, C2(x + xd)))
g(z, xd, y)− TD (α(x + xd)− Φ(x̂ + xd, xd, C2(x + xd)))

]
(15d)

f(T ) = −T (A−B2K) + LC2 + NT − FK. (15e)

Notice that the variable z does not appear in the arguments of function β since this variable can be
directly deduced from x̂ by using (12). For simplicity sake, x̂ is using as argument of function β in (14a),
but from (10), (11) and (13), note that we have

x̂ = Me + x. (16)

To evaluate the closed-loop disturbance attenuation between w and v, we use the following definition
of the L2-gain given in [ISI 92] and [VDS 92].

Definition 1. Given a prescribed level of attenuation γ > 0, the robot in closed-loop (14) is said to have
L2-gain less than or equal to γ if

∫ ∞

0
‖v(t)‖2 dt ! γ2

∫ ∞

0
‖w(t)‖2 dt (17)

for all w ∈ L2[0,∞) and with zero initial condition. The system (14) has L2-gain less than γ if there
exists some 0 ! γ0 < γ such that (17) holds for γ0.
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3 Reduced-Order Output Feedback Controller Design

According to Definition 1, a systematic method is proposed to design the reduced-order controller
(9) based on a direct extension of the well-known bounded real lemma, which is currently used in the
H∞ linear control. From this approach, two algebraic Riccati inequalities are obtained from the L2-
gain constraint (17) of the closed-loop relation from w to v. Then, for the rigid robot manipulator
(4), sufficient conditions on the reduced-order output feedback controller (9) are given to guarantee the
asymptotic stability of the closed-loop equilibrium point X = 0 and to obtain a prescribed level for
external disturbance attenuation with trajectory tracking.

3.1 Preliminary Results

As preliminary results, two lemmas are given : the first one concerns the parameterization of matrices
T , M and E used in the controller design (see (9b) and (12)), the second one gives a sufficient condition
to ensure the closed-loop L2-gain objective (17). A useful parameterization of matrices T , M and E is
given in Lemma 1.

Lemma 1. Let C2 =
[
In 0

]
. Matrices T , M and E given by

T = R− ϕC2 =
[
R1 − ϕ R2

]
(18a)

M =
[

0
R−1

2

]
(18b)

E =
[

I
R−1

2 (ϕ−R1)

]
(18c)

are solutions to equation (11), where ϕ and R =
[
R1 R2

]
are arbitrary matrices of appropriate dimen-

sions such that
[

R
C2

]
is non-singular.

Proof. To parameterize the solutions of (11), let us introduce an arbitrary matrix R such that
[

R
C2

]
is

non-singular, with R =
[
R1 R2

]
. Since C2 =

[
In 0

]
, the regularity condition is reduced to det R2 '= 0.

In order to satisfy the constraint (11), matrix T can be chosen as follows
[

T
C2

]
=

[
I −ϕ
0 I

] [
R
C2

]
(19)

where ϕ is an arbitrary matrix of appropriate dimension. Hence, since C2 =
[
In 0

]
, matrix T is given by

(18a). From (11) and (18a), it is easy to show that M and E are given by (18b) and (18c) respectively. ❏

Note that, by using Lemma 1, inserting (18b) into (16) gives

̂̇q = R−1
2 e + q̇. (20)

Sufficient conditions to obtain a closed-loop L2-gain objective less than or equal to γ, between the
external disturbance w and the controlled output v, are given in the following lemma.

Lemma 2. Assume that relations (18a)-(18c) and Properties 1, 2 and 3 are satisfied. According to
Definition 1, if the following relations hold

g(z, xd, y) = TD (α(x̂ + xd)− Φ(x̂ + xd, xd, C2(x + xd))) (21)

and
[
A

T
11 A

T
21

A
T
12 A

T
22

] [
P1 0
0 P2

]
+

[
P1 0
0 P2

] [
A11 A12

A21 A22

]
+




0 0 0
0 (κ2

1 + µ2)In 0
0 0 (κ2 + κ2

2 + κ2
1κ2

2
µ2 )MMT
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+

[
C

T
1 C1 C

T
1 C2

C
T
2 C1 C

T
2 C2

]
+

[
P1 0
0 P2

][
γ−2B1B

T
1 + DDT γ−2B1B

T
2

γ−2B2B
T
1 (γ−2 + 1)R2RT

2

] [
P1 0
0 P2

]
=

[
Q11 Q12

QT
12 Q22

]
< 0

(22a)

where
P = P T =

[
P1 0
0 P2

]
> 0 (22b)

and µ is an arbitrary positive scalar, then the closed-loop system (14) has a L2-gain less than or equal to
γ between the external disturbance w and the controlled output v.

Proof. Consider the closed-loop representation (14). For P = P T > 0, let us introduce the following
performance measure with an initial state corresponding to the equilibrium (X = 0)

J = J1 −XT (∞)PX(∞) (23a)

J1 =
∫ ∞

0

{
vT v − γ2wT w +

d

dt
(XT PX)

}
dt. (23b)

According to [VDS 92], the performance index J (23a) is an integral dissipation inequality. Note that
condition (17) is equivalent to J ! 0. Using equation (14b), J1 can be written as

J1 =
∫ ∞

0

{
XT C

T
CX − γ2wT w + ẊT PX + XT PẊ

}
dt. (24)

Combining (14) and (24) yields

J1 =
∫ ∞

0

{
XT

(
A

T
P + PA + C

T
C + γ−2PB B

T
P

)
X + βT (x, x̂, xd)PX

+XT Pβ(x, x̂, xd)−
(
w − γ−2B

T
PX

)T
γ2

(
w − γ−2B

T
PX

)}
dt. (25)

Using (15d), (21) and (22b), we obtain

βT (x, x̂, xd)PX + XT Pβ(x, x̂, xd) = ‖θ(x, x̂, xd)‖2 − ‖θ(x, x̂, xd)−DT P1x‖2 + ‖DT P1x‖2

− ‖α(x̂ + xd)− α(x + xd)−DT T T P2e‖2 + ‖α(x̂ + xd)− α(x + xd)‖2 + ‖DT T T P2e‖2 (26)

where
θ(x, x̂, xd) = α(x + xd)− Φ(x̂ + xd, xd, C2(x + xd))

= H−1(q)C(q, q̇)q̇ −H−1(q)C(q, ̂̇q)q̇d + H−1(q)Fv ˙̃q. (27)

At this step of the proof, it is interesting to show that the function θ(x, x̂, xd) has an affine dependence
on variables ˙̃q and e, namely an affine dependence on the closed-loop state variable X (13). By using
property (2b) and by subtracting and adding the same term, θ(x, x̂, xd) in (27) can be written as

θ(x, x̂, xd) = H−1(q)
(
C(q, q̇)q̇ − C(q, q̇)q̇d + C(q, q̇d)q̇ − C(q, q̇d)̂̇q + Fv ˙̃q

)
(28)

or equivalently

θ(x, x̂, xd) = H−1(q)C(q, q̇)(q̇ − q̇d)−H−1(q)C(q, q̇d)(̂̇q − q̇) + H−1(q)Fv ˙̃q. (29)

By inserting (20) into (29), the function θ(x, x̂, xd) has an affine dependence on variables ˙̃q and e

θ(x, x̂, xd) = H−1(q)(C(q, q̇) + Fv) ˙̃q −H−1(q)C(q, q̇d)R−1
2 e. (30)

Using Properties 1, 2 and 3 (see (6), (7) and (8)), and combining (16), (18b), (25), (26) and (30), the
following inequality is obtained by completing the squares
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J1 <

∫ ∞

0





XT



A
T
P + PA + C

T
C + γ−2PB B

T
P +




0 0 0
0 (κ2

1 + µ2)In 0
0 0 (κ2 + κ2

2 + κ2
1κ2

2
µ2 )MMT





+
[
P1 0
0 P2

] [
DDT 0

0 TDDT T T

] [
P1 0
0 P2

])
X − ‖θ(x, x̂, xd)−DT P1x‖2

−γ2‖w − γ−2B
T
PX‖2 − ‖α(x̂ + xd)− α(x + xd)−DT T T P2e‖2

}
dt (31)

where µ > 0 is arbitrary. Notice that the optimal value of µ > 0 minimizing

κ = κ2
1 + µ2 + κ2 + κ2

2 +
κ2

1κ
2
2

µ2
(32)

reduces the conservatism in inequality (31). This value is given by

µopt =
√

κ1κ2. (33)

From B1 = B1 =
[

0
In

]
, D =

[
0
−In

]
, and T defined by (18a), expressions TDDT T T and B2B

T
2 in the

inequality (31) become

TDDT T T = R2R
T
2 (34a)

B2B
T
2 = TB1B

T
1 T T = R2R

T
2 . (34b)

Using the fact that XT (∞)PX(∞) " 0, the L2-gain attenuation (17) is satisfied if the performance
index J1 (25) is negative. From (31) this can be achieved if the algebraic Riccati inequality (22a)
holds. ❏

3.2 Main Result

Based on Lemma 2, the sufficient conditions to obtain an external disturbance attenuation in a L2-gain
sense with trajectory tracking and asymptotic stability via the reduced-order output feedback controller
(9) are given in Theorem 1. The construction of this controller is given in Lemma 3.

Theorem 1. Assume that relations (18a)-(18c), (21) and (22a) are satisfied. If we choose

‖q̇d‖ ! VM (35a)
X(0) ∈ D = {X/V (X) ! Vmax} (35b)

with
V (X) = XT PX (36a)
Vmax = min

(
λm(P1)δ2

v ,λm(P2)δ2
e

)
(36b)

where δv and δe are given positive scalars, VM is the maximum desired velocity, and λm(#) denotes the
minimum eigenvalue of the corresponding matrix, then the controller (9) of order m − p ensures an
asymptotic stability of the equilibrium point (q̃, ˙̃q, e) = 0 of the robot system in closed-loop (14) for all
initial state into the domain D, and yields an attenuation of the disturbance input according to Definition
1.

Proof. To analyze the asymptotic stability of the equilibrium point (q̃, ˙̃q, e) = 0 of the closed-loop robot
system (14) without perturbation (w(t) ≡ 0), consider the Lyapunov function candidate V (X) defined
in (32a) where the matrix P = P T > 0, given by (22b), is a solution of the algebraic Riccati inequality
(22a). The time derivative of the Lyapunov function V (X) (36a) along the dynamics (14a) with w(t) ≡ 0
can be expressed as

V̇ (X(t)) = XT
(
A

T
P + PA

)
X + βT (x, x̂, xd)PX + XT Pβ(x, x̂, xd). (37)

7



Then according to relations (26)-(30), the following inequality is obtained

V̇ (X(t)) ! XT

(
A

T
P + PA +

[
P1 0
0 P2

] [
DDT 0

0 TDDT T T

] [
P1 0
0 P2

]

+




0 0 0
0 (κ2

1 + µ2)In 0
0 0 (κ2 + κ2

2 + κ2
1κ2

2
µ2 )MMT







 X. (38)

From the algebraic Riccati inequality (22a) given in Lemma 2, it is deduced that V̇ (X(t)) < 0 for
X = 0.

The use of scalars κ, κ1 and κ2 require that the bounds of q̇ and ̂̇q are known (see Properties 1, 2
and 3). Thank to the definition of the domain D (35) these bounds can be computed as follows. The
Lyapunov function (36a) is a decreasing function of time. Then, by using (22b), (35b) and (36a), the
following inequality holds

λm(P1)‖ ˙̃q‖2 + λm(P2)‖e‖2 ! V (X(t)) ! V (X(0)) ! Vmax. (39)

Since Vmax is given by (36a), then

‖ ˙̃q‖2 ! Vmax

λm(P1)
! δ2

v (40a)

‖e‖2 ! Vmax

λm(P2)
! δ2

e . (40b)

From q̇ = ˙̃q + q̇d, (20), (35a) and (40) we have

‖q̇‖ ! ‖ ˙̃q‖+ ‖q̇d‖ ! δv + VM (41a)
‖̂̇q‖ ! ‖R−1

2 ‖‖e‖+ ‖q̇‖ ! ‖R−1
2 ‖δe + δv + VM . (41b)

Then Properties 1, 2 and 3 hold with

κ = max
ξ∈Ξ

∥∥∥∥
∂α

∂ξ

∥∥∥∥ (42a)

κ1 = h−1
1 ρ(δv + VM ) (42b)

κ2 = h−1
1 ρVM (42c)

where
Ξ =

{
ξ/ξ =

[
ζ
η

]
, ζ ∈ IRn, η ∈ IRn and ‖η‖ !

(
‖R−1

2 ‖δe + δv + VM
)}

. (43)

❏

The use of the Theorem 1 for the controller design requires to solve the algebraic Riccati inequality
(22a). This is the aim of the following lemma.

Lemma 3. The algebraic Riccati inequality (22a) with Q12 = 0 holds if the following three conditions
are verified.
(i) There exists a symmetric and positive definite matrix P1 satisfying the following algebraic Riccati
inequality

(
A−B2

(
DT

12D12
)−1

DT
12C1

)T
P1 + P1

(
A−B2

(
DT

12D12
)−1

DT
12C1

)
+

(
κ2

1 + µ2
) [

0 0
0 In

]

+ CT
1

(
I −D12

(
DT

12D12
)−1

DT
12

)
C1 + P1

(
γ−2B1B

T
1 + DDT −B2

(
DT

12D12
)−1

BT
2

)
P1 < 0 (44)
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(ii) There exist a symmetric and positive definite matrix Q2 = P−1
2 and a scaling parameter ε > 0

satisfying the following algebraic Riccati inequality

Q2

(
MT

((
P1B2 + CT

1 D12
) (

DT
12D12

)−1 (
BT

2 P1 + DT
12C1

)
+

(
κ2 + κ2

2 +
κ2

1κ
2
2

µ2

))
M

− ΩT Ω
ε

)
Q2 + Q2ΨT + ΨQ2 +

(
γ−2 + 1

)
R2R

T
2 < 0 (45)

where
Ψ = RAγM (46a)
Ω = C2AγM (46b)
Aγ = A + γ−2B1B

T
1 P1 (46c)

(iii) The controller gains K and ϕ, and controller matrices N , L and F , are given by

K =
(
DT

12D12
)−1 (

BT
2 P1 + DT

12C1
)

(47a)

ϕ =
1
2ε

Q2ΩT (47b)

N = TAγM − ZKM (47c)
L = TAγE − ZKE (47d)
F = TB2 − Z (47e)

where Z is an arbitrary matrix of appropriate dimension.

Proof. The algebraic Riccati inequality (22a) holds if the following relations are satisfied

Q11 = A
T
11P1 + P1A11 + P1

(
γ−2B1B

T
1 + DDT

)
P1 + C

T
1 C1 +

(
κ2

1 + µ2
)[0 0

0 In

]
< 0 (48a)

Q12 = A
T
21P2 + P1A12 + γ−2P1B1B

T
2 P2 + C

T
1 C2 = 0 (48b)

Q22 = A
T
22P2 + P2A22 +

(
γ−2+1

)
P2R2R

T
2 P2 +

(
κ2+κ2

2+
κ2

1κ
2
2

µ2

)
MT M + C

T
2 C2 < 0. (48c)

Note that the algebraic Riccati inequalities (48a) and (48c) require the stability of A11 and A22.
Substituting the expressions of A11, B1,and C1 defined by (15a)-(15c) into the algebraic Riccati

inequality (48a), the following inequality is obtained

(A−B2K)T P1 + P1 (A−B2K) + P1
(
γ−2B1B

T
1 + DDT

)
P1

+ (C1 −D12K)T (C1 −D12K) +
(
κ2

1 + µ2
) [

0 0
0 In

]
< 0. (49)

Inserting the gain matrix K (47a) into (49), then the algebraic Riccati inequality (44) is obtained.
Then it follows that the matrix A11 = A−B2K is stable if condition (i) is achieved.

By using (46c) and (47e), inserting the expressions (15a)-(15c) and (15e) into (48b) yields

P2 (NT + LC2 + ZK − TAγ)−MT KT
(
BT

2 P1 + DT
12C1 −DT

12D12K
)

= 0. (50)

From the expression of K (47a), we can remark that

BT
2 P1 + DT

12C1 −DT
12D12K = 0. (51)

Since P2 > 0, inserting (51) into (50) yields

NT + LC2 + ZK − TAγ = 0. (52)
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Hence, multiplying (52) by the non-singular matrix
[
M E

]
and using the relation (11), equations

(47c) and (47d) are obtained.
By using (47e), matrix A22 can be rewritten as

A22 = N + ZKM. (53)

Using the expressions of N and T given by (47c) and (18a) respectively, the matrix A22 in (48) becomes

A22 = Ψ− ϕΩ (54)

where Ψ and Ω are given by (47a) and (47c) respectively.
By pre and post-multiplying the algebraic Riccati inequality (48c) by Q2 = P−1

2 , and by using (15c)
and (54), an equivalent inequality is obtained

Q2

(
MT KT DT

12D12KM +
(

κ2 + κ2
2 +

κ2
1κ

2
2

µ2

)
MT M

)
Q2

+ Q2 (Ψ− ϕΩ)T + (Ψ− ϕΩ) Q2 +
(
γ−2 + 1

)
R2R

T
2 < 0. (55)

Choosing the gain matrix ϕ given by (47b), then the algebraic Riccati inequality (45) is obtained.
Then it follows that A22 is a stable matrix if condition (ii) is achieved. This ends the proof of the
lemma. ❏

From (54), to obtain a matrix A22 stable, the pair (Ω,Ψ) must be detectable. The following lemma
gives the necessary and sufficient condition to obtain a detectable pair (Ω,Ψ).

Lemma 4. The unobservable modes of the two pairs (C2, Aγ) and (Ω,Ψ) are the same.

Proof. Let us introduce the following unimodular matrices

U1 =




R −sϕ + RAγE
C2 −sI + C2AγE
0 I



 and U2 =
[
M E

]
. (56)

Then, it follows that

rank
[
sI −Aγ

C2

]
= rankU1

[
sI −Aγ

C2

]
U2

= rank




sI −Ψ 0

Ω 0
0 I



 . (57)

This completes the proof of the lemma. ❏

Note that the pair (C2, Aγ) is observable, then the Lemma 4 implies that the pair (Ω,Ψ) is observable.
In addition, since the pair (A,B2) is reachable, the two algebraic Riccati inequalities in Lemma 3 are
solvable (see Remarks 2 and 3).

Remark 1 The proposed reduced-order controller requires to solve two algebraic Riccati inequalities
(44) and (45) which are not mutually-coupled as in [DOY 89] and [SAM 90], but unilaterally-coupled as
in [HSU 94]. Unlike in [HSU 94], the matrix N (47c) is not obtained by solving an eigenvalue/eigenvector
problem by using a Jordan decomposition : the parameterization (18a) of matrix T allows to overcome
this difficulty and the computation of matrix N is reduced to the choice of an arbitrary matrix Z (see
(47c)). Then, our approach allows to have TB2 = F and consequently A22 = N by choosing Z = 0. This
is not the case in [HSU 94] where F must be different from TB2. ❏
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Remark 2 Note that there are no Hamilton-Jacobi equations to be solved as in [VDS 92], [ISI 92] and
[KRE 94]. These equations are hard to solve exactly, and the size of the neighborhood for a local solution
based on a linearization technique is often undetermined [VDS 92]. For the proposed controller, the use of
an extension of the bounded real lemma to a non linear system satisfying a semi-global Lipschitz condition
(6) leads to algebraic Riccati inequalities which can be easily solved as linear matrix inequalities by
using convex semi-definite programming [BOY 94], [EGH 95], [GAH 95] or by transforming the algebraic
Riccati inequalities into algebraic Riccati equations. ❏

Remark 3 Consider the algebraic Riccati inequalities (44) and (45) in Lemma 3 and define the two
following matrices

W1 = γ−2B1B
T
1 + DDT −B2

(
DT

12D12
)−1

BT
2 (58)

and

W2 = MT
(
P1B2 + CT

1 D12
) (

DT
12D12

)−1 (
BT

2 P1 + DT
12C1

)
M

+
(

κ2 + κ2
2 +

κ2
1κ

2
2

µ2

)
MT M − ΩT Ω

ε
. (59)

From (59), for decreasing ε, W2 decreases in a semi-positive definite sense. Then for a given γ, algebraic
Riccati inequality (45) cannot be solved when ε is close to zero, the value of γ must be increased. Then
ε is a useful design parameter to solve (45) for a given disturbance attenuation γ (see the step 9 in the
design procedure). Similarly, if matrix D12 in the objective equation (4b) is replaced by νD12 with ν > 0,
then W1 in (58) decreases in a semi-positive definite sense when ν increases. One can see that 1

ν plays a
similar role in (58) as ε in (59). Since matrix W3 given by

W3 =
(
κ2

1 + µ2
) [

0 0
0 In

]
+ CT

1

(
I −D12

(
DT

12D12
)−1

DT
12

)
C1 (60)

does not change when ν is modified, then ν can be used as a design parameter to solve the algebraic
Riccati inequality (44) for a given disturbance attenuation γ (see the step 5 in the design procedure). ❏

Remark 4 If we put q̇d ≡ 0, the proposed trajectory tracking controller becomes a point-to-point con-
troller with gravity compensation (see [NIC 93] and [LEW 93]). In this case, the control law Γ in (3)
becomes

Γ = G(q) + Γr. (61)

❏

4 Reduced-Order Output Feedback Controller Design Procedure

The design procedure of the reduced-order output feedback controller (9) can be made as follows.

Step 1 Choose the scalars VM > 0, δv > 0, δe > 0 and an arbitrary matrix R such that det
[

R
C2

]
'= 0 with

R =
[
R1 R2

]
.

Step 2 Compute the Lipschitz constant κ and the scalars κ1 and κ2 given by (42a), (42b) and (42c)
respectively, and compute µ = µopt by (33).

Step 3 Choose a level of external disturbance attenuation γ > 0.
Step 4 Solve the algebraic Riccati inequality (44).
Step 5 Check if P1 > 0, then go to step 6, else, first, multiply D12 by ν, increase ν and go to step 4 or,

second, increase γ and go to step 4.
Step 6 The controller gain K and the matrix Aγ are given by (47a) and (46c) respectively.
Step 7 The matrices M , Ψ and Ω are given by (18b), (46a) and (46a) respectively, and choose ε > 0.
Step 8 Solve the algebraic Riccati inequality (45).
Step 9 Check if Q2 > 0, then go to step 10, else, first, decrease ε and go to step 8 or, second, increase γ

and go to step 4.
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Step 10 The gain matrix ϕ is given by (47b).
Step 11 The matrices T and E are given by (18a) and (18c) respectively.
Step 12 After choosing an arbitrary matrix Z, the matrices N , L and F are given by (47c), (47d) and (47e)

respectively.
Step 13 The function g(z, xd, y) is given by (21) with α(x̂ + xd) and Φ(x̂ + xd, xd, y) given by (5c) and (5d)

respectively.
Step 14 The domain is D = {X/V (X) ! Vmax}, where P =

[
P1 0
0 Q−1

2

]
, V = XT PX, ‖q̇d‖ ! VM and Vmax is

given by (36b).

The previous design procedure requires only off-line computations. These off-line computations does
not include numerical difficulties since matrices A, B1, B2, D and C2 defined in section 2 are decoupled
link by link. The on-line computations are reduced to the resolution of the differential equation (9a)
and to the numerical evaluation of equations (3), (9b), (9c) and the numerical evaluation of the vector
function g(z, xd, y) (see (21)) as in the design procedures presented in the literature ([BER 93b], [CAN 92],
[KHE 96], [NIC 93]).

5 Simulation Example

To show the feasibility of the proposed design method, a simulation example is presented. Consider
the 2-D.O.F rigid robot manipulator used by Berghuis and Nijmeijer [BER 93b], represented by figure 1
in the appendix. The robot matrices are characterized by

H(q) =
[
9.77 + 2.02 cos(q2) 1.26 + 1.01 cos(q2)
1.26 + 1.01 cos(q2) 1.12

]
, C(q, q̇) =

[
−1.01 sin(q2)q̇2 1.01 sin(q2)(q̇1 + q̇2)
1.01 sin(q2)q̇1 0

]
and

G(q) =
[
8.1 sin(q1) + 1.13 sin(q1 + q2)

1.13 sin(q1 + q2)

]
.

By using majorations, it can be seen that [BER 93b] (see (2a) and (2c))

h1 = 1 kg m−1, h2 = 25 kg m−1 and ρ = 6 kg m2 s−1.

The parameters of the domain D are chosen as

VM = 0.9 rad s−1, δv = 0.45 rad s−1 and δe = 0.45 rad s−1.

Using relations (2b) and (42a)-(42c), the scalars κ, κ1 and κ2 are given by

κ = 16.2 s−1, κ1 = 8.1 s−1 and κ2 = 5.4 s−1.

The design parameters are chosen as

R1 = 0, R2 = I2, C2 =
[
I2 0

]
, D12 = I2, Z = 0, γ = 2, ν = 0.4 (see Remark 3) and ε = 0.0009.

In order to transform the algebraic Riccati inequalities (44) and (45) into algebraic Riccati equalities,
solved with the “Robust Control Toolbox” of the software “Matlab”, the matrices 350× I4 and I2 have
been added to the left hand side of inequalities (44) and (45) respectively.

From the previous data, the matrices of the controller (9) and (12) and the bound Vmax (36b) of the
Lyapunov function V (X) defining the size of the domain D are given by

N =
[
−67.245 0

0 −67.245

]
, L =

[
−4.6838 103 0

0 −4.6838 103

]
, F =

[
1 0
0 1

]
, M =





0 0
0 0
1 0
0 1



,

E =





1 0
0 1

69.682 0
0 69.682



, T =
[
−69.682 0 1 0

0 −69.682 0 1

]
, K =

[
51.760 0 60.925 0

0 51.760 0 60.925

]
and

Vmax = 1.6145.
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The initial conditions are set at

q1(0) = 0.1 rad, q2(0) = 0.4 rad, q̇1(0) = 0 rad s−1, q̇2(0) = 0 rad s−1,
z1(0) = 0 rad s−1 and z2(0) = 0 rad s−1.

Figures 2 to 7 in the appendix show a tracking simulation result. A perturbation is added to link
1 at time 2 s and to link 2 at time 4 s (see figure 4). As expected with the small value of γ, it can
be noticed that the tracking error is small while the perturbations appear (see figures 5 and 6). When
the perturbations disappear, the tracking errors go to zero with acceptable dynamics. Figure 7 shows
the velocities of the robot and the “estimated” velocities for the two links. The “estimated” velocities
converge on the robot velocities. The “estimated” velocities converge quickly on the robot velocities when
the perturbations disappear.

6 Conclusion

In this paper, the trajectory tracking problem without velocity measurement has been discussed for an
n-joint rigid robot manipulator via a reduced-order output feedback controller. This controller is charac-
terized by an external disturbance attenuation in a L2-gain sense and provides an asymptotic stability of
the closed-loop system. Moreover, the controller gains are determined by solving two unilaterally-coupled
algebraic Riccati inequalities. The closed-loop stability analysis is addressed via the Lyapunov theory,
and a domain contained into the attraction domain is given. A simulation example is presented to show
the feasibility and the effectiveness of the proposed approach.
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Figure 1: 2-D.O.F robot system.
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Figure 2: Reference and position, link 1.

 

Figure 3: Reference and position, link 2.

 

Figure 4: Perturbations, links 1 and 2.
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Figure 5: Position errors, links 1 and 2.

 

Figure 6: Velocity errors, links 1 and 2.

 

Figure 7: Velocity observation errors, links 1 and 2.
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