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1 Introduction 

An ontology is a description of conceptual knowledge organized in a computer-
based representation while information extraction (IE) is a method for analyzing 
texts expressing facts in natural language and extracting relevant pieces of infor-
mation from these texts.  

IE and ontologies are involved in two main and related tasks, 
• Ontology is used for Information Extraction: IE needs ontologies as part of 

the understanding process for extracting the relevant information; 
• Information Extraction is used for populating and enhancing the ontology: 

texts are useful sources of knowledge to design and enrich ontologies. 
These two tasks are combined in a cyclic process: ontologies are used for inter-

preting the text at the right level for IE to be efficient and IE extracts new knowl-
edge from the text, to be integrated in the ontology. 

We will argue that even in the simplest cases, IE is an ontology-driven process.  
It is not a mere text filtering method based on simple pattern matching and key-
words, because the extracted pieces of texts are interpreted with respect to a prede-
fined partial domain model. We will show that depending on the nature and the 
depth of the interpretation to be done for extracting the information, more or less 
knowledge must be involved.  

Extracting information from texts calls for lexical knowledge, grammars de-
scribing the specific syntax of the texts to be analyzed, as well as semantic and on-
tological knowledge. In this chapter, we will not take part in the debate about the 
limit between lexicon and ontology as a conceptual model. We will rather focus 

                                                           
* LIPN Internal Report, 2005. This paper has been originally written in march 2003. A 

shorter version has been published under the title “Ontology and Information Extraction: 
A Necessary Symbiosis”, in Ontology Learning from Text: Methods, Evaluation and Ap-
plications, edited by P. Buitelaar, P. Cimiano and B. Magnini, IOS Press Publication,  
July 2005,  
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on the role that ontologies viewed as semantic knowledge bases could play in IE. 
The ontologies that can be used for and enriched by IE relate conceptual knowl-
edge to its linguistic realizations (e.g. a concept must be associated with the terms 
that express it, eventually in various languages).  

Interpreting text factual information also calls for knowledge on the domain 
referential entities that we consider as part of the ontology (Sect. 2.2.1). 

This chapter will be mainly illustrated in biology, a domain in which there are 
critical needs for content-based exploration of the scientific literature and which 
becomes a major application domain for IE. 

2 Settings 

Before exploring the close relationship that links ontology and IE in Sect. 3  and 
Sect. 4, we will define Information Extraction and ontology.  

2.1 What is IE? 

The considerable development of multimedia communication goes along with an 
exponentially increasing volume of textual information. Today, mere Information 
Retrieval (IR) technologies are unable to meet the needs of specific information 
because they provide information at a document collection level. Developing in-
telligent tools and methods, which give access to document content and extract 
relevant information, is more than ever a key issue for knowledge and information 
management. IE is one of the main research fields that attempt to fulfill this need. 

2.1.1 Definition 

The IE field has been initiated by the DARPA's MUC program (Message Under-
standing Conference in 1987 (MUC Proceedings; Grishman and Sundheim 1996). 
MUC has originally defined IE as the task of (1) extracting specific, well-defined 
types of information from the text of homogeneous sets of documents in restricted 
domains and (2) filling pre-defined form slots or templates with the extracted in-
formation. MUC has also brought about a new evaluation paradigm: comparing 
the information extracted by automatic ways to human-produced results. MUC has 
inspired a large amount of work in IE and has become a major reference in the 
text-mining field. Even as such, it is still a challenging task to build an efficient IE 
system with good recall (coverage) and precision (correctness) rates.  

A typical IE task is illustrated by Fig. 1 from a CMU corpus of seminar an-
nouncements (Freitag 1998). IE process recognizes a name (John Skvoretz) and 
classifies it as a person name. It also recognizes a seminar event and creates a 
seminar event form (John Skvoretz is the seminar speaker whose presentation is 
entitled “Embedded commitment”).  
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Even in such a simple example, IE should not be considered as a mere keyword 
filtering method. Filling a form with some extracted words and textual fragments 
involves a part of interpretation. Any fragment must be interpreted with respect to 
its “context” (i.e. domain knowledge or other pieces of information extracted from 
the same document) and according to its “type” (i.e. the information is the value of 
an attribute / feature / role represented by a slot of the form). In the document of 
Fig. 1, “4-5:30” is understood as a time interval and background knowledge about 
seminars is necessary to interpret “4” as “4 pm” and as the seminar starting time.  

Form to fill (partial) 
 place:? 
 starting time: ? 
 title: ? 
 speaker: ? 
Document: Professor John Skvoretz, U. of South Carolina, Columbia, will present a 
seminar entitled "Embedded commitment", on Thursday, May 4th from 4-5:30 in PH 
223D. 
Filled form (partial) 
 place: PH 223D 
 starting time: 4 pm 
 title: Embedded commitment 
 speaker: Professor John Skvoretz […] 

Fig 1. A seminar announcement event example 

2.1.2 IE overall process  

Operationally, IE relies on document preprocessing and extraction rules (or ex-
traction patterns) to identify and interpret the information to be extracted. The ex-
traction rules specify the conditions that the preprocessed text must verify and 
how the relevant textual fragments can be interpreted to fill the forms. In the sim-
plest case, the textual fragment and the coded information are the same and there 
are neither text preprocessing nor interpretation.  

More precisely, in a typical IE system, three processing steps can be identified 
(Hobbs et al. 1997; Cowie and Wilks 2000):  

1. text preprocessing, whose level ranges from mere text segmentation into 
sentences and sentences into tokens to a full linguistic analysis;  

2. rule selection: the extraction rules are associated with triggers (e.g. key-
words), the text is scanned to identify the triggering items and the corre-
sponding rules are selected;  

3. rule application, which checks the conditions of the selected rules and fills 
the forms according to the conclusions of the matching rules. 

Extraction rules. The rules are usually declarative. The conditions are expressed 
in a Logics-based formalism (Fig. 3), in the form of regular expressions, patterns 
or transducers. The conclusion explains how to identify in the text the value that 
should fill a slot of the form. The result may be a filled form, as in Fig. 1 and 2, or 
equivalently, a labeled text as in Fig. 3.  
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Sentence: "GerE stimulates the expression of cotA." 
Rule 

Conditions: X="expression of"  
Conclusions: Interaction_Target <-next-token(X). 

Filled form: Interaction_Target: cotA 

Fig. 2. IE partial example from functional genomics 

Experiments have been made with various kinds of rules, ranging from the 
simplest ones (Riloff 1993) (e.g. the subject of the passive form of the verb “mur-
der” is interpreted as a victim) to sophisticated ones as in (Soderland et al. 1995). 
The more explicit (i.e. the more semantic and conceptual) the IE rule, the more 
powerful, concise and understandable it is. However, it requires the input text be-
ing parsed and semantically tagged.  
A single slot rule extracts a single value, as in Fig. 2, while a multi-slot rule cor-
rectly extracts at the same time all the values for a given form as in Fig. 3, even if 
there is more than one event reported in the text fragment. 

IE forms. Extraction usually proceeds by filling forms of increasing complexity 
(Wilks 1997): 

• Filling entity forms aims at identifying the items representing the domain 
referential entities. These items are called “named entities” (e.g. Analysis & 
Technology Inc.) and assimilated to proper names (company, person, gene 
names) but they can be any kind of word or expression that refers to a do-
main entity: dates, numbers, titles for the management succession MUC-6 
application, bedrooms in a real-estate IE application (Soderland 1999).  

• Filling domain event forms: The information about the events extracted by 
the rules is then encoded into forms in which a specific event of a given 
type and its role fillers are described. An entity form may fill an event role. 

• Merging forms that are issued from different parts of the text but provide in-
formation about a same entity or event. 

• Assembling scenario forms: Ideally, various event and entity forms can be 
further organized into a larger scenario form describing a temporal or logi-
cal sequence of actions/events. 

Text processing. As shown in Fig. 3, the condition part of the extraction rules 
may check the presence of a given lexical item (e.g. the verb named), the syntactic 
category of words and their syntactic dependencies (e.g. object and subject rela-
tions). Different clues such as typographical characteristics, relative position of 
words, semantic tags1 or even coreference relations can also be exploited.  

Most IE systems therefore involve linguistic text processing and semantic 
knowledge: segmentation into words, morpho-syntactic tagging (the part-of-
speech categories of words are identified), syntactic analysis (sentence constitu-
ents such as noun or verb phrases are identified and the structure of complex sen-

                                                           
1 E.g., if the verbs “named”, “appointed” and “elected” of Fig.3 were all known as ‘nomina-

tion’ verbs, the fourth condition of the rule could have been generalized to their semantic 
category 'nomination'.  
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tences is analyzed) and sometimes additional processing: lexical disambiguation, 
semantic tagging or anaphora resolution.  

Sentence: "NORTH STONINGTON, Connecticut (Business Wire) - 12/2/94 - Joseph 
M. Marino and Richard P. Mitchell have been named senior vice president of Analysis 
& Technology Inc. (NASDAQ NMS: AATI), Gary P. Bennett, president and CEO, has 
announced. " 
Rule 

 Conditions: 
noun-phrase (PNP, head(isa(person-name))),  
noun-phrase (TNP, head(isa(title))), 
noun-phrase (CNP, head(isa(company-name))), 
verb-phrase (VP, type(passive),head(named or elected or appointed)), 
preposition (PREP, head(of or at or by)),  
subject (PNP, VP),   
object (VP, TNP),  
post_nominal_prep (TNG,PREP), 
prep_object (PREP, CNP)   
 Conclusion: 
management_appointment (M, person(PNP), title (TNP), company (CNP)). 

Comment: 
if there is a noun phrase (NP) whose head is a person name (PNP), an NP whose 
head is a title name (TNP), an NP whose head is a company name (CNP), a verb 
phrase whose head is a passive verb (named or elected or appointed), a preposition 
of, at or by, 
if PNP and TNP are respectively subject and object of the verb,  
and if CNP modifies TNP,  
then it can be stated that the person “PNP” is named "TNP" of the company “CNP”. 
Labeled document 
NORTH STONINGTON, Connecticut (Business Wire) - 12/2/94 - <Person>Joseph M. 
Marino and Richard P. Mitchell</Person> have been named <Title>senior vice presi-
dent</Title> of <Company>Analysis & Technology Inc</Company>. (NASDAQ NMS: 
AATI), Gary P. Bennett, president and CEO, has announced.  

Fig. 3. Example from MUC-6, a newswire about management succession 

However, the role and the scope of this analysis differ from one IE system to 
another. Text analysis can be performed either as preprocessing or during extrac-
tion rule application. In the former case, the whole text is first analyzed. The 
analysis is global in the sense that items spread all over the document can contrib-
ute to built the normalized and enriched representation of the text. Then, the appli-
cation of extraction rules comes to a simple filtering process of the enriched repre-
sentation. In the latter case, the text analysis is driven by the rule condition 
verification. The analysis is local, focuses on the context of the triggering items of 
the rules, and fully depends on the conditions to be checked in the selected rules.  

In the first IE systems (Hobbs et al. 1997), local and goal-driven analysis was 
preferred to full text preanalysis to increase efficiency, and the text preprocessing 
step was kept to minimum. Although costly, data-driven, full text analysis and 
normalization can improve the IE process in various manners. (1) It improves fur-
ther NL processing steps, e.g. syntactic parsing improves attachment disambigua-
tion (Basili et al. 1993) or coreference resolution. (2) Full text analysis and nor-
malization also facilitates the discovery of lexical and linguistic regularities in 
specific documents. This idea, initially promoted by works on sublanguages (Har-
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ris 1968, Sager et al. 1987) for tuning NL processing to a given type of texts, is 
now popularized by Machine Learning (ML) papers in the IE field for learning ex-
traction rules. There are two main reasons for that. First, annotating training data 
is costly and the quantity of data to be annotated decreases with the normalization 
(the less variations in the data, the less data annotation is needed). Next, ML sys-
tems tend to learn non-understandable rules by picking details in training exam-
ples that do not look as related. Normalizing the text by representing it in a more 
abstract way increases the understandability of the learned rules. However, nor-
malization also raises problems such as the biased choice of the right representa-
tion before learning, that is not dealt with in the IE literature.  

We will see in the following that these two approaches, in which text analysis is 
respectively used for interpretation (goal-driven) and normalization (data-driven), 
are very much tangled, as any normalization process involves a part of interpreta-
tion. One of the difficulties in designing IE systems is to set the limit between lo-
cal and global analysis. Syntactic analysis or entity recognition can be performed 
on a local basis but are improved by knowledge inferred at a global level. Thus, 
ambiguous cases of syntactic attachments or entity classification can be solved by 
comparison with non-ambiguous similar cases of the same document.  

2.1.3 IE, an ambitious approach to text exploration 

As mentioned above, there is a need for tools that give a real access to the docu-
ment content. IE and Question Answering (Q/A) tasks both try to identify in 
documents the pieces of information that are relevant to a given query. They dif-
fer, however, in the type of information that is looked for. A Q/A system has to 
answer to a wide range of unpredictable user questions. In IE, the information that 
is looked for is richer but the type of information is known in advance. The rele-
vant pieces of text have to be identified and then interpreted with respect to the 
knowledge partially represented in the forms to fill.  

IE and Q/A systems both differ in their empirism from their common ancestors, 
the text-understanding systems. They both rely on targeted and local techniques of 
text exploration rather than on a large coverage and in-depth semantic analysis of 
the text. The MUC competition framework has gathered a large and stable IE 
community. It has also drawn the research towards easily implementable and effi-
cient methods rather than strong and well-founded NLP theories. 

The role of semantics in IE is often reduced to very shallow semantic labeling. 
Semantic analysis is rather considered as a way to disambiguate syntactic steps 
than as a way to build a conceptual interpretation. Today, most of the IE systems 
that involve semantic analysis exploit the most simple part of the whole spectrum 
of domain and task knowledge, that is to say, named entities. However, the grow-
ing need for IE application to domains such as functional genomics that require 
more text understanding pushes towards more sophisticated semantic knowledge 
resources and thus towards ontologies viewed as conceptual models, as it will be 
shown in this chapter. 
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2.2 What is an Ontology in the IE framework? 

Even though ontologies usually do not appear as an autonomous component or re-
source in IE systems, we argue that IE relies on ontological knowledge.  

2.2.1 Ontologies populated with referential entities 

The ontology identifies the entities that have a form of existence in a given do-
main and specifies their essential properties. It does not describe the spurious 
properties of these entities. On the contrary, the goal of IE is to extract factual 
knowledge to instantiate one or several predefined forms. The structure of the 
form (e.g. Fig. 4) is a matter of ontology whereas the values of the filled template 
usually reflect factual knowledge (as shown in Fig. 2 above) that is not part of the 
ontology. In these examples, the form to fill represents a part of the biological 
model of gene regulation network: proteins interact positively or negatively with 
genes. In Sect. 3.4, we will show that IE is ontology-driven in that respect. 

 
Type: {negative, positive} 
Agent: any protein 

 
Interaction 

Target: any gene 

Fig. 4. An example of IE form in the genomics domain 

The status of the named entities is a pending question. Do they belong to the 
ontology or are they factual knowledge? From a theoretical point of view, accord-
ing to Brachman’s terminological logics view (1979), they are instances of con-
cepts and as such, they are described and typed at the assertional level and not at 
the terminological or ontological level. In this chapter, we will nevertheless con-
sider that entities, being referential entities, are part of the domain ontology be-
cause it is the way IE considers them. 

2.2.2 Ontology with a natural language anchorage 

Whether one wants to use ontological knowledge to interpret natural language or 
to exploit written documents to create or update ontologies, in any case, the ontol-
ogy has to be connected to linguistic phenomena. Ontology must be linguistically 
anchored. A large effort has been devoted in traditional IE systems based on local 
analysis to the definitions of extraction rules that achieve this anchoring. In the 
very simple example about gene interaction (Fig. 2 above), the ontological knowl-
edge is encoded as a keyword rule, which can be considered as a kind of compiled 
knowledge. In more powerful IE systems, the ontological knowledge is more ex-
plicitly stated in the rules that bridge the gap between the word level and text in-
terpretation. For instance, the rule of Fig. 3 above, states that a management ap-
pointment event can be expressed through three verbs (named, elected or 
appointed). As such, an ontology is not a purely conceptual model, it is a model 
associated to a domain-specific vocabulary and grammar. In the IE framework, we 
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consider that this vocabulary and grammar are part of the ontology, even when 
they are embodied in extraction rules.  

The complexity of the linguistic anchoring of ontological knowledge is well 
known and should not be underestimated. A concept can be expressed by different 
terms and many words are ambiguous. Rhetoric, such as lexicalized metonymies 
or elisions, introduces conceptual shortcuts at the linguistic level and must be elic-
ited to be interpreted into domain knowledge. A noun phrase (e.g. “the citizen”) 
may refer to an instance (a specific citizen which has been previously mentioned 
in the text) or to the class (the set of all the citizens) leading then to a very differ-
ent interpretation. These phenomena, which illustrate the gab between the linguis-
tic and the ontological levels, strongly affect IE performance. This explains why 
IE rules are so difficult to design. 

2.2.3 Partial ontologies 

IE is a targeted textual analysis process. The target information is described in the 
structure of the forms to fill. As mentioned above (Sect. 2.1.2) MUC has identified 
various types of forms describing elements or entities, events and scenarios.  

IE does not require a whole formal ontological system but parts of it only. We 
consider that the ontological knowledge involved in IE can be viewed as a set of 
interconnected and concept-centered descriptions, or “conceptual nodes2”. In con-
ceptual nodes the concept properties and the relations between concepts are ex-
plicit. These conceptual nodes should be understood as chunks of a global knowl-
edge model of the domain. We consider here various types of concepts: an object 
node lists the various properties of the object; an event node describes the various 
objects involved in the event and their roles; a scenario node describes one or sev-
eral events involved in the scenario and their interrelations. The use of this type of 
knowledge in NLP systems is traditional (Schank and Abelson 1977) and is illus-
trated by MUC tasks.  

2.3 Specificity of the ontology-IE relationship  

Ontology and IE are closely connected by a mutual contribution. The ontology is 
required for the IE interpreting process and IE provides methods for ontological 
knowledge acquisition. Even if using IE for extracting ontological knowledge is 
still rather marginal, it is gaining in importance. We distinguish both aspects in the 
following Sects. 3 and 4, although the whole process is a cyclic one. A first level 
of ontological knowledge (e.g. entities) helps to extract new pieces of knowledge 
from which more elaborated abstract ontological knowledge can be designed, 
which help to extract new pieces of information in an iterative process.  

                                                           
2 We define a conceptual node as a piece of ontological model to which linguistic informa-

tion can be attached. It differs from the “conceptual nodes” of (Soderland et al. 1995), 
which are extraction patterns describing a concept. We will see below that several extrac-
tion rules may be associated to a unique conceptual node.  
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3. Ontology for Information extraction 

The template or form to be fulfilled by IE is a partial model of world knowledge. 
IE forms are also classically viewed as a model of a database to be filled by the in-
stances extracted. This view is consistent with the first one. In this respect, any IE 
system is ontology-driven: in IE processes, the ontological knowledge is primarily 
used for text interpretation. How poor the semantics underlying the form to fill 
may be (see Fig. 2, for instance), whether it is explicit (Gaizauskas and Wilks, 
1997; Embley et al., 1998) or not (Freitag 1998) (see Fig. 5 below), IE is always 
based on a knowledge model. In this Sect. 3, for exposition purposes, we distin-
guish different levels of ontological knowledge: 

• The referential domain entities and their variations are listed in “flat ontolo-
gies”. This is mainly used for entity identification and semantic tagging of 
character strings in documents. 

• At a second level, the conceptual hierarchy improves normalization by ena-
bling more general levels of representation. 

• More sophisticated IE systems also make use of chunks of a domain model 
(i.e. conceptual nodes), in which the properties and interrelations of entities 
are described. The projection of these relations on the text both improves 
the NL processes and guides the instantiation of conceptual frames, scenar-
ios or database tuples. The corresponding rules are based either on lexico-
syntactic patterns or on more semantic ones.  

• The domain model itself is used for inference. It enables different structures 
to be merged and the implicit information to be brought to light. 

3.1 Sets of entities 

Recognizing and classifying named entities in texts require knowledge on the do-
main entities. Specialized lexical or key-word lists are commonly used to identify 
the referential entities in documents. For instance, in the context of cancer treat-
ment, (Rindflesh et al. 2000) makes use of the concepts of the Metathesaurus of 
UMLS to identify and classify biological entities in papers reporting interactions 
between proteins, genes and drugs. In different experiments, some lists of gene 
and protein names are exploited. For instance, (Humphreys et al. 2000) makes use 
of the SWISS PROT resource whereas (Ono et al. 2001) combines pattern match-
ing with a manually constructed dictionary. In the financial news of MUC-5, lists 
of company names have been used. In a similar way, Auto-Slog (Riloff 1993), 
CRYSTAL (Soderland et al. 1995), PALKA (Kim and Moldovan 1995), WHISK 
(Soderland 1999) and Pinocchio (Ciravegna 2000) make use of list of entities to 
identify the referential entities in documents. The use of lexicon and dictionaries is 
however controversial. Some authors like (Mikheev et al. 1999) argue that entity 
named recognition can be done without it. 
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Three main objectives of these specialized lexicons can be distinguished, se-
mantic tagging, naming normalization and linguistic normalization, although these 
operations are usually processed all at once. 

Semantic tagging 

Semantic tagging. List of entities are used to tag the text entities with the relevant 
semantic information. In the ontology or lexicon, an entity (e.g. Tony Bridge) is 
described by its type (the semantic class to which it belongs, here PERSON) and by 
the list of the various textual forms (typographical variants, abbreviations, syno-
nyms) that may refer to it3 (Mr. Bridge, Tony Bridge, T. Bridge).  

However, exact character strings are often not reliable enough for a precise en-
tity identification and semantic tagging. Polysemic words that do exist even in 
sublanguages belong to different semantic classes. In the above example, the 
string “Bridge” could also refer to a bridge named “Tony”. (Soderland 1999) re-
ports experiments on a similar problem on a software job ad domain: WHISK is 
able to learn some contextual IE rules but some rules are difficult to learn because 
they rely on subtle semantic variations, e.g., the word “Java” can be interpreted as 
competency in the programming language except in “Java Beans”. Providing the 
system with lists of entities does not help that much, “because too many of the 
relevant terms in the domain undergo shifts of meaning depending on context for 
simple lists of words to be useful”. The connection between the ontological and 
the textual levels must therefore be stronger. Identification and disambiguation 
contextual rules can be attached to named entities.  

This disambiguation problem is addressed as an autonomous process in IE 
works by systems that learn contextual rules for entity identification (Sect. 4.1). 

Naming normalization. As a by-effect, these resources are also used for normali-
zation purposes. For instance, the various forms of Mr. Bridge will be tagged as 
MAN and associated with its canonical name form: Tony Bridge (<PERSON 
id=Tony Bridge>). In (Soderland 1999), the extraction rules may refer to some 
class of typographical variations (such as Bdrm=(brs, br, bdrm, bed-
rooms, bedroom, bed) in the Rental Ad domain). This avoids rule over-
fitting by enabling then specific rules to be abstracted.  

Specialized genomics systems are particularly concerned with the variation 
problem, as the nomenclatures are often not respected in the genomics literature, 
when they exist. Thus, the well-known problem of identifying protein and gene 
names has attracted a large part of the research effort in IE to genomics (Proux et 
al. 1998; Fukuda et al. 1998; Collier et al. 2000). In many cases, rules rely on 
shallow constraints rather than morpho-syntactic dependencies.  

Linguistic normalization. Beyond typographical normalization, the semantic tag-
ging of entities contributes to sentence normalization at a linguistic level. It solves 
some syntactic ambiguities, e.g. if cotA is tagged as a gene, in the sentence “the 
stimulation of the expression of cotA”, knowning that a gene can be “expressed” 

                                                           
3 These various forms may be listed extensionally or intentionally by variation rules. 
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helps to understand that “cotA” is the patient of the expression rather than its 
agent or the agent of the stimulating action. Semantic tagging is also traditionally 
used for anaphora resolution: (Pustejovsky et al. 2002) makes use of UMLS types 
to identify and order the potential antecedents of an anaphoric pronoun (it) or 
noun phrase (these enzymes, both genes).  

Semantic types and naming variations are both used for text normalization, 
without a clear distinction between them.  

3.2 Hierarchies  

Beyond lists of entities, ontologies are often described as hierarchies of semantic 
or word classes. Traditionally, IE focuses on the use of word classes rather than on 
the use of the hierarchical organization. For instance, in WordNet (Miller 1990), 
the word classes (synsets) are used for the semantic tagging and disambiguation of 
words but the hyponymy relation that structures the synsets into a hierarchy of 
semantic or conceptual classes is seldom exploited for ontological generalization 
inference. Some ML-based experiments have been done to exploit hierarchies of 
WordNet and of more specific lexicons, such as UMLS (Soderland et al. 1995; 
Chai et al. 1999; Freitag 1998). The ML systems learn extraction rules by general-
izing from annotated training examples. They relax constraints along two axes, 
climbing the hyperonym path and dropping conditions. This way, the difficult 
choice of the correct level in the hierarchy is left to the systems. 

(Chai et al. 1999) reports experiments that show how difficult is this choice in 
WordNet. Their IE patterns are in the form of pairs of noun phrases (NP) repre-
senting two target values, related by a verb or a preposition representing the rela-
tion, such as NP(X->Enzyme) Verb(interact) NP(Y->Gene) where 
Enzyme and Gene represent two slots of a form. In this example, the categories 
of X and Y are not constrained and the pattern is over general. As one may have 
expected, the experiment shows that generalizing the two NP types with WordNet 
increases the recall but decreases the precision. Chai et al. system automatically 
learns for each relevant NP in the pattern, the optimal level of semantic generali-
zation on the WordNet hyperonym path by climbing WordNet hierarchies. For 
ambiguous words, which have several hyperonyms, the choice of the right hierar-
chy to climb is based on the user selection of the headword senses in a training 
corpus. The rule learned using WordNet enhances the overall F-measurement 
(combination of precision and recall) by about 10 %. The performance increases 
by about 30 % for certain facts such as LOCATION in a job advertisement IE 
task. The conclusion is moderate: generalization along WordNet hierarchy brings 
a significant benefit to IE but the incompleteness of WordNet in specific domain 
and the word sense ambiguity are questionable.  
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acqabr :- 
some(Var, null, capitalized, true), length(>2) 
some(Var [next_token], all_lower_case, true), 
some(Var [prev_token], all_lower_case, true), 
some(Var [right_AN], wordnet_word, "possession"), 
some(Var [right_AN prev_token], wordnet_word, "stock"), 
some(Var [prev_tok prev_token], doubleton, false). 

applies to the sentences, 
"to purchase 4.5 mln Trilogy  common shares at" 

"acquire another 2.4 mln Roach  treasury shares." 
where Possession (instanciated by shares) and stock (instanciated by common and 
treasury) are WordNet classes. Var represents the company name (Trilogy and 
Roach) and Right_AN represents the head of the noun phrase at the right of the 
company name. 

Fig. 5. Application of SRV to MUC-5 

The IE learning system, SRV, also uses semantic class information such as syn-
sets and hyperonym links from WordNet lexicon to constrain the application of 
the IE rules (Fig. 5), but D. Freitag (1998) concludes that the improvement is not 
clear.  

A lot of work has been devoted to the manual or automatic acquisition of do-
main dependent hierarchies for a wide range of NL processing tasks in order to 
overcome the general ontologies limitations. For instance, for IE purpose, (Riloff 
and Shepherd 1997) proposes to build semantic classes starting with a few seed 
words and growing by adjunction of words as a first step before extraction rules 
learning. At this stage, no clear and reusable conclusions for IE can be drawn from 
these attempts. 

3.3 Conceptual nodes 

The ontological knowledge is not always explicitly stated as it is in (Gaizauskas 
and Wilks 1997), which represents an ontology as a hierarchy of concepts, each 
concept being associated with an attribute-value structure, or in (Embley et al. 
1998), which describes an ontology as database relational schema. However, onto-
logical knowledge is reflected by the target form that IE must fill and which repre-
sents the conceptual nodes to be instantiated. Extraction rules ensure the mapping 
between a conceptual node and the potentially various linguistic phrasing express-
ing the relevant elements of information.  

Most of the works aiming at extracting gene/protein interactions are based on 
such event conceptual nodes. In (Yakushiji et al. 2001), predicate-argument struc-
tures (P-A structures), also referred as subcategorization frames, describe the 
number, type and syntactic construction of the predicate arguments. The P-A 
structures are used for extracting gene and protein interactions (see Fig. 7). The 
mapping between P-A structures and event frames (event conceptual nodes) is ex-
plicit and different P-A structures can be associated to a same event frame. For in-
stance, the extraction of gene/protein interactions is viewed as the search for the 
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subject and the object of an interaction verb, which are interpreted as the agent 
and the target of the interaction.  

In these works, parsing is made by shallow, robust or full parsers, which handle 
or not coordinates, anaphora, passive mood and nominalization (Sekimizu et al. 
1998; Thomas et al. 2000; Roux et al. 2000; Park et al. 2001; Leroy and Chen 
2002). Additional semantic constraints may be added as selectional restrictions4 
for disambiguation purposes.  

activate is an interaction verb 
P-A structure of activate:  
Pred: activate  Frame: activate 
 args: subject (1)  slot: agent (1) 
  object (2)   slot: target (2) 

Fig 6. Example of a conceptual-node driven rule in functional genomics 

These approaches rely on the assumption that semantic relations (e.g. agent, 
target) are fully determined by the verb/noun predicate, its syntactic dependencies 
and optionally the semantic categories of its arguments, (Pustejovky et al. 1993; 
Gildea and Jurafsky 2002).  

The same assumption is made in the very interesting work of (Sasaki and Ma-
tsuo 2000) that goes one step further. Their system, RHB+, learns this mapping 
with the help of case-frames in Fillmore's sense (1968). RHB+ is able to combine 
multiple case-frames to map a unique conceptual node, as opposed to the direct 
binary mapping described above. RHB+ makes use of Japanese linguistic re-
sources that include a 12-level hierarchical concept thesaurus of 3,000 categories 
(300,000 words) linked by is-a and has-a relations and 15,000 case frames for 
6,000 verbs. The case-roles, the semantic relations between a predicate and its ar-
gument, within a text are determined by the semantic categories of the predicate 
arguments together with the prepositions or the syntactic dependencies.  

As for RHB+, considerable effort has been made towards designing automatic 
methods for learning such extraction rules. The main difficulty arises from the 
complexity of the text representation once enriched by the multiple linguistic and 
conceptual levels. The more expressive the representation, the larger is the search 
space for the IE rule and the more difficult the learning. The extreme alternative 
consists in either selecting the potentially relevant features before learning with 
the risk of excluding the solution from the search space, or leaving the system the 
entire choice, provided that there is enough representative and annotated data to 
find the relevant regularities. For instance, the former consists in normalizing by 
replacing names by category labels when the latter consists in tagging without re-
moving the names. The learning complexity can even be increased when the con-
ceptual or semantic classes are learned together with the conceptual node informa-
tion (Riloff and Jones 1999; Yangarber et al. 2000).  

                                                           
4 A selectional restriction is a semantic type constraint that a given predicate enforces on its 

arguments.  
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An interesting alternative to the purely corpus-based approach for learning IE 
rules has been proposed in the context of ECRAN (Basili et al. 1998). This ap-
proach, based on Wilks’s notion of lexical tuning, consists in adaptating an exist-
ing dictionary to a given corpus, the LDOCE dictionary, which aims at describing 
the subcategorization frames of any word sense. The confrontation of a specialized 
corpus syntactic analysis and the LDOCE allows the selection of the most relevant 
subcategorization frames and possibly the discovery of new word senses. 

3.4 Domain conceptual model 

The link between the syntactic level and the event description is not always so 
straightforward. The text interpretation may require inference reasoning with do-
main knowledge. For instance, to be able to extract 

Type: negative 
Agent: sigma K 

 
Interaction 

Target: spoIIID 
from, "[…], such that production of sigma K leads to a decrease in the level of 
spoIIID.", more biological knowledge is necessary to interpret the level changes in 
term of interaction. P-A structures as those above will be useful at the lower level 
for interpreting the text and build a semantic structure but a causal model stating 
that correlation in quantity variations can be interpreted as an interaction is needed 
to connect and interpret the instantiated syntactic structures at a conceptual level. 

4 Information extraction for ontology design 

Acquisition of ontological knowledge is a well-known bottleneck for many AI ap-
plications and a large amount of work has been devoted to knowledge acquisition 
from text. The underlying idea, inherited from Harris’ work on the immunology 
sublanguage (Harris et al. 1989), is that, in specific domains, the linguistics re-
flects the domain conceptual organization. Although it has been observed, as we 
mentioned above, that the linguistic representation of the conceptual domain is bi-
ased, it remains one of the most promising approaches to knowledge acquisition. 
Following (Meyer et al. 1992), a large amount of work has been devoted to term 
extraction (Bourigault 1996, Jacquemin 1996) as a mean to identify the concepts 
of a given domain and thus to bootstrap ontology design (Grishman and Sterling 
1992; Nazarenko et al. 1997; Aussenac-Gilles et al. 2000). Identifying how these 
terms relate to each other in texts help to understand the properties and relation-
ships of the underlying concepts.  

Various methods are applied to corpora to achieve this acquisition process: en-
dogenous distributional or cooccurrence analysis and rule-based extraction are 
complementary in this respect. We focus here on the latter approach, which per-
tains to IE. We show that it can indeed contribute to the ontology acquisition and 
enrichment process. Rule-based extraction produces elementary results that are in-
terpreted in terms of chunks of ontological knowledge: the referential entities and 
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their interrelationships. Once extracted, these chunks have to be integrated into the 
ontology. We do not deal with that point here, as it goes beyond IE. 

4.1 Entity name extraction 

As explained in Sect. 2.2, we consider here that the referential entities (e.g. per-
sons, dates or genes), which are usually represented as instances of concepts, are 
part of the ontology. In this perspective, there is a need for “populating” the ontol-
ogy with the referential entities of the domain of interest by automatic ways. 

IE has been widely applied to the recognition and categorization of the entities 
mentioned in documents, either specialized texts or web pages by means of pat-
terns. The extraction methods differ regarding their pattern design technique, 
which is either automatic or manual.   

4.1.1 Automatic pattern learning 

Hidden Markov Models (HMM) based on sequences of bigrams (pairs of tokens) 
has become a popular method for learning named entity recognition patterns from 
annotated corpora since Nymble (Bikel et al. 1997, 1999) because simple bigrams 
appear as sufficient for learning efficient rules. According to (Collier et al. 2000), 
the applied HMM differ in their ability to learn the model structure or not, in the 
way they estimate the transition probabilities (from training data or models built 
by hand) and in their reusability in different domains. For instance, the method of 
(Collier et al. 2000) aims at recognizing biological entity names and is based on 
an HMM trained on 100 MedLine abstracts using only character features and lexi-
cal information. The results (F-score 73 %) are much better than those obtained by 
previous hand-coded patterns (Fukuda et al. 1998). 

4.1.2 Hand-coded patterns and dictionaries 

While the pattern learning approach tends to use very basic information from the 
text, the hand-coded pattern approach on contrary rely more on linguistics (Proux 
et al. 1998), external ontologies (Rindflesh et al. 2000) and context (Humphreys et 
al. 2000; Fukuda et al. 1998; Hishiki et al. 1998). 

The EDGAR system (Rindflesh et al. 2000) identifies unknown gene names 
and cell lines by two ways: the concepts of UMLS and hand-coded contextual pat-
terns, such as appositives, filtered through UMLS and an English dictionary and 
occurring after some signal words, (e.g. cell, clone and line for cells). A second 
phase identifies cell features, (e.g. organ type, cancer type and organism) by a 
similar mechanism.  

(Hishiki et al. 1998) gives examples of contextual regular expressions applied 
to the entity recognition and categorization. They rely, for instance, on: 

• Indefinite appositions: the pattern NP(X), a NP(Y) gives X as an in-
stance of Y, if Y is a type. From the sentence "csbB, a putative membrane-
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bound glucosyl transferase", csbB is interpreted as an instance of transferase 
if transferase is defined as a type. 

• Exemplification of copula constructions: NP(X) be one of NP(Y) or 
NP(X) e.g. NP(Y).The fact that abrB is an instance of gene is ex-
tracted from "to repress certain genes , e.g.. abrB". 

The recognition of gene names (Proux et al. 1998) and biological entity names 
(Humpreys et al. 2000) can also rely on various linguistic-based methods, i.e. 
grammatical tagging, contextual hand-coded patterns, specific lexicon (e.g. 
SWISS-PROT keywlist) and combination of morphology-based, biochemical suf-
fix and prefix recognition rules. The results obtained by (Proux et al. 1998) on a 
FlyBase corpus are of high quality, (94,4 % recall and 91,4 % precision). With 
comparable performance, (Humpreys et al. 2000) identifies 25,000 component 
terms of 52 categories as MUC named entity results. Populating ontology with 
help of entity name recognition from textual data can therefore be considered as 
operational for specific domains. 

4.2 Relation extraction 

In a structured ontology, the concepts are related to each other according to a vari-
ety of relations. Three main approaches acquire ontological relations from texts: 

• The cooccurrence-based method identifies couples of cooccurring terms. 
When applied to large corpora, this method is robust but further interpreta-
tion is required to type the relation underlying the collocation.  

• The knowledge-based method makes use of a bootstrapping dictionary, a 
thesaurus or an ontology and tunes it to adapt it to the specific domain at 
hand according to a representative “tuning” corpus.  

• The IE pattern-based method. 
The IE approach has the advantage over the first one that the type of extracted 

relation is known, since patterns are designed to characterize a given relation. It is 
complementary to the second one: preexisting knowledge can help to design an 
extraction rule in an acquisition iterative process. For instance, if the preexisting 
knowledge base states that ‘X is-part-of Y’, identifying this relation in text helps 
to design a first is-part-of extraction rule, which is used in turn to extracts new in-
stances of the that relation (Hearst 1992; Morin and Jacquemin 1999).  

Two kinds of relations can roughly be distinguished: the generic ones, which 
can be found in almost any ontology, and the model-specific ones. 

4.2.1 Generic relations 

The links that form the main structure of the ontology are the most popular rela-
tions: the intra-concept relations (synonymy) and the hierarchical is-a and part-of 
relations. They can be considered either at the linguistic level (hyperonymy and 
meronymy are traditional lexicographic relations) or at the ontological level (is-a 
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and part-of). The acquisition goal is to exploit the linguistic organization to infer 
an ontological structure.  

Hyponymy or is-a relation. In her pioneering work, M. Hearst (1992) proposes 
six patterns for the acquisition of hyponyms, among which are the following: 
Such NP as {NP,}* {or|and} NP 
NP {,} including {NP,}* {or|and} NP 
The first NP is interpreted as the hyperonym, and the latter one(s) as the hypo-

nym(s). The first rule matches the sentence “… such exotic fruits as kiwis, man-
goes, pineapple or coconuts…” from which the relations kiwi is-a exotic fruit and 
mango is-a exotic fruit can be extracted. These patterns are in the form of regular 
expressions that combine lexical units, punctuation marks and morpho-syntactic 
tags. It requires a tagged corpus. 

Many works have followed this track. Variant forms of exemplification and 
enumeration patterns have been designed for specific corpora (see the above pat-
terns proposed by (Hishiki et al. 1998)). The results have obviously to be vali-
dated by a human expert and a taxonomy can be then constructed by inference on 
the single types derived from the corpus by pattern matching. 

As shown on the previous examples, the hyponym relation can be interpreted 
either as an instance-class relation or as a generalization relation between two 
classes. The language does not distinguish the one from the other, since a proto-
typical instance may refer to the class as a whole. For example, from "PP2C fam-
ily of eukaryotic Ser/Thr protein phosphatases", one can derive two relations 
(PP2C is a phosphatase and phosphatase is a protein), where classes and instances 
cannot be distinguished. 

As one may expect, this approach gives high precision scores but no reliable 
measure of recall, which would call for a corpus where hyponyms are tagged. The 
number of extracted relations seems to be low regarding the diversity of corpus in-
formation as well as the number of ontological categories. It is generally agreed 
that ontology design imposes to favor reliability over cover. The obvious NP is 
a NP pattern is usually disregarded as too imprecise. In the sentence “the key 
regulator is an example of…” it would lead to interpret the key regulator as an in-
stance of example.  

Meronymy or  part-of relation. Meronymy has not been as much studied as hy-
ponymy. However, (Berland and Charniak 1997) adapts the above approach to 
find parts of physical objects in very large corpora. Their acquisition method is 
designed for ontology enhancement. They propose five patterns such as  
Such NP as {NP,}* {or|and} NP 
NP {,} including {NP,}* {or|and} NP 
The first NP is interpreted as the hyperonym, and the latter one(s) as the hypo-

nym(s). The first rule matches the sentence “… such exotic fruits as kiwis, man-
goes, pineapple or coconuts…” from which the relations kiwi is-a exotic fruit and 
mango is-a exotic fruit can be extracted. These patterns are in the form of regular 
expressions that combine lexical units, punctuation marks and morpho-syntactic 
tags. It requires a tagged corpus. 
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Many works have followed this track. Variant forms of exemplification and 
enumeration patterns have been designed for specific corpora (cf. the above pat-
terns proposed by (Hishiki et al. 1998)). The results have obviously to be vali-
dated by a human expert and a taxonomy can be then constructed by inference on 
the single types derived from the corpus by pattern matching. 

As shown by the previous examples, the hyponym relation can be interpreted 
either as an instance-class relation or as a generalization relation between two 
classes. The language does not distinguish the one from the other, since a proto-
typical instance may refer to the class as a whole. For example, from "PP2C fam-
ily of eukaryotic Ser/Thr protein phosphatases", one can derive two relations 
(PP2C is a phosphatase and phosphatase is a protein), where classes and instances 
cannot be distinguished. 

As one may expect, this approach gives high precision scores but no reliable 
measure of recall, as it would call for a corpus where hyponyms are tagged. The 
number of extracted relations seems to be low regarding the diversity of corpus in-
formation as well as the number of ontological categories. It is generally agreed 
that ontology design imposes to favor reliability over cover. The obvious NP is 
a NP pattern is usually disregarded as too imprecise. In the sentence “the key 
regulator is an example of…” it would lead to interpret the key regulator as an in-
stance of example.  

Meronymy or  part-of relation. Meronymy has not been as much studied as hy-
ponymy. (Berland and Charniak 1997) however adapt the above approach to find 
parts of physical objects in very large corpora. Their acquisition method is de-
signed for ontology enhancement. They propose five patterns such as  

{N|Nplural}’s POSSESSIVE {N|Nplural} 
where the first N is interpreted as the whole and the second one as the part. Mor-
phological constraints rule out quality words (words ending with –ness, -ity…), 
which are not supposed to refer to physical objects. Phrases like “…basements 
in/of buildings…”, “basement in|of a building”, “basement’s building” are covered 
by the five patterns proposed. Due to these weakly constrained patterns, many po-
tential meronyms are extracted. They are statistically ordered and proposed to an 
expert for validation. Results show 55% of precision among the first 50 part-
whole pairs, which is quite low.  

(Hishiki et al. 1998) proposes patterns relying on partitive verbs for biological 
literature: NP consist of NP and NP be ... part of NP as in "sigE is part 
of an operon" or in " the gerE locus consists of one gene". This work raises the 
same evaluation problem as the previous one. 

Synonymy. The same approach has been experimented to detect synonymy rela-
tions in corpora. Reformulation and abbreviation patterns have been proposed 
(Pearson 1998): i.e., e.g. known as, called. (Hishiki et al. 1998) suggests that 
“termed” “designated as” and parenthesizing denote synonymy: in the sequence 
NP (NP), the NPs are considered as synonymous, like in "spoIIIG (sigma G)". 

However, the productivity of these patterns is highly dependent on the corpus 
(Hamon and Nazarenko 2001). For instance, in biology, parentheses do not only 
denote synonymy or typographic variations as in "sigma-D (sigma D)" or in, 
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"chloramphenicol acetyltransferase (CAT)". They may also introduce an instance 
as in "a small DNA segment (157 bp)", a reference, as in "in an earlier study Pig-
got (J. Bacteriol)" or simply, the species of interest as in "spoIIG operon from ei-
ther B. subtilis (spoIIG (Bs)) or C. acetobutylicum (spoIIG (Ca))". Overall, synon-
ymy extraction patterns are not as reliable as for hyponymy, because extraction 
patterns capture syntagmatic information whereas synonymy is a paradigmatic re-
lation5.  

4.2.2 Model-specific relations 

A wide range of domain specific relations are examined in IE works. Elementary 
relations can be interpreted as attributes of a given object class. The attributes age, 
name, phone number, parent, birth place can be associated to a person (Embley et 
al. 1998). Various relations can hold between objects or events: from semantic 
roles, such as agent or patient roles, to more complex ones such as the symptom 
relation in the medical domain or the interaction between biological entities in ge-
nomics.  

Extracting relations between entities helps to populate a database. However, ex-
tracting a relation in isolation is usually not sufficient for ontology design. The 
elementary relation must be structured in more complex schemata (Embley et al. 
1998; Aone and Ramos-Santacruz 2000). For instance, in functional genomics, 
one of the most popular IE task aims at building enzymes and metabolic pathways, 
or regulation networks that can be considered as specific ontologies. Such net-
works are described by complex graphs of interactions between genes, proteins 
and environmental factors such as drugs or stress. The ontological result of the ex-
traction should represent at least the entities, their reactions, their properties and, 
at a higher level, feedback cycles. Single elementary and binary relations between 
entities are independently extracted by IE methods. The integration of these ele-
mentary relations into the ontology highly depends on the biological model repre-
sented in the ontology and on the other extracted facts. Few works address this in-
tegration question. As shown in Sect. 3, the improvement of the ontology by IE 
simply comes to add new instances of the interaction relation in most of the cases. 
For instance, with the semantic roles associated to repress 
(Agent(Repress, Protein) and Target(Repress, Gene)), the repress relation can be 
enriched by new instances. "SpoIIID represses spoVD transcription" yields 
Agent(Repress, SpoIIID) and Target(Repress, spoVD) (Roux et al. 2000). Other 
works such as (Ng and Wong 1999) aim at providing a user-friendly interface to 
facilitate the interpretation of the elementary results by the biologist. 

On the whole, although useful, pattern-based relation acquisition cannot be the 
main knowledge source for ontology design. The best results in precision are ob-
tained in hyponymy and specific relation extractions. Some reasons can be in-
voked. The variation in phrasing is difficult to capture and this affects the recall 
quality. General patterns must rely on grammatical words or construct (like prepo-

                                                           
5 Along the paradigmatic axis, the terms can substitute to each other; along the syntagmatic 

axis, terms rather tend to combine. 
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sitions) which are semantically vague. This affects  the precision. More fundamen-
tally, the linguistically-based model cannot be directly mapped onto an ontology 
(Bouaud et al. 1996; Gangemi et al. 2001). Hyponymy between polysemic terms 
cannot be considered as a transitive relation; metonymy phenomena are concep-
tual shortcuts, language makes the confusion between the roles and the entities 
that hold the roles. The use of IE relation extraction techniques must therefore be 
restricted to the complementation and tuning of an existing ontology and any ex-
tracted information must be further interpreted in ontological terms.  

5 Conclusion 

As illustrated in this chapter, the IE research related to the ontology is abundant, 
multiple and mainly applied. Many systems, approaches, algorithms and evalua-
tions on quite basic applications are reported. At this stage, the main goal is more 
to develop systems that get a better precision and recall than making explicit and 
defending a given general approach against others. The influence of statistics on 
NLP, the influence of MUC on IE and the cost of ontological processing partially 
explain this. We rather interpret the quasi absence of clear direction and modeling 
attempt by the novelty of the IE field. The simplest tasks are solved first (e.g. 
named entity recognition). IE methods for interpreting the lowest text levels are 
now well established. This maturity and the growing needs for real applications 
will draw the field towards a stronger involvement of the ontological knowledge.  

Difficult and unexplored questions dealing with the discrepancy between what 
the text is about, the exogenous lexicon and ontology should be investigated. This 
gap may not be only due to representation languages, to divergent generality lev-
els and incompleteness of the knowledge sources, which have been tackled by the 
revision field, but also to divergent text genres, points of view and underlying 
problem-solving tasks. IE driven by the ontology and integration of the extracted 
knowledge in the ontology will not be properly done without appropriate answers 
to these questions. 
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