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Homogenization of the demagnetization field

operator in periodically perforated domains

Kévin Santugini-Repiquet∗

July 25, 2006

Abstract

In this paper, we study the homogenization of the demagnetization
field operator in periodically perforated domains using the two-scale
convergence method. As an application, we homogenize the Landau-
Lifshitz equation in such domains. We consider regular homothetic
holes.

1 Introduction

Due to their properties, ferromagnetic materials are nowadays widely used in
the industry. In particular, nonhomogenous periodic ferromagnetic configu-
rations are the subject of a growing interest: these periodic configurations
may exhibit properties difficult to achieve with homogenous materials. To
correctly predict the magnetic behavior of these configurations is of prime
importance. As the period length decreases, the cost of direct numerical sim-
ulations increases and become prohibitive. A more practical approach would
first involve the use of homogenization: homogenization without holes dates
back from Bensoussan et al [4]. In perforated domains, it has been studied
by Cioranescu et al in [6] for local operators.

In the framework of the micromagnetic model of Brown [5] in the mag-
netostatic approximation, a global operator is present: the demagnetization
field operator. This operator was homogenized in the case of multilayers in
Hamdache [12]: besides the appearance of an intuitive factor corresponding
to the quasi constant ratio of ferromagnetic material, also appears a purely
local corrector term.

∗ University of Geneva, Kevin.Santugini@math.unige.ch, Work done while at LAGA,
Institut Galilée, Paris 13.
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The main goal of this paper is to homogenize the nonlocal demagneti-
zation field operator term in a periodically perforated geometry and derive
the local corrector term. First, we introduce some notations and define the
perforated geometry in section 2. In section 3, we derive our main result:
the homogenized demagnetization field operator for perforated domains. Fi-
nally, in section 4, we apply our main result and homogenize the nonlinear
PDE governing the behavior of ferromagnetic material: the Landau-Lifshitz
equation.

2 Notations and known results

2.1 Some function spaces

Given a measurable set O, and a real number p ≥ 1, we denote by Lp(O) the
set of all measurable functions such that

∫
O
|u|p dx < +∞. This is a Banach

space for the norm

‖u‖Lp(O) =

(∫

O

|u|p dx

) 1

p

.

Given an open set O in R
n, we denote by D′(O) the standard space of

distributions over O. If m belongs to N and p ≥ 1, we denote by Wm,p(O) the
subset of D′(O) containing all distributions u such that, for all multi-indices
α, |α| ≤ m, Dαu belongs to Lp(O). This is a Banach space for the norm:

‖u‖Wm,p(O) =
(∑

|α|≤m

‖Dαu‖p

Lp(O)

) 1

p

.

We set Hm(O) = Wm,2(O), this is an Hilbert space. We also set L
p(O) =

(Lp(O))3, W
m,p(O) = (Wm,p(O))3, H

m(O) = (Hm(O))3

We set Y = (0, 1)3, and denote by C∞
# (Y) the set of infinitely differentiable

real functions over R
3 that are 1-periodic on each of the three space variables.

We define H1
#(Y) as the closure of C∞

# (Y) in H1(Y). By C∞(Ω) ⊗ C∞
# (Y),

we denote the set containing all infinitely differentiable real functions over
Ω×R

3 that are 1-periodic on the three last variables. We define H1
#(Ω×Y)

as the closure of C∞(Ω) ⊗ C∞
# (Y) in H1(Y).

Finally, in this paper (e1, e2, e3) is the canonical base of R
3.

2.2 Two-scale convergence

In this section, we recall briefly the concept of two-scale convergence. For
details and proofs of this subsection, we refer the reader to Allaire [1]. First,
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we recall the concept of acceptable functions and reproduce Definition 1.5
of [1]:

Definition 1. Given an open set O, a function φ in L2(O× (R3/Y)), is said
to be acceptable if

lim
ε→0

∫

O

∣∣∣φ
(
x,
x

ǫ

)∣∣∣
2

dx =

∫

O×Y

|φ (x,y)|2 dy dx.

It has been shown in [1] that a function belonging to either L2(O; C#(Y)),
L2(Y ; C(O)) or C(O) ⊗ C#(Y) is acceptable.

Definition 2. Given an open set O, let E be a subspace of L2(O× (R3/Y))
such that every function in E is acceptable. A bounded sequence uε in L2(O)
is said to E-two-scale converge to u0 belonging to L2(O × Y), if for all φ in
E:

lim
ε→0

∫

O

uε(x)φ(x,
x

ε
) dx =

∫

O

∫

Y

u0(x)φ(x,y) dy dx.

In [1], it is shown that the two-scale convergence concept is the same for
E among L2(O; C#(Y), L2(Y ; C(O)) and C(O) ⊗ C#(Y). Thereafter, in this
article, two-scale convergence will always denote E-two-scale convergence
with regards to any of the three previous choice of E.

We reproduce Theorem 1.2 of [1]:

Theorem 3. Let uǫ be a bounded sequence of elements bounded in L2(O),
then there exists a subsequence (ǫk)k∈N, and u0 in L2(O × Y) such that uǫk

two-scale converges to u0.

Finally, we recall a simple criteria that justify the convergence of products:
Theorem 1.8 of [1].

Theorem 4. If uǫ and vǫ are bounded sequence in L2(O) that respectively
two-scale converge to u0 and v0 in L2(O × Y), and if

‖u0‖L2(O×Y) = lim inf
ǫ→0

‖uǫ‖L2(O),

then

lim
ǫ→0

∫

O

uǫ(x)vǫ(x)φ(x,
x

ǫ
) dx =

∫

O

∫

Y

u0(x,y)v0(x,y)ψ(x,y) dy dx,

for all φ in C∞(O) ⊗ C∞
# (Y).
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Figure 1: Example of perforated domain

2.3 The perforated geometry

In this section, we define unambiguously the regularly perforated geometries.
Let

• Ω be an open bounded set of R
3, with a smooth boundary,

• T0 ⊂ Y be a compact with a smooth boundary such that T0
◦ = T0,

• Y∗ = Y \ T0.

We set

Tε =
⋃

k∈Z

ε(k+Y)⊂Ω

ε(k + T0), Ωε =Ω \ Tε. (2.1)

An example of a possible Ωε can be seen in figure 1. In this paper, χε is the
characteristic function of Ωε. By χY∗ , we denote the characteristic function
of Y∗. We also set χ̄ =

∫
Y
χY∗(y) dy. We also define the mean operator −

∫
by

−
∫

O

f dx =
1

|O|

∫
f dx.

To take the limit in integrals over perforated domains, we use Theorem 4
and the following lemma:

Lemma 5. The sequence χε two-scale converges to χY∗. Moreover,

lim
ε→0

‖χε‖L2(Ω) = ‖χY∗‖L2(Ω×Y).

Equivalent results for K and A allow to take the two-scale limit in prod-
ucts involving K(·, ·/ε) or A(·, ·/ε).
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2.4 Acceptable sequence of holes

We recall the concept of acceptable sequence of holes, see Damlamian et
al [7]. It allows to homogenize nonlinear equations in perforated domains.
In particular, it will be used for section 4.

Definition 6. The sequence of holes Tε is acceptable if

(1) Any weak-∗ limit of χε is positive almost everywhere on Ω.

(2) There exists c > 0, independent of ε and a sequence of linear extension
operators (Pε) such that, for all ε > 0

Pε ∈ L(H1(Ωε); H1(Ω)),

(Pε(v))|Ωε = v ∀v ∈ H1(Ωε),

‖Pε(v)‖H1(Ω) ≤ c‖v‖H1(Ωε).

Remark 7. Our concept of acceptable sequence of holes differs from the one
of [7]. This is necessary because we study systems with Neumann boundary
conditions on ∂Ω while Dirichlet conditions were considered in [7]. This is
why Tε is defined by (2.1) and not by Tε =

⋃
k∈Z

ε(k+T0)⊂Ω
ε(k + T0) as in [7].

To homogenize partial differential equations in perforated domains, we
need some extensions operators:

Lemma 8. There exists c > 0 such that, for all ε > 0, there exists an
extension operator Pε from H1(Ωε) to H1(Ω) such that,

Pεu = u in Ωε, ‖Pεu‖H1(Ω) ≤ ‖u‖H1(Ωε),

for all u in H1(Ωε).

Proof. The proof is similar to the proof of Proposition 1.8 in [7]. There exists
a linear continuous extension operator P from H1(Y∗) to H1(Y). We can then
construct Pε through scaling.

2.5 The demagnetization field operator

The demagnetization field operator is the linear operator arising from the
magnetostatic equations. It has been extensively studied by Friedman in [8,
9, 10]. We recall in this subsection its definition and its most important
properties. In this paper, this operator is denoted by Hd and by definition
sends any vector field m over the vector field hd solution to

div(hd) = − div(m), curl(hd) = 0, (2.2)
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in the sense of distributions over the whole space R
3. By Fourier transform,

for m in S ′(R3)

ĥd(ξ) = −ξ(ξ · m̂)

|ξ|2 + aδ.

Therefore, up to an additive constant, the solution to system (2.2) in S ′(R3)
is unique. In this paper, we always consider m ∈ L

2(R3) and require hd ∈
L

2(R3), therefore requiring a = 0. We have

‖hd‖L2(R3) ≤ ‖m‖L2(R3).

One verifies that hd may be expressed using the kernel of the Laplace
operator:

hd = −∇ (div(G ∗m)) = −∇(G ∗ div(m)), (2.3a)

where

G = − 1

4π

1

|x| . (2.3b)

We also introduce the concept of potential:

Definition 9. Let m be in L
2(R3). By its potential ϕ(m), we denote the

only solution in

W 1
0 (R3) = {u,∇u ∈ L

2(R3), (
√

1 + r2)u ∈ L2(R3)},

to

△ϕ = − divm.

The potential exists, see [3]. Obviously, Hd(m) = ∇ϕ(m).

3 Homogenization of the demagnetization field

operator in perforated domain

In this section, we are interested in the two-scale limit of the demagnetization
field operator as defined in the previous section. Let mε in L

2(Ωε) two-scale
converges to m0. Can we compute the two-scale limit of Hd(mε)? The
answer is positive. The most straightforward way to compute this limit is to
use the potential, see Definition 9. For the special case of multilayers, the
computation was done by K. Hamdache [12].

First, we introduce the cell equation whose solutions are used to express
the two-scale limit of the demagnetization field.
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Definition 10. Let, for all 1 ≤ i ≤ 3, w′
i be the unique solution in H1

#(Y)
to

∫

Y

(∇yw
′
i(x,y) + χY∗(y)ei)∇yψ dy = 0,

−
∫

Y

w′
i(y) dy =0,

for all ψ in H1
#(Y). By w′, we denote the horizontal vector [w′

1, w
′
2, w

′
3].

We then state our main result:

Proposition 11. Let uε be a bounded sequence in L
2(R3) that two-scale

converges to u0(x,y). Then, the two-scale limit of hε
d = Hd(u

ε) is

h0
d(x,y) = Hd(

∫

Y

u0(x,y) dy) + ∇yϕ
0
1(x,y),

where ϕ1(x, ·) is the unique solution in H1
#(Y) to

∫

Y

(
u0(x,y) + ∇yϕ

0
1(x,y)

)
· ∇yψ(y) dy = 0,

∫

Y

ϕ0
1 = 0,

for all ψ in H1
#(Y). Moreover, if

u0(x,y) =

{
u0(x) if y ∈ Y∗,

0 if y ∈ T0,

then

ϕ0
1(x,y) =

3∑

k=1

(u0(x) · ek)w
′
k(y),

and

−
∫

Y∗

h0
d(x,y) dy = χ̄Hd(u

0) + Hdu
0,

where Hd is a (3, 3) symmetric matrix defined by:

(Hd)ij =
1

χ̄

∫

Y

(
∇w′

i(y) + χY∗(y)ei

)
·
(
∇w′

j(y) + χY∗ej

)
dy − δj

i , (3.1)

where δj
i is Kronecker’s symbol.
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Proof. Let ϕε be a potential in W1
0(R

3) such that ∇ϕε = Hd(u
ε). Since the

sequence uε remains bounded in L
2(R3), the sequence ϕε remains bounded

in H1
loc(R

3). There exists ϕ0 in W1
0(R

3) and ϕ0
1 in L2

loc(R
3; H1

#(Y)), such that
for all φ in Cc(R

3) ⊗ C∞
# (Y), up to a subsequence,

lim
ε→0

∫

R3

ϕε(x)φ
(
x,
x

ε

)
dx =

∫

R3

ϕ0(x)

(∫

Y

φ(x,y) dy

)
dx, (3.2a)

lim
ε→0

∫

R3

∇ε
ϕ(x)φ

(
x,
x

ε

)
dx =

∫

R3

∫

Y

(
∇xϕ

0(x) + ∇yϕ
0
1(x,y)

)
φ(x,y) dy dx.

(3.2b)

But, for all φ in C∞
c (R3) ⊗ C∞

# (Y),

∫

Ω

(uε(x) · ∇x)φ
(
x,
x

ε

)
dx+

1

ε

∫

Ω

(uε(x) · ∇y)φ
(
x,
x

ε

)
dx =

= −
∫

R3

∇xϕ
ε · ∇xφ

(
x,
x

ε

)
dx− 1

ε

∫

R3

∇xϕ
ε · ∇yφ

(
x,
x

ε

)
dx. (3.3)

In (3.3), we choose φ independent of y and compute the limit as ε goes
to 0.

∫

Ω

(

∫

Y

u0(x,y) dy · ∇x)φ(x) dx+

∫

R3

∇xϕ
0(x) · ∇xφ(x) dx = 0,

since −
∫
Y
∇yϕ

0
1 dy = 0. Thus, ∇xϕ0 = Hd(

∫
Y
u0(·,y) dy).

To compute ϕ0
1, we multiply (3.3) by ε and take the two-scale limit, we

have:

∫

Ω

∫

Y

(u0(x,y) · ∇y)φ(x,y) dy dx+

+

∫

R3

∫

Y

(∇xϕ
0(x) + ∇yϕ

0
1(x,y)) · ∇yφ(x,y) dy dx = 0,

for all φ in C∞
c (R3) ⊗ C∞

# (Y). For all x in Ω, for all ψ in C∞
# (Y), we have

∫

Y

(u0(x,y) + ∇yϕ
0
1(x,y)) · ∇yψ(y) dy = 0,

because
∫

Y

∇xϕ
0(x) · ∇yψ(y) dy = ∇xϕ

0(x) ·
∫

∂Y

νψ(y) dσ(y) = 0.
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4 Application: homogenization of the Landau-

Lifshitz equation in perforated domains

In this section, we homogenize the Landau-Lifshitz equation in perforated do-
mains. Something we have already done for multilayers in [14]. The Landau-
Lifshitz system models the behavior of ferromagnetic materials, see [11]. In
this section, we do not restrict ourselves to an isotropic exchange interaction.

4.1 The micromagnetic model

In this subsection, we recall briefly a possible model of ferromagnetism: the
micromagnetic model. The magnetic state of a ferromagnetic material is
characterized by two vector fields over R

3, the magnetization m and the
excitation h. The magnetization is null outside of the ferromagnetic body O
and satisfy a non convex constraint |m| = 1 inside O.

The excitation h is given by

h = div(A∇m) + Km+ Hd(m),

where A = (Ai,j)1≤i,j≤3 and K = (Ki,j)1≤i,j≤3 are two symmetric positive
matrices field over R

3 of class C∞(Ω) ⊗ C∞
# (Y). We suppose that A is uni-

formly coercive: i.e. there exists a constant β > 0 such that, for all (x,y) in
Ω ×Y , for all (ξ1, ξ2, ξ3) in R

3,

3∑

i,j=1

Ai,j(x,y)ξiξj ≥ β

(
3∑

i=1

ξi
2

)
.

The Landau-Lifshitz equation is a phenomenological nonlinear PDE that
models the evolution problem of the magnetization in a ferromagnetic mate-
rial.

∂m

∂t
= −m ∧ h−m ∧ (m ∧ h), (4.1a)

It is associated with the nonconvex constraint

|m| =

{
1 in O,
0 in R

3 \ O,
(4.1b)

the initial condition
m(·, 0) = m0, (4.1c)

and the boundary condition

∂m

∂ν
= 0 on ∂O. (4.1d)
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We recall the rigorous definition of weak solutions to the Landau-Lifshitz
system (4.1).

Definition 12. Let mε
0 be in H

1(Ωε) such that |mε
0| = 1 a.e. in Ωε. A

vector field mε is a weak solution to the Landau-Lifshitz system if

(1) mε belongs to L∞(R+; H1(Ωε)) and to H
1(Ωε × (0, T )), for all time

T > 0 and |mε| = 1 a.e. in Ωε × R
+.

(2) mε satisfy

∫∫

Ωε×(0,T )

∂mε

∂t
· φdx dt− α

∫∫

Ωε×(0,T )

(
mε ∧ ∂mε

∂t

)
· φ dx dt

= (1+α2)

∫∫

Ωε×(0,T )

3∑

i,j=1

(
mε ∧Ai,j

(
x,
x

ε

) ∂mε

∂xi

)
· ∂φ
∂xj

dx dt

+ (1 + α2)

∫∫

Ωε×(0,T )

(
mε ∧ K

(
x,
x

ε

)
mε
)
· φdx dt

− (1 + α2)

∫∫

Ωε×(0,T )

(mε ∧ Hd(m
ε)) ·φ dx dt, (4.2a)

for all φ in C∞(Ω × (0, T ); R3).

(3) In the sense of traces:

mε(·, 0) = mε
0 in Ωε, (4.2b)

(4) mε satisfies the energy inequality

Eε(mε(T )) +
α

1 + α2

∫ T

0

∥∥∥∥
∂mε

∂t

∥∥∥∥
2

L2(Ωε)

dt ≤ Eε(mε
0). (4.2c)

where, for all u in H
1(Ωε),

Eε(u) =
1

2

∫

Ωε

3∑

i,j=1

Ai,j

(
x,
x

ε

) ∂u
∂xi

· ∂u
∂xj

dx+
1

2

∫

Ωε

u ·K
(
x,
x

ε

)
u dx

+
1

2

∫

R3

|Hd(u)|2 dx.

We recall the following result:
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Theorem 13. Let mε
0 be in H

1(Ωε) such that |mε
0| = 1 a.e. in Ωε. Then,

there exists a weak solution to the Landau-Lifshitz system in the sense of
Definition 12.

Proof. For the proof of existence of weak solutions, one can consult Alouges-
Soyeur [2] for isotropic exchange, i.e. A = AI3. See Hamdache-Tilioua [13]
for the generalization of the proof of existence of solutions when exchange is
anisotropic.

4.2 The homogenized system

In this section, we homogenize the Landau-Lifshitz system (4.2) in perforated
domains via the two-scale convergence method:

Theorem 14. Let (mε
0)ε be a sequence in H

1(Ωε), |mε
0| = 1 a.e. in Ωε such

that ‖mε
0‖H1(Ωε) remains bounded independently of ε. By m̄ε

0, we denote the
extension by 0 of mε outside Ωε. We suppose there exists m0

0 in H
1(Ω) such

that
lim
ε→0

m̄ε
0 = χ̄m0

0 weakly in L2(Ω). (4.3)

For all ε, we let mε be one weak solution of system (4.2) with mε
0 as initial

condition.
Then, the H

1(Ωε × (0, T )) norm of mε remains bounded independently of
ε. There exists, for all ε > 0, an extension of mε in H

1(Ω) denoted by m̃ε

such that the sequence (m̃ε){ε>0} remains bounded in H
1(Ω × (0, T )).

Modulo a subsequence, m̃ε two-scale converges to m̃0 in H
1(Ω × (0, T )).

Any limit m̃0 belongs to L∞(R+; H1(Ω)) and to H1(0, T ; L2(Ω)), for all time
T > 0 and satisfy equation (4.9), i.e. formally:

∂m̃0

∂t
− αm̃0 ∧ ∂m̃0

∂t
= −(1 + α2)m̃0 ∧

(
div((A∗ · ∇)m̃0) − K̄m̃0

+ χ̄Hd(m̃
0) + Hdm̃

0

)
,

in Ω × R
+,

m̃0(·, 0) = m0
0 in Ω,

|m̃0| = 1 in Ω × R
+,

and the Neumann boundary conditions

∂m̃0

∂ν
= 0 in ∂Ω × R

+,

where Hd is defined by (3.1), K̄ = −
∫
Y∗

K(x,y) dy and A
∗ is the usual ho-

mogenized operator for elliptic operators, see Lemma 19.
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Before proving the theorem, we make the following remark

Remark 15. Since all known uniqueness results for weak solutions to the
Landau-Lifshitz system are negative, there is no reason for the whole se-
quence m̃ε to converge in Theorem 14.

By the energy inequality, the L∞(R+; H1(Ωε)) norm ofmε and the L
2(Ωε×

R
+) norm of ∂m

ε

∂t
remain bounded. We set m̃ε = Pε(m

ε), where Pε is the
extension operator provided by Lemma 8. The vector field m̃ε belongs to
L∞(R+; H1(Ω)) and satisfy:

m̃ε = mε in Ωε × R
+,

∥∥∥∥
∂m̃ε

∂t

∥∥∥∥
L2(Ω×(0,T ))

≤ C.

According to Proposition 1.14 of [1], there exists m̃0 in L∞(R+; H1(Ω)) such
that ∂fm0

∂t
belongs to L

2(Ω × (0, T )), and m̃0
1 in L∞(R+; L2(Ω; H1

#(Y))) such
that, up to a subsequence,

• m̃ε two-scale converges to m̃0.

• m̃ε strongly converges to m̃0 in L
2(Ω).

• ∇m̃ε two-scales converges to ∇xm̃
0 + ∇ym̃

0
1.

• ∂fmε

∂t
two-scales converges to ∂fm0

∂t
.

Our goal is establishing the system that must be satisfied by m̃0.
As the canonical injection from H

1(Ω × (0, T )) into L
2(Ω × (0, T )) is

compact, we can take the two-scale limit in nonlinear terms by Theorem 4.
Moreover, for a subsequence we have convergence a.e., |m̃0| = 1 a.e. in
Ω × R

+.
We begin by computing the initial condition

Lemma 16. The trace m̃0 at instant t = 0 is m0
0, i.e.

m̃0(·, 0) = m0
0.

Proof. Let m̃0
0 be the two-scale limit of m̃ε

0. This limit does not depend on
the fast variable of y because m̃ε

0 remains bounded in H
1(Ω). The weak limit

in L
2(Ω) of m̄ε is thus χ̄m̃0. We conclude by hypothesis (4.3).

Then, we prove a simple lemma:

Lemma 17. For all integers i, 1 ≤ i ≤ 3,
∂fm0

1

∂yi
is orthogonal to m̃0 almost

everywhere on Ω × R
+.
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Proof. We have |m̃ε| = 1. Since m̃0 is the strong limit of m̃ε, we have
|m̃0| = 1. We can take the two-scale limit in expression

lim
ε→0

∫∫

Ω×(0,T )

χε(x)m̃ε(x, t) · ∂m̃
ε

∂xi

(x, t)φ
(
x, t,

x

ε

)
dx dt

=

∫∫

Ω×(0,T )

m̃0(x, t)·
∫

Y∗

(
∂m̃0

∂xi

(x, t) +
∂m̃0

1

∂yi

(x, t,y)

)
φ(x, t,y) dy dx dt = 0,

for all integers i, 1 ≤ i ≤ 3, and all φ in C∞(Ω × (0, T ))⊗C∞
# (Y). Therefore,

∂fm0

∂xi
+

∂fm0

1

∂yi
is orthogonal a.e. in Ω×R

+ ×Y∗ to m̃0. Since |m̃0| = 1,
∂fm0

1

∂yi
is

also orthogonal a.e. in Ω ×Y∗ to m̃0.

We may now compute the limit of equation (4.2a). We have:

∫∫

Ωε×(0,T )

∂m̃ε

∂t
(x, t) · φ

(
x, t,

x

ε

)
dx dt

− α

∫∫

Ωε×(0,T )

(
m̃ε(x, t) ∧ ∂m̃ε

∂t
(x, t)

)
· φ
(
x, t,

x

ε

)
dx dt

= (1+α2)

∫∫

Ωε×(0,T )

3∑

i,j=1

Ai,j

(
x,
x

ε

)(
m̃ε(x, t) ∧ ∂m̃ε

∂xi

(x, t)

)
· ∂φ
∂xj

(
x, t,

x

ε

)
dx dt

+
(1 + α2)

ε

3∑

i,j=1

∫∫

Ωε×(0,T )

Ai,j

(
x,
x

ε

)(
m̃ε(x, t) ∧ ∂m̃ε

∂xi

(x, t)

)
· ∂φ
∂yj

(
x, t,

x

ε

)
dx dt

+ (1 + α2)

∫∫

Ωε×(0,T )

(
m̃ε(x, t) ∧K

(
x,
x

ε

)
m̃ε(x, t)

)
· φ
(
x, t,

x

ε

)
dx dt

− (1 + α2)

∫∫

Ωε×(0,T )

(m̃ε(x, t) ∧ Hd(χεm̃
ε)(x, t)) · φ

(
x, t,

x

ε

)
dx dt,

(4.5)

for all φ in C∞(Ω × (0, T )) ⊗ C∞
# (Y ; R3).

We begin by computing the limit of the demagnetization field term. By
Proposition 11, the weak L

2(R3) limit of χεHd(χεm̃
ε) is

χ̄−
∫

Y∗

h0
d(x, t,y) dy = χ̄

(
χ̄Hd(m̃

0) + Hdm̃
0
)
,

where

(Hd)ij =
1

χ̄

∫

Y

(
∇w′

i(y) + χY∗(y)ei

)
·
(
∇w′

j(y) + χY∗ej

)
dy − δj

i .

13



Before studying the exchange term, that will converges to the usual ho-
mogenized limit for elliptic operators, we introduce as in Bensoussan et al [4]
some special functions.

Definition 18. For any integer i, 1 ≤ i ≤ 3, let wi in H1
#(Y∗), be the unique

solution to
∫

Y∗

A(x,y)∇yψ · (∇ywi(x,y) + ei) dy = 0,

∫

Y∗

wi dy = 0,

for all x in Ω, and ψ in H1
#(Y∗), ei being the ith vector of the canonical

basis of R
3. By w, we denote the horizontal vector [w1, w2, w3].

Concerning the exchange term, we have the following lemma:

Lemma 19. For all x in Ω:

3∑

i=1

∫

Y∗

Ai,j

(
∂m̃0

∂xi

(x,y) +
∂m̃0

1

∂yi

(x,y)

)
dy = χ̄

3∑

i=1

A∗
i,j

∂m̃0

∂xi

(x,y), (4.6)

where

A∗
i,j = −

∫

Y∗

A(ej + ∇wj(x,y)) · (ei + ∇wi(x,y)) dy. (4.7)

Proof. We multiply equation (4.5) by ε and take the limit as ε goes to 0.
Only one term converges to a nonzero limit. Thus,

3∑

i,j=1

∫∫

Ω×(0,T )

∫

Y∗

Ai,j(x, t,y)

(
m̃0(x, t) ∧

(
∂m̃0

∂xi

(x, t) +
∂m̃0

1

∂yi

(x, t,y)

))

· ∂φ
∂yj

(x, t,y) dy dx dt = 0,

(4.8)

for all φ in C∞(Ω × (0, T ))⊗C∞
# (Y ; R3). By Lemma 17, for all x, t in Ω×R

+,
and all ψ in C∞

# (Y ; R3),

3∑

i,j=1

∫

Y∗

Ai,j(x, t,y)

(
∂m̃0

∂xi

(x, t) +
∂m̃0

1

∂yi

(x, t,y)

)
· ∂ψ
∂yj

(y) dy = 0.

Therefore,

m̃0
1(x, t,y) =

3∑

k=1

∂m̃0

∂xk

(x, t)wk(x,y).

14



Thus, for all integers j, 1 ≤ j ≤ 3,

3∑

i=1

∫

Y∗

Ai,j(x,y)

(
∂m̃0

∂xi

(x, t) +
∂m̃0

1

∂yi

(x, t,y)

)
dy

=

(
3∑

i=1

∫

Y∗

(
Ai,j(x,y) +

3∑

k=1

Ak,j(x,y)
∂wi

∂yk

(x,y)

)
dy

)
∂m̃0

∂xi

(x, t).

Therefore,

A∗
i,j =

∫

Y∗

Ai,j(x,y) +

3∑

k=1

Ak,j(x,y)
∂wi

∂yk

(x,y) dy

=

∫

Y∗

Aej · (ei + ∇wi(x,y)) dy

=

∫

Y∗

A(ej + ∇wj(x,y)) · (ei + ∇wi(x,y)) dy

= χ̄−
∫

Y∗

A(ej + ∇wj(x,y)) · (ei + ∇wi(x,y)) dy.

Looking in the literature concerning homogenization1, we notice that:

Remark 20. The homogenized exchange operator is the same as the classical
homogenized operator obtained by homogenization of the elliptic equation
associated to this operator.

We may now take the limit in equation (4.5) when φ is independent of
y. For all φ in C∞(Ω × (0, T ); R3):

∫∫

Ω×(0,T )

(
∂m̃0

∂t
(x, t) − m̃0(x, t) ∧ ∂m̃0

∂t
(x, t)

)
· φ(x, t) dx dt

= (1 + α2)

∫∫

Ω×(0,T )

3∑

i,j=1

A∗
i,j(x)

(
m̃0(x, t) ∧ ∂m̃0

∂xi

(x, t)

)
· ∂φ
∂xj

(x, t) dx dt

+ (1 + α2)

∫∫

Ω×(0,T )

(
m̃0(x, t) ∧

(
K̄(x)m̃0(x, t)

))
·φ(x, t) dx dt

−(1+α2)

∫∫

Ω×(0,T )

(
m̃0(x, t) ∧

(
χ̄Hd(m̃

0)(x, t) + Hdm̃
0(x, t)

))
·φ(x, t) dx dt.

(4.9)

1See [4], for the case without holes, [6] for the homogenization with holes and section 2
of [1] for the homogenization of elliptic operators using two-scale convergence
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5 Conclusion

We have computed the homogenized demagnetization field operator in per-
forated domains via the two-scale convergence method. We have then used
the result to homogenize the Landau-Lifshitz system in domains periodically
perforated by regular homothetic holes. The reverse problem of homogeniz-
ing the Landau-Lifshitz equation in a nonconnex periodic domain by having
the ferromagnetic material fill Ω \ Ωε instead of Ωε has many real world ap-
plications. However, this problem is much more mathematically challenging:
the nonexistence a good sequence of extension operators in such a case make
homogenization of nonlinear equations much more difficult.
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