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Residual generator design for singular bilinear systems subjected to
unmeasurable disturbances : an LMI approach

M. Zasadzinski®t E. Magarotto®, H. Rafaralahy®, H. Souley Ali

* CRAN — CNRS
IUT de Longwy, Université Henri Poincaré — Nancy I
186 rue de Lorraine, 54400 Cosnes et Romain, FRANCE
® GREYC — CNRS
Université de Caen Basse-Normandie
6 boulevard du Marchal Juin, 14050 Caen Cedex, FRANCE

Abstract
In this paper, a method to design a bank of unknown input residual generator (UIRG) for fault
detection and isolation is investigated. The plant model is assumed to be a bounded control inputs
singular bilinear systems (SBS) subjected to unknown disturbances. The measurements can be bilinear.

Keywords : Singular bilinear system, Unknown input residual generator, Exponential stability, Linear
matrix inequality.

1 Introduction

The theory of observer-based fault detection for non-linear systems has received considerable attention
during the last decade. Frank (1993) considered the residual observer for nonlinear systems using a first
order approximation, then the stability of the observation error is local. Kinnaert et al. (1995; 1999)
treated the failure detection and isolation problem for bilinear systems using the regularly persistent
observers proposed in (Bornard et al., 1988). This approach is less restrictive than those proposed by Yu
and Shields (1996).

This paper is devoted to the design of a bank of UIRG for bounded control inputs SBS subjected to
unmeasurable disturbances, without condition on matrix E#. The measurements are bilinear in the
control signals. The algebraic part of the generalised state equation and the measurement equation are
decomposed according to the failures, the unknown inputs and the bilinearities. The k™" UIRG of the
bank is designed in three steps. First, equality constraints are solved to decouple the residual from the
unmeasurable disturbances and the £ failure mode. Second, the problem is converted into a robust
stabilisation problem with structured uncertainty, then an LMI approach is used to solve a Lyapunov
inequality. Third, the LMI solution is parametrised to solve an algebraic design constraint.

Notations. A(A) is the eigenvalue of the matrix A, A\pax(Q) and Apin(Q) are the maximal and the
minimal eigenvalues of the symmetric matrix @, ||A]| = \/Amax(AT A) (then |z|| = VaTz if x € R") and
sym(A) = A+ AT.

2 Problem formulation

Consider the following time-invariant SBS de%cribed by

E#i = Ao#a:—l—ZuiAi#x—FB#u—FDf&w—FF#f (1a)
y#* = %z + 3" wiC*a + DY w+ FY f (1b)
=1
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where the state 2 € IR™, the control input u € R™ with u” = [u!(t) - wm(¢)], the unknown input w € RY,
the fault f € R® and the measured output y# € IRP#, and with E# € R™" and rank E7 = r; <
min (r,n). Note that u* is the i®® component of vector v and A is the matrix associated to u’ in the

# #
SBS (1). Without loss of generality, {g;] and [?#} are of full column rank, and the control inputs are

2 2

bounded, i.e. u € 2 C R where
Q:i={ueR™ | uly, <u' <ul, fori=1....,m}. (2)

max

Now, since rank E# = r, there exists a non-singular matrix P used to extract the algebraic part of

(1a), ie. PE# = [§], pA% = | 4], pp# = (2], PDY = | D' | and PF{ = [ | with B € R
1 B Dy !
and rank ' = r;. This algebraic part is inserted into the measurement (1b). Thus SBS (1) is restricted

system equivalent to

Ei = gox—FZui/Tix—FBu—i-Dlw—Fﬂf (3a)
i=1
y=C% + Z W' C'z + Dow + Fo f (3b)
i=1

where y = [_ﬁ“} € RP (with ry +p =17+ p?), C' = [Z.i }, Dy = [El} and Fh = [E}
For the SBS (1), the k" UIRG is described as follows

5= N(u)z + L + Z u' L'y + Gu (4a)
i=1
0F = M(u)z + Jy (4b)
where z € R™ and 0% € R (6" is the k'! residual), with N(u) = N + 37" w!N? and M(u) = M° +

S ut M
Now the measurement y is decomposed into four parts :
e y; : bilinear, affected by unknown inputs and failures,
® 1o : bilinear, only affected by unknown inputs,
® 1991 : bilinear, free of unknown inputs and failures,
® 1999 : linear, free of unknown inputs and failures.

First, we make a row compression on matrix Fy : there exists a non-singular matrix V such that VV71 = I,
and VT Fy = [121] where Fyy is of full row rank. Then we have V'y = [§1] (with y; € R* and y € RP?),

vici =[] and vIDy = [ P2 ].

Second, there exists non-singular matrices V; and V5 such that VlTDgng = {Igl 8} and VlVlT =1Ip,. Then
we obtain Vilys = [}2], Vi Cl = {giﬂ and [11] =V, tw (with w; € R?, wy € R%, yo; € R and
y22 € RY).

Third, there exists a non-singular matrix V3 such that V3V3T = [, and VST [cl, - cm] = [0%21 " 0%31]

0

where [l ~ 03] is of full row rank, which yields with Vysy = [£221] and VICY, = [g%;ﬂ} (with
222

Y221 € R™, yogp € R and p=p1 + q1 + v =p1 + @1 +v1 + v2).

Defining A" = A' — D1, C%; with D;Va = [Du1 D12 ] (note that Do is of full column rank) and using the

above decompositions, the SBS (3) is equivalent to

m
Fi = Aoa:—l—z u'A'r+ Bu+ Dy1ya1 +Digwa+ Fi1 f1 (5a)
i=1
m . .
y1 = C?JT—FZUZCiH?‘f'me‘FFQIf (5b)
i—1

m
Yy = CHHz+ Z u'Chix + wy (5¢)
=1



m
y21 = Chya+ Z u'Coy (5d)
i=1

Y222 = 032253 (5e)

where the full column rank matrix Fy; and the fault vector f are given by [F11 0] = F1U and Hﬂ =UTf

with UUT = I,. f; is obtained from the column compression on matrix F; and is the part of the fault
vector f which can be detected and isolated. Let 5 be the size of f1, (Fi; € R™*® with rank F11 =5 < s).
The problem of failure detection and isolation can be treated by using a bank of UIRG. For each residual
6%, decompose the fault vector f; into two subvectors ?1(1@) and j?l(k), the matrix F1; is also decomposed
into Fll(k) and Fll(k)- To take a decision in a diagnostic procedure, the residual 8¥ must be insensitive
to the failure modes fl(k) and sensitive to the failure modes fl(k). Then the problem of the generation
of residual 6% can be stated as in the following definition.

Definition 1 (UIRG). The system (4) is a UIRG for the SBS (5) (or (1)) if there exist N', L', G, M*
and J such that :
i) if fiw) =0, then 0% decays exponentially to zero,
i) if ?1(16) #£ 0 and fl(k) =0, then 0% decays exponentially to zero,
iii) if J?1(k) #£ 0, then 0% depends on .E(k)
hold Yw, Yxg and Vz.
Note that the k" UIRG (4) can be expressed in terms of notations used in SBS (5) as follows

m
2= N(u)z+ L o1+ Lyoy Y221 + Logoyaza+Gu + Z ' (Ly1y21 + Lo Y221 + Lhagy222) (6a)
=1
0% = M(u)z + Joo1yao1 + Jazayona- (6b)
The correspondence between the notations used in and (6) is given by (i =0,...,m)
[LZ] _ [0 Lby| Ly L, [Igl[lqloo]vlT VT (7)
J 0] 0 |Ja21 J222 0 lfovr VT

3 Design of the k** UIRG

In this section, the proposed approach for the k** UIRG design is based on Lyapunov stability. This
UIRG has an exponential decay rate and sufficient conditions for its existence are given. When it is no
specified, the superscript ¢ stands for ¢ = 0,...,m. In order to satisfy condition (ii), the subvector f 1(k)

of the vector f is considered as an unknown input in the &** UIRG design. Define the error vector e as
e=z—-TEx (8)

where T' € IR™*", then we have

é = N(u)e + (N'TE — TA® + LYy, C% + L99C%s)x + (G — TB)u + (LY, — TD11)yo1

w2

-T [D12 Fll(k):| 7 + Z U (N'TE — TA" + L) Ciyy + LbgyCog)w — Tﬁll(k)fl(k)

=1

1(k)
+ Z u'Loyn + Z 'Ly | Co91 + Z W Cloy |z (9)
i=1 i=1 j=1
Inserting (8) into (6b), the k'" residual is given by

oF = M (u)e + (MOTE + J221C'321 + J2220822)$ + Z ui(MiTE + J221C'§21).1:. (10)
=1

The following assumption is made in order to ensure that the fault component ﬁ(k.) # 0 has a non-zero
influence on the residual §*.



Assumption 1. (Kinnaert et al., 1995; Kinnaert, 1999) For all admissible inputs u € Q, the vector
fields T'Fyy() fi) are not (N (u), M(u))-unobservable.

Using (9) and (10), the solution of the UIRG problem for SBS (5) (or (1)) is given by the following

theorem.

Theorem 1. Under Assumption 1, the system (6) (or (4)) is an exponential UIRG for the SBS (5) (or
(1)) if there ewist N*, L, Ly, Lisy, G, MY, Jog1, Joze, T and Q = QT > 0, and a real u > 0, satisfying

the following constraints for all admissible u € Q0 and for i =0,...,m

NZTE — TAZ + L821C§21 + L§22C322 =0 (11&)
T [Dn Fll(k)] =0 (11b)
M(‘)TE + J221C'§21 + J2220822 =0 (11(3)
M'TE + J2210521 =0 (11d)
G=TB (11e)
Ly, =TDn (11f)
Ly =0 (11g)

991 =0 (11h)
NT(w)Q + QN (u) + ul < 0. (111)

Proof. If constraints (11a)-(11b) and (11e)-(11h) are verified, the error dynamics (9) becomes
é = N(u)e = TFii) fir)- (12)

Let V(e) = e'Qe be a candidate Lyapunov function with Q = Q" > 0. The time derivative of V (e)
along the dynamics (12) with f;(;) =0, can be expressed as

Vie,u) = el (NT(1)Q 4+ QN (u))e. (13)
If constraint (11i) holds, then the error dynamics (12) is quadratically stable and we have
. —H
Vie,u < —pelfe< —L V(e Yu € Q. 14
(e.w) < —pee < 1 v(@) (1)
Then the error e (8) is exponentially stable, i.e., Vu €
)\max(Q) < —K )
e(t)|| < 4| ——=%|lz0 —TFExo|lexp | ————<1 ). 15
H ()H )\min(Q) H H 2)\maX(Q) ( )

If the constraints (11c) and (11d) are satisfied, the k' residual (10) can be written as
0k = M(u)e. (16)

Then conditions (i) and (ii) in Definition 1 are satisfied. Assumption 1 ensures that the contribution of
the non-zero failures f(;) on the residual 6% is different from zero, and the residual #* obtained from
(12) and (16) fulfills condition (iii) in Definition 1. O
Notice that V(e,u) is uniformly bounded with respect to u and the UIRG works for non-uniformly
observable systems as well as the control input u belongs to €2, even if u is a non-universal input (see
(Bornard et al., 1988)).

The design of the k™" UIRG is decomposed in three parts. First, in section 3.1, the equality constraints
(11a)-(11d) in Theorem 1 are solved in order to decouple the error e from the unknown inputs w and the
failure component 71(1@)- Second, in section 3.2, the error stability is obtained by solving the inequality
constraint (11i) in Theorem 1 using an approach based on an LMI. Third, in section 3.3, a parametrisation
is proposed in order to choose, among the solutions of this LMI, those satisfying the decoupling constraints
given in section 3.1.



3.1 Unknown inputs and failure mode decoupling
Equations (11c)-(11d) can be equivalently rewritten as

MTE+JC =0 (17)
where matrices M, C and J are given by
M= [MoT T MmT} , (18a)
=T T T " T
¢ = [ 1 Coo o CZZlT Cos ] ) (18b)
[Jaor 0 ... 0 Jay|
= 0 Jo - 0
J = 21 (18¢)
0
L 0 0 Jo91 0 ]

To solve equation (17) under the constraint (11b), we need to rewrite the latter in terms of TE (see (21)
and (22)). Since matrix E is of full row rank, equation

[Dlz Fll(k)} = FEp (19)

has always a solution given by @ = ET [Di2 Fy1() ] where ET is any generalised inverse satisfying EETE =

E. There exists a non-singular matrix U such that U = [¢ 0] where ¢ is of full column rank. We have
EE' = I, since E is of full row rank, then (11b) can be rewritten as

T [Du Fu(k)] U=TE [w 0} =0, (20)
or equivalently as
Ty =0 (21)
where
T=TE. (22)

A general solution of (21) is given by
T = Zp(I, — ®) (23)

where ® = ! and Zr € R™ " is an arbitrary matrix which must be chosen such that equation (22)
has a solution 7. Since E is of full row rank, we have rank T = rank T in relation (22). Zr can

be obtained as follows. Choose a non-singular matrix U such that EU = [ £ 0] where E € R™*" and
det E # 0. Then, with the partition of T' given by TU = [Ty Ty ] where Ty € R™ ("™ matrix Z7 is
given by Zp = I, — TQT; and the unique solution T' of (22) is given by

T = Zp(I, — ®)E. (24)

Let @. be the orthogonal complement of ¢ (Boyd et al., 1994). Since [go ch] € IR™*™ is non-singular,

(17) can be equivalently rewritten as

MT[¢E$C}+j6[@EQBC}:O‘ (25)

Using (21), equation (25) is equivalent to
JCp=0, (26a)
(MT + jé) Fe=0. (26b)

Equation (26a) can be equivalently rewritten as

{J221 J222} C=0 (27)



where 6 —_ [0821‘9 Clo14 - 02@2@].

Clpe 0 ... 0
Then the solution of equation (27) is given by
[J221 J222] =W (Iv - 66T> (28)
where W7 € R is an arbitrary vector. Using (26a) again, there exists a matrix W & R guch
that
= N = — T
J=W (Iv _Cy (C(p) ) : (29)
where T = (m + 1)v; + vo. Defining P € RMTDU*7 a5
_|:11011i| 0 0 |:[82i|-
e T
P= 0 (30)
| o o %] ol

and using (18c) and (28), 7 in (29) can be written as
7= (1:-Cp (Cp)') = (W (1.~ €C")) 0P = (W& Linsry) (1. - CCT) 07). (31)

where [ is a block per block product (see appendix A). Since (Ig—ﬁgo(ﬁgoﬁ) is a projector, the solution
of (31) is given by

= (1) (-00)a7) (-2 () 2T ()

where Zy € RU"TDX7 is an arbitrary matrix. By using equations (23) and (29), relation (25) becomes

- _ = frm T =
MZr(I, — ®) + W (L} _Cyp (Cgo) ) C=0. (33)
Then, inserting (32) into (33) gives
o W
0= [M W & Lnsryo ZW} ]
0
= [0 W& I W (34)

Zp (I —®)
where W = [((Iv_@af)gp) (Iv—Ctp(Ccp)T>C]'
Using the block Kronecker product (Koning et al., 1991), (34) is equivalent to

0=(WTBI11) VeCtbr([M W@I(mﬂ)v]) = WTRLy,41)S[(vect(MO)F ... (vect(mm) vect@)r [T (35)
where X is the right block Kronecker product (see appendix A) and S € IR **2 is a selection matrix (see

appendix B for the construction of §) with s1 = (m+1)(n + (m+ 1)v) and s = v + (m + 1)n. Then M
and W are given by

[(vect )T ... (veet )T (et =(Tos st~ (W Bl )S) (W R4 8) 2 (36)

where Z € RVT(™+1)7 is an arbitrary vector.
Write matrices N? as follows



then using (11a), (22) and (23), matrices LY,; and L}, satisfy the following equation

LS9y LS9y Liyy ... LB, |T=0 (38)
where
0821 02121 ce Cg%l
Cdhy 0O ... 0
=0 C% " (39a)
: 0
0 o 0 Oy
q;:T[AOE A”@}
0 0 Cng Tl 0 m C'27751 *j|
([ G r) - (e e[ e ) (390)
O=1,—-T=1,— Zp(I, — ). (39¢)

A solution of equation (38) is given by
L= [Lgm L3y Ly - L%Q} = rt. (40)

This solution L is a function of the gains KY and K} which are computed in section 3.2 by solving
inequality (11i). The existence of L is obtained by using a parametrisation of the solution of inequality
(11i). This parametrisation is given in the section 3.3.

3.2 Stability analysis via an LMI approach

The aim of this section is the use of an LMI approach to determine matrices @, K and K} such that
inequality (11i) in Theorem 1 holds. Consider each u in equation (9) and (10) (or (12) and (16)) as a
“structured uncertainty”. Note that the definition of the “uncertainty set” € in relation (2) can leads
to some conservatism in the use of an LMI approach (Boyd et al., 1994) since, in general case, we have

Jul | # Jul ] with Jul . | # 1 and |uf .| # 1. To overcome this conservatism, each u’ is rewritten as

min
follows
u'(t) = o' + '€ (t) (41a)
where o’ and o' are constant reals given by (i = 1,...,m)
ai = 0'5(ufnax + ufnin) and Ui = 0'5(uf’nax - ufnin) (41b)

and o’ = 1 and ¢ = 0. Using (41a)-(41b), the new “uncertain” variable ¢ is defined as e € Q Cc R™,
where

Qi={eeR" | -1<' <L fori=1,...,m}. (42)
Using (41a), equation (12) becomes
m m
e = Z OziNie + Z Uiz’fiNie — Tﬁll(k).]?l(k) (43)
=0 i=1

Using (37), the matrix N can be defined as

N=) N'=4A-KC (44)
=0
with m
A=) o'TA (45a)
=0
K=|K) Ky K} ... Ky, (45D)

- o T
C= [Zﬁo Oﬂc%le 0‘00822T amcng] . (45C)



If ﬁ(k) = 0, the insertion of equation (44) into (43) gives

é = (N+ HiA(e)H) e (46)
where the matrices H; € R™™" A(e) € R™*™" and Hy € R™*" are given by
Hy = falNl . amNm] , (47a)
A(e) = bdiag(e'l,,) i=1,...,m, (47b)
Hy = [In In]T, (47¢)
where bdiag(.) denotes a block-diagonal matrix. From (42), the matrix A(e) in (46) is bounded as
|a@)] <. (48)

The conditions for the exponential stability of the UIRG are given in the following theorem.

Theorem 2. If the constraints (11a)-(11h) in Theorem 1 hold, the system (6) (or (4)) is an exponential
UIRG for the SBS (5) (or (1)) if there exist @ = QT >0, S = ST >0, Y and a real u > 0, such that
the LMI

_ | sym(QA-YTC)+HISHy+pl, (2,1)T
S=|" @4 SO ) e e <0 (49)
ATTTQ - CTY - =S
holds where
Y = [_(TQ, (50a)
A=At .. gmam], (50D)
_0102121 02C3%, ... amcggl_
0 0 . 0
_ |otCYy 0 0
C= (50c)
0 0’20822
: 0
0 e 0 o™CY%,

Proof. Assume that the constraints (11a)-(11h) in Theorem 1 hold and that fl(k) = 0, the error dynamics
(9) can be rewritten as (46) and the residual 6% is given by (16).

Let V(e) = e’ Qe be a Lyapunov function candidate with @ = Q@7 > 0. The reconstruction error e is
exponentially stable for all € in the polytope € if the time-derivative of V (e) along the trajectory of (46)
satisfies

Vie,e) + ieTe = T (N Q+QN" + HiA(e)HQ + QHTA(e)HT + ﬂ[n> e<0  (51)

where 7 > 0 is a given real, and A(e) given by (47b) satisfies (48). Now defining @ = @_1 and choosing
a real > 0 such that pl, > #Q?, inequality (51) can be rewritten as the following LMI

N WL T i
s_ v+ ¥ o npsm | )

by using the Schur Lemma (see (Boyd et al., 1994)), where S = ST > 0 must be chosen such that (Boyd
et al., 1994)

SA(e) = A(e)S (53)

in order to take the structure of A(e) into account. From the structure of A(e) given by (47b), relation
(53) holds for all matrices S = ST > 0 of appropriate dimension. Using the notations introduced in
(44), (45) and (50), LMI (52) is equivalent to LMI (49). It is easy to see that if LMI (49) holds, then
constraint (11i) in Theorem 1 is verified and the error dynamics (12) is exponentially stable. Since LMI
(49) has an affine dependence on variables @ and Y, then the feasibility and the solution of LMI (49)
can be performed with convex optimisation methods (Boyd et al., 1994). O



3.3 Parametrisation of the solutions of LMI (49)

Note that matrix ¥ in (39b) is a function of the solutions @ and Y of LMI (49) (see Theorem 2). The
problem to be solved can be stated as follows : parametrise the solution Y of LMI (49) in order to obtain
a matrix ¥ such that equation (38) has a solution L given by (40).

Define matrices &4 = bdiag(®) € R M+ and ¥ as follows

= [TAO TAm} _ [(K90§21+K30322) o (KOCm + Kyl (54)

Using (39¢) and (54), equation (38) can be rewritten as
([29 L% - Im| - |KY K . Kp|)r=T3, (55)

and has a solution L if and only if

fm (349" ) € T (17). (56)

Two cases can be considered. First, assume that condition (56) holds, then equation (38) has a solution
L given by (40) when the matrix ¥, given by (39b), is computed with the gain matrix K (45b) obtained
from the solutions @ and Y of LMI (49). In this case, the parametrisation given below is not required.
Second, assume that condition (56) does not hold. In this case, equation (38) does not have a solution L
when the matrix ¥ is computed with K (45b) obtained from the solutions @) and Y of LMI (49). Then,
to solve equation (38), we must find another gain K. Since, K depends on the solution Y of LMI (49)
(see (50a)), we propose to parametrise the solution Y in order that both LMI (49) holds (i.e. stability
condition) and equation (38) has a solution L.

In the sequel, we assume that we can not solve equation (38) by using the solutions Y and @ of LMI
(49). In other words, the following assumption is made.

Assumption 2. Im (EgﬁT) ¢ Im (T'T).

Then, to solve equation (38), a parametrisation of the solution Y of LMI (49) will be introduced. Let Y
be a matrix, with the same dimensions as Y, such that

v7lc ¢ =o. (57)

Then replacing ¥ by (Y +Y) in LMI (49) does not modify matrix S, i.c. we still have

ATTTQ-CT (Y +Y) - =S
There exist a matrix Y and a scaling factor § > 0 such that the following LMI

= o |0 (éT? n ?Té) E&?Té

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .| <S<o. (59)
6CTY L0
holds. Define matrices & , K and K as follows
K=Q YT, (60a)
K=Q YT, (60b)
K-K+K+ék= K| K} K, ... KJ'|. (60c)

To compute the matrix N in equation (44), replace in (45b) the gain K given by (50a) by K obtained by
(60c). The stability condition (11i) in Theorem 1 is satisfied since LMI (59) holds if LMI (49) is satisfied.
Using (60a) and (60b), and inserting (23) into (39b), (38) is equivalent to

(L-K) = (@ +RT + 5f<r) 3. (61)

Define a matrix A (with (m + 1)n columns as ®,) such that



Im (A7) = Im (3,) N Im (I'T) # 0. (62)
Then a necessary and sufficient condition to solve equation (61) (i.e. to have a solution L) is

Im (65 (@T FTTRT 4 5FTf{T)> C ImA. (63)

To study the necessary and sufficient condition given by (63), ¥ is decomposed using a non-singular
matrix X

— =17 =11T
sU= (3" 7] (64)
such that (see condition (56))
m (T )NIm (T, )= 0 and Im((I)d\I/ )CIm(F ). (65)
Since Assumption 2 holds, we have Ec £ 0.
Using (62)-(65), equation (61) has a solution L if and only if
_mT ~ <\ —
([o @T} +2RT + 52Kr) T, = 0. (66)

Using (57) and (60a), the kernels of [¢ &]7 and 55 are given by (where x and y,4 are arbitrary matrices)
AT .
ker <[C C’} > =1Im (KT) =1Im (@TXT) , (67a)
ker (55) =1

= ~1T —
with © = I, | (41w, — [C’ C} {C C} and ©g = I(y11)n — <I)d<I>2;. Using the matrices introduced in

(67), equation (66) can be rewritten as

m (94xq) » (67b)

- or To
K x4 |or |=%"|= (68)
i oy
The necessary and sufficient condition to solve (68) is given by
rank[(O') 71701 ]=rank [(@r)T ey [o T, } E‘T] (69)

and a solution of equation (68) is given by

.I.
1]er
x B xa=%" =[] (70)
c _o,

With x, xq and K given by (70), and the gains K (50a) and K (60a), and using an appropriate choice
of § (see (59)), the solution of (38) is then obtained by replacing in (45b) K by K (60c).

Remark 1. The above parametrisation can be considered in a particular important case : the bilinear
system (1) is not singular and has linear measurements, i.e. £ € R™", det E # 0 and C'# = 0 for
i =1,...,m. In this case, if condition

rank Cy, = rank Chys¢ (71)
holds, then equation (38) can be reduced to
i ‘ i 1 ;

and the parametrisation is not needed. But if condition (71) does not hold, assumption 2 must be checked
to know if the parametrisation is required since relation (38) can be rewritten as follows

h99C%9 = K509 + N t=0,...,m (73)

which is an implicit equation in the unknowns Los.



4 Illustrative example

Let us consider the following SBS with bilinear measurements (see (1)) which is affected by one unknown
input w and one default f where the matrices of the system are

~512 0 —1-12

E#—{égg],Ao#:[10,7_2},141#:[2,5_13}7
000 2 -3 -7 01 -30
2 351 0 1

A% = 013},3 :[1 0] Dl#—[5o2],
2-10 S1-1 0

1 _ 1 2 _ 2
Upin = =9 Umax = 35 Uiin = — 1, Uy = 1.

After the decompositions described in section 2, we get the following SBS (see (5))
0 -5 12 0 1 -1-12
E=[318], A" = [ 1 0,7,2], A= [2.5713]7 =[],
2
A =1[3% 3], B=[14], D2 = [} i
1 1 2 2 — 0
Com = [% 0] Com = [%" 5" 0)» Coma =14
Notice that y1, y21 and Diy are empty in this example.

Choosing U = [} 9] and U = [é %1 El}, and taking u = 1072, we get as solutions to the LMI (49)

[1337384.3 1651.1387 1542.3736
Q = |1651.1387 668883.55 667234.9 |, S =5,
|1542.3736  667234.9  669355.82

[ 17.224282 261.4016  —336.19197 |
0 931341.11 0
653097.2  —806240.67 1
—633467.38 —265840.18 1155928.1
134.17052  —929306.33 —2617.3595
28.841755  931779.54 —563.65639
—3.3460855 —1862734.7 66.974164
| 166.35836  1865207.9 —3247.99 |

We deduce the gain K from (50a). Then, after computing I', ®, ®; and ¥ using (39a), (39¢) and (54),
we remark that Assumption 2 h(ﬂds. So the parametrisation described in section 3.3 is needed to solve
equation (38). The new matrix Y, which is obtained by computing the solutions Y and Y of the LMI
(59),is given by Y = Y + Y +Y =QK
[ 17.27087 261.2787  —336.26988
—917914.08 2032649 180359.88
1602313.2 —1485682.4 —838290.34
—706149.45 223886.96  1515697.3
918047.93  —2030613 —182977.03
—917887.68 2033046.6  179847.63
1835824.6 —4065349.9 —360652.44
| —1835589.9  4068908.8  356074.46

=~
|




and then matrices of the UIRG (6) can be deduced by using relations given above.

Figure 1 shows the error with a good convergence rate as well as Figure 2 shows the convergence of the
residual. In Figures 2 and 3, the failure f appears at ¢t = 15 s and disappears at ¢ = 15.5 s, while the
unmeasurable disturbance w appears at ¢ = 18 s and disappears at ¢ = 18.3 s. Figure 2 shows that the
residual @ is sensitive to f and insensitive to w. This is well seen in Figure 3 where a zoom has been done
on the occurence time window. So the designed UIRG can be efficiently used to detect default which
appears on a SBS.

5 Conclusion

The objective of this paper is the design of a bank of UIRG for SBS subjected to unmeasurable dis-
turbances and with bounded control inputs and bilinear measurements. Sufficient condition is given in
order to obtain disturbance decoupled residuals. Considering the bounded control inputs as “structured
uncertainties”, the exponential stability of the k" UIRG of the bank is guaranteed by solving an LMI
associated to a robust stabilisation problem. A control inputs change of coordinates has been used to
reduce the conservatism inherent to the robust control theory. To take algebraic design constraints into
account, a parametrisation has been introduced to solve this LMI. The use of this parametrisation is
conditioned by a relationship given in Assumption 2.

A Appendix : Right block Kronecker product

The right block Kronecker product (AXB) is defined as follows (Koning et al., 1991)

A®Bi1 ... A® By

AXB = : : :
A® By ... A® By

where B;; denotes the (i, j)™ block of partitioned matrix B and (A ® B) is the Kronecker product. The
two following relations

(AXB)(CXD) = (AC)X(BC)
vectb, (AX B) = (BTRA)vectb, (X)

hold, where the operators vect(.) (matrix vectorization) and vectb,(.) (partitioned matrix vectorization
per block) are defined as

a _Vect(A)_
a b c A B vect(B)
vect = , vectby = .
¢ d b C D vect(C)
d vect(D)
The block per block product (A @ B) is defined as follows
AB11 ... ABlp
AQ@ B = : - I
ABy ... ABg

and has the following property
(AC)® B = (A@ 1) (C @ B)

where B is partitioned in g x p blocks
Byl ... Blp
B—| : )
By ... By

and I, is partitioned in ¢ x g blocks where a is the number of columns of matrix A.



B Appendix : Selection matrix S in relation (35)

For example, if m = 2, the vector vectbrqﬂ Wa I3”D in relation (35) is computed as follows

I, 0 0 0
o 0 0 I,
Ooxn 0 0 0
0 I, 0 0|[vect(a]
Vectbr([M’W@I:wD: Oven 0000 fvect(M?) .
0 0 0 I,]||vect(M?)
Ovxn O 0 0 || vect(W)
0o 0 I, 0| )
Ogoxn 0 0 0
0o 0 0 I,
S
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Figure 1: Reconstruction error e(t).
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Figure 2: Residual 0(¢), failure f(t) and disturbance w(t).
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Figure 3: Zoom on figure 2.



