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Abstract - A new method is developed for the state estimation of linear discrete-time stochastic system
in the presence of unknown disturbance. The obtained filter is optimal in the unbiased minimum
variance sense. The necessary and sufficient conditions for the existence and the stability of the filter
are given.

1. Introduction
The problem of the state estimation in the presence of unknown inputs has received considerable

attention in the last two decades. In particular, for deterministic systems the observer design has been
treated and the existence and stability conditions are well established (see Darouach et al., 1994, and
references therein). However for stochastic systems few approaches have been developed. The most
common approach is to treat the unknown input d(t) as a stochastic process with known wide-sense
description (known mean and covariance for example) or as a constant bias, this approach was
introduced by Friedland (1969) and several extensions have appeared in the literature (see Ignani,
1990; Zhou et al., 1993).

Generally, there may be no any knowledge concerning the model of these inputs. As shown by
Kitanidis (1987), the problem is of great importance in geophysical and environmental applications,
where one can not make any assumption on the evolution of the unknown inputs and the filtering is
too dependent on poorly justified assumptions about how d(t) varies in time and about its statistical
characteristics. Others applications of the state estimation in presence of unknown inputs are in the
fault detection and isolation (FDI) problems (see Patton et al., 1989; Basseville, 1994).

In this paper, we derive the unbiased minimum-variance linear state estimation in presence of
unknown deterministic inputs for discrete-time stochastic systems. The results from the approach
developed in Kitanidis (1987) are extended. In particular a new method for the design of the filter is
given and the stability and convergence conditions are established from the standard Kalman filtering
case.

2. Filter design
Let us consider the linear discrete-time stochastic system

xk+1 = Φk xk + Gk dk + wk (1-a)
yk = Hk xk + vk (1-b)
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where xk ∈ Rn is the state, dk ∈ Rp is the unknown input, and yk ∈ Rm is the output. vk and wk are
zero mean white sequences uncorrelated with each other and with the initial state of the system with
covariances

E(wk wjT) = Qkδkj, E(vk vjT)) = Rk δkj, Qk ≥ 0, and Rk ≥ 0.

where δkj is the Kronecker delta and E denotes the expectation operator. Φk, Gk and Hk are known
matrices of appropriate dimensions. We assume that m ≥ p , and without loss of generality rank
Hk = m and rank Gk = p.

The problem is to design an unbiased minimum variance linear estimator of the state xk given
measurements up to time instant k without any information concerning the disturbance dk.

Let x̂ k denotes the estimate of the state xk at time instant k using measurement up till time k, this
estimator will be unbiased if

E(x̂ k - xk) = 0

The estimation error covariance matrix is given by

Pk = E[(x̂ k - xk) (x̂ k - xk)T]

Consider the linear filter proposed by Kitanidis (1987)

x̂ k+1 = Φk x̂ k + Lk+1 (yk+1 - Hk+1 Φk x̂ k) (2)

where Lk+1 is an n×m matrix which must be determined such that

E(x̂ k+1 - xk+1) = 0

This condition is realized if (see Kitanidis, 1987)

Lk+1Hk+1Gk - Gk = 0 (3)

The estimation error covariance matrix of the estimator (2) is

Pk+1 = (I - Lk+1Hk+1) (ΦkPkΦkT + Qk) (I - Lk+1Hk+1)T + Lk+1Rk+1Lk+1T (4)

In Kitanidis (1987) the matrix Lk+1 is obtained by minimizing the trace of the estimation error
covariance matrix (4) under the constraint (3).

Here we present a new approach which consists of parameterizing the solution of (3) by an
arbitrary matrix which can be obtained to lead to a minimum variance estimator. This formulation
permits to obtain the optimal filter under less restrictive conditions.

Now equation (3) has a solution if rank Hk+1Gk = rank Gk = p. Under this condition, the solution
is given by

Lk+1 = Gk∏k + Kk+1Tk (5)
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with ∏k = (Hk+1Gk)+ ∈ Rp×m and Tk = αk (I - (Hk+1Gk) (Hk+1Gk)+) ∈ R(m-p)×m, where αk is an

arbitrary matrix which must be chosen such that Tk is a full row rank matrix and the matrix 



Tk

∏k   is

nonsingular. A+ represents a pseudo-inverse matrix of A.
Equation (5) replaced into (4) gives

Pk+1 = (Fk - Kk+1βk+1)Pk(Fk - Kk+1βk+1)T + Q 1k + Kk+1ΘkKk+1T - Kk+1SkT - SkKk+1T (6)

where Q1k = ∑kQkΣkT + Gk ΠkRk+1∏kTGkT (7)

∑k = I - Gk ∏kHk+1 (8)

Fk = ∑k Φk (9)

βk+1 = Tk Hk+1 Φk (10)

Sk = ∑kQkHk+1TTkT - Gk ∏k Rk+1TkT (11)

and Θk = Tk (Hk+1QkHk+1T + Rk+1) TkT (12)

The minimum variance estimation problem is reduced to find the matrix Kk+1 which minimizes the
trace of the covariance matrix equation (6). The result is given by

Kk+1 = (FkPkβk+1T + Sk) (βk+1Pkβk+1T + Θk)-1 (13)

From (10), (12), and (13) the gain matrix Kk+1 exists if and only if the matrix Tk Ck+1TkT

where Ck+1 = Hk+1 (Qk + ΦkPkΦkT) Hk+1T + Rk+1

is nonsingular.
The following theorem gives the connection between our results and those obtained by Kitanidis

(1987).

Theorem 1:
Assume that Ck+1 is nonsingular and that rank Hk+1Gk = rank Gk = p,

and let the pseudo-inverse matrix (Hk+1Gk)+ be given by

∏k = (Hk+1Gk)+ = (GkTHk+1TCk+1-1Hk+1Gk)-1 GkTHk+1TCk+1-1

and the singular value decomposition of Ck+1-1/2Hk+1Gk be

Ck+1-1/2Hk+1Gk = Uk 



∑k1

0   VkT

where ∑k1 = diag (σki, σk1, σk2,… , σkp) with σk1 ≥ σk2 ≥ … ≥ σkp > 0, and Uk and Vk are
orthogonal matrices.

Then for αk = [0     I] UkT Ck+1-1/2 we obtain the Kitanidis filter (Kitanidis, 1987).

Proof. See the Appendix. ■
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Remark 1:
From the above results we can see that the results presented by Kitanidis (1987) can be directly

deduced, under restrictive conditions, from ours.
In the sequel we assume that Θk is nonsingular , this assures the existence of the gain matrix Kk+1.

The necessary and sufficient conditions for Θk to be positive definite are stated in the following
lemma.

Lemma 1:
Matrix Θk is positive definite if and only if

rank 





I  Gk Qk1/2 0

Hk+1 0 0 Rk1/2   = n + m.

Proof:
We have

rank 





I Gk Qk1/2 0

Hk+1 0 0 Rk1/2   = rank 



I 0

Hk+1 -I  





I Gk Qk1/2 0

Hk+1 0 0 Rk1/2  

= n + rank 



Tk

∏k   [Hk+1Gk     Hk+1Qk1/2     -Rk1/2] = n + m

if and only if the matrix [TkHk+1Qk1/2     -TkRk1/2] is of full row rank or equivalently matrix Θk is
positive definite. ■

Remark 2:
From equations (2) and (5), the proposed filter can be written in the following form

x̂ k+1 = Fk x̂ k + Gk ∏k yk+1 + Kk+1 (Tk yk+1 - βk+1 x̂ k) (15)

3. Convergence and stability of the filter
In this section, we consider the special case where all known matrices are independent of time, and

we will use the standard results on convergence of the Riccati equation corresponding to the system
that captures the unknown input. First a couple of preliminary lemmas are needed to state the
conditions for detectability and reachability of the fictitious system in the original system matrices.

Suppose that Φk, Gk, Hk, Qk and Rk
 are all independent of time instant k, i.e. Φk = Φ, Gk = G, Hk

= H, Qk
 = Q and Rk

 = R, then we obtain the following results.
The minimum variance estimate becomes

x̂ k+1 = F x̂ k + G ∏ yk+1  + Kk+1 (T yk+1 - β x̂ k) (16)
where Kk+1 = (FPkβT + S) (βPkβT + Θ)-1

Pk+1 = (F - Kk+1β)Pk(F - Kk+1β)T + Q1 + Kk+1ΘKk+1T - Kk+1ST - SKk+1T (17)
and where Q1 = ∑ Q ∑T + G ∏ R ∏TGT (18)

∑ = I - G ∏ H (19)
F = ∑ Φ (20)
β = T H Φ
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S = ∑ Q HT TT - G ∏ R TT

Θ =T (H Q HT +  R) TT

∏ = (H G)+ (21)
T = α (Ι - (HG) (HG)+)

and 


T

∏   is a nonsingular matrix.

Now define
Fs = F - SΘ-1β (22)

Qs = Q1 - SΘ-1ST (23)
then we have the following lemma.

Lemma 2:
The pair (Fs, β) is detectable if and only if

rank 



zI - Φ -G

H 0   = n + p, ∀ z ∈ C|  , |z| ≥ 1

Proof:
The detectability of (Fs, β) is given by

rank 



zI - Fs

β   = rank 



I -SΘ-1

0 I  



zI - Fs

β   = rank 



zI - F

β   = n, ∀ z ∈ C|  , |z| ≥ 1

Now we have

rank 



zI - Φ -G

H 0   = rank 



I 0

-H zI  



zI - Φ -G

H 0  

= rank 



zI - Φ -G

HΦ HG   = rank 








I 0

0 T
0 ∏

 



zI - Φ -G

HΦ  HG  

= rank 








zI - Φ -G

β 0
∏HΦ I

  = rank 



zI - F

β   + p = n + p ∀ z ∈ C|  , |z| ≥ 1

if and only if the pair (F, β) is detectable or as shown (Fs, β) is detectable. ■

Lemma 3:
The existence of unreachable mode λ of (Fs, Qs1/2) is equivalent to the existence of a row vector ϖ

≠ 0 such that

ϖ 





-λI + Φ G Q1/2 0

λH 0 0 R1/2   = 0

Proof:
Let λ be an unreachable mode of (Fs, Qs1/2), then there exists a row vector q ≠ 0 such that



q Fs = λ q
q Qs1/2 = 0  (24)
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From (18) and (23), one can easily verify that

Qs1/2 = [ I        -SΘ-1] 





∑Q1/2 G∏R1/2

THQ1/2 -TR1/2  

Using (19), (20), and (21) equation (24) can be written as

q1 





∑Φ - λI ∑Q1/2 G∏R1/2

β THQ1/2 -TR1/2   = 0

where q1 = q[ I        -SΘ-1]
which leads to

ϖ 





-λI + Φ G Q1/2 0

λH 0 0 R1/2   = 0

where ϖ = q1 








∑ -G∏

TH T
∏H ∏

 ■

Now the associated algebraic Riccati equation (ARE) can be written as

(Fs - Ksβ) P (Fs - Ksβ)T + Ks Θ KsT + Qs = P (25)
with Ks =  K - S Θ-1.

Then we can give the properties of the obtained filter from the well known results on the stability
and convergence of the standard Kalman filter De Souza et al. (1986), Bitmead et al. (1990), Anderson
and Moore (1979).

Before doing this, we recall that the strong solutions of the (ARE) are those that give rise to a filter
having poles inside or on the stability boundary, we call the corresponding solution of the ARE a
stabilizing solution.

Using the above results, the convergence and stability conditions of the filter for the time invariant
system can be given by the following theorem.

Theorem 2:
Under the assumptions
A-1) rank HG = rank G = p

A-2) rank 





I G Q1/2 0

H 0 0 R1/2   = n + m

then, the ARE (25) has a unique stabilizing solution P and, subject to P0 > 0, the sequence Pk,
generated by the RDE (17), converges exponentially to P if and only if

i) rank 



zI - Φ -G

H 0   = n + p, ∀ z ∈ C|  , |z| ≥ 1
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ii) rank 





-ejωI + Φ G Q1/2 0

ejωH 0 0 R1/2   = n + m, ∀ ω ∈ [0, 2π].

4. Conclusion
In this paper we have presented a new minimum variance method for the state estimation of linear

discrete-time stochastic system in presence of unknown inputs. Conditions for stability and
convergence for the time invariant system case have been given.
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Appendix-  Connections with Kitanidis method (Kitanidis, 1987).
From Kitanidis (1987), under the assumption that Ck+1 is positive definite and

∏k = (Hk+1Gk)+ = (GkTHk+1TCk+1-1Hk+1Gk)-1 GkTHk+1TCk+1-1 (A-1)

  the optimal solution for Lk+1 can be written as

Lk+1 = Gk ∏k + (ΦkPkΦkT + Qk) Hk+1TCk+1-1Pr (A-2)
with Pr = I - Hk+1Gk (Hk+1Gk)+

By comparing equation (5) and (A-2) it is clear that, the equality holds if and only if
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Kk+1 αk Pr = (ΦkPkΦkT + Qk) Hk+1TCk+1-1Pr (A-3)
From (8)-(11), (A-1) and since

Gk∏kCk+1TkT = 0
equation (A-3) holds if

Pr = Ck+1TkT (TkCk+1TkT)-1 αkPr

Using the singular value decomposition and choosing αk as given in theorem 1 it can be seen that

Pr = Ck+1TkT (TkCk+1TkT)-1 αkPr = Ck+11/2Uk 



0 0

0 I  UkTCk+1-1/2

This proves theorem 1.


