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Abstract
In this paper, a method to design a bank of unknown input residual generator (UIRG) for fault
detection and isolation is investigated. The plant model is assumed to be a bounded control inputs
singular bilinear systems (SBS) subjected to unknown disturbances. The measurements can be bilinear.

Keywords : Singular bilinear system, Unknown input residual generator, Exponential stability, Linear
matrix inequality.

1 Introduction
The theory of observer-based fault detection for non-linear systems has received considerable attention
during the last decade. Frank (1993) considered the residual observer for nonlinear systems using a first
order approximation, then the stability of the observation error is local. Kinnaert et al. (1995; 1999)
treated the failure detection and isolation problem for bilinear systems using the regularly persistent
observers proposed in (Bornard et al., 1988). This approach is less restrictive than those proposed by Yu
and Shields (1996).
This paper is devoted to the design of a bank of UIRG for bounded control inputs SBS subjected to
unmeasurable disturbances, without condition on matrix E#. The measurements are bilinear in the
control signals. The algebraic part of the generalised state equation and the measurement equation are
decomposed according to the failures, the unknown inputs and the bilinearities. The kth UIRG of the
bank is designed in three steps. First, equality constraints are solved to decouple the residual from the
unmeasurable disturbances and the kth failure mode. Second, the problem is converted into a robust
stabilisation problem with structured uncertainty, then an LMI approach is used to solve a Lyapunov
inequality. Third, the LMI solution is parametrised to solve an algebraic design constraint.
Notations. λ(A) is the eigenvalue of the matrix A, λmax(Q) and λmin(Q) are the maximal and the
minimal eigenvalues of the symmetric matrix Q, ‖A‖ =

√
λmax(AT A) (then ‖x‖ =

√
xT x if x ∈ IRn) and

sym(A) = A + AT .

2 Problem formulation
Consider the following time-invariant SBS described by

E#ẋ = A0#x+
m∑

i=1

uiAi#x+B#u+D#
1 w+F#

1 f (1a)

y# = C0#x +
m∑

i=1

uiCi#x + D#
2 w + F#

2 f (1b)
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where the state x ∈ IRn, the control input u ∈ IRm with uT = [ u1(t) ··· um(t) ], the unknown input w ∈ IRq,
the fault f ∈ IRs and the measured output y# ∈ IRp#

, and with E# ∈ IRr×n and rank E# = r1 !
min (r, n). Note that ui is the ith component of vector u and Ai# is the matrix associated to ui in the

SBS (1). Without loss of generality,
[

D#
1

D#
2

]
and

[
F#

1

F#
2

]
are of full column rank, and the control inputs are

bounded, i.e. u ∈ Ω ⊂ IRm where
Ω :=

{
u ∈ IRm | ui

min ! ui ! ui
max for i = 1, . . . ,m

}
. (2)

Now, since rankE# = r1, there exists a non-singular matrix P used to extract the algebraic part of
(1a), i.e. PE# =

[
E
0

]
, PAi# =

[
eAi

A
i

]
, PB# =

[
B
B

]
, PD#

1 =
[

D1

D1

]
and PF#

1 =
[

F1

F 1

]
with E ∈ IR r1×n

and rankE = r1. This algebraic part is inserted into the measurement (1b). Thus SBS (1) is restricted
system equivalent to

Eẋ = Ã0x +
m∑

i=1

uiÃix + Bu + D1w + F1f (3a)

y = C0x +
m∑

i=1

uiCix + D2w + F2f (3b)

where y =
[
−Bu
y#

]
∈ IRp (with r1 + p = r + p#), Ci =

[
A

i

Ci#

]
, D2 =

[
D1

D#
2

]
and F2 =

[
F 1

F#
2

]
.

For the SBS (1), the kth UIRG is described as follows

ż = N(u)z + L0y +
m∑

i=1

uiLiy + Gu (4a)

θk = M(u)z + Jy (4b)

where z ∈ IRn and θk ∈ IR (θk is the kth residual), with N(u) = N0 +
∑m

i=1 uiN i and M(u) = M0 +∑m
i=1 uiM i.

Now the measurement y is decomposed into four parts :
• y1 : bilinear, affected by unknown inputs and failures,
• y21 : bilinear, only affected by unknown inputs,
• y221 : bilinear, free of unknown inputs and failures,
• y222 : linear, free of unknown inputs and failures.

First, we make a row compression on matrix F2 : there exists a non-singular matrix V such that V V T = Ip

and V T F2 =
[

F21
0

]
where F21 is of full row rank. Then we have V T y = [ y1

y2 ] (with y1 ∈ IRp1 and y2 ∈ IRp2),

V T Ci =
[

Ci
1

Ci
2

]
and V T D2 =

[
D21
D22

]
.

Second, there exists non-singular matrices V1 and V2 such that V T
1 D22V2 =

[
Iq1 0
0 0

]
and V1V T

1 =Ip2 . Then

we obtain V T
1 y2 = [ y21

y22 ], V T
1 Ci

2 =
[

Ci
21

Ci
22

]
and [ w1

w2 ] = V −1
2 w (with w1 ∈ IRq1 , w2 ∈ IRq2 , y21 ∈ IRq1 and

y22 ∈ IRv).
Third, there exists a non-singular matrix V3 such that V3V T

3 = Iv and V T
3 [ C1

22 ··· Cm
22 ] =

[
C1

221 ··· Cm
221

0 ··· 0

]

where [ C1
221 ··· Cm

221 ] is of full row rank, which yields with V T
3 y22 = [ y221

y222 ] and V T
3 C0

22 =
[

C0
221

C0
222

]
(with

y221 ∈ IRv1 , y222 ∈ IRv2 and p = p1 + q1 + v = p1 + q1 + v1 + v2).
Defining Ai = Ãi −D11Ci

21 with D1V2 = [ D11 D12 ] (note that D12 is of full column rank) and using the
above decompositions, the SBS (3) is equivalent to

Eẋ = A0x+
m∑

i=1

uiAix+Bu+D11y21+D12w2+F11f1 (5a)

y1 = C0
1x +

m∑

i=1

uiCi
1x + D21w + F21f (5b)

y21 = C0
21x +

m∑

i=1

uiCi
21x + w1 (5c)



y221 = C0
221x +

m∑

i=1

uiCi
221x (5d)

y222 = C0
222x (5e)

where the full column rank matrix F11 and the fault vector f1 are given by [ F11 0 ] = F1U and
[

f1
f2

]
= UT f

with UUT = Is. f1 is obtained from the column compression on matrix F1 and is the part of the fault
vector f which can be detected and isolated. Let s be the size of f1, (F11 ∈ IR r1×s with rankF11 = s ! s).
The problem of failure detection and isolation can be treated by using a bank of UIRG. For each residual
θk, decompose the fault vector f1 into two subvectors f1(k) and f̃1(k), the matrix F11 is also decomposed
into F 11(k) and F̃11(k). To take a decision in a diagnostic procedure, the residual θk must be insensitive
to the failure modes f1(k) and sensitive to the failure modes f̃1(k). Then the problem of the generation
of residual θk can be stated as in the following definition.

Definition 1 (UIRG). The system (4) is a UIRG for the SBS (5) (or (1)) if there exist N i, Li, G, M i

and J such that :
i) if f̃1(k) = 0, then θk decays exponentially to zero,
ii) if f1(k) &= 0 and f̃1(k) = 0, then θk decays exponentially to zero,
iii) if f̃1(k) &= 0, then θk depends on f̃1(k),

hold ∀w, ∀x0 and ∀z0.
Note that the kth UIRG (4) can be expressed in terms of notations used in SBS (5) as follows

ż = N(u)z+L0
21y21+L0

221y221 + L0
222y222+Gu +

m∑

i=1

ui(Li
21y21+Li

221y221+Li
222y222) (6a)

θk = M(u)z + J221y221 + J222y222. (6b)

The correspondence between the notations used in (4) and (6) is given by (i = 0, . . . ,m)
[

Li

J

]
=

[
0 Li

21 Li
221 Li

222
0 0 J221 J222

]


Ip1 0
0 [ Iq1 0 ]V T

1

0 [ 0 V T
3 ]V T

1



V T (7)

3 Design of the kth UIRG
In this section, the proposed approach for the kth UIRG design is based on Lyapunov stability. This
UIRG has an exponential decay rate and sufficient conditions for its existence are given. When it is no
specified, the superscript i stands for i = 0, . . . ,m. In order to satisfy condition (ii), the subvector f1(k)

of the vector f1 is considered as an unknown input in the kth UIRG design. Define the error vector e as
e = z − TEx (8)

where T ∈ IRn×r1 , then we have

ė = N(u)e + (N0TE − TA0 + L0
221C

0
221 + L0

222C
0
222)x + (G− TB)u + (L0

21 − TD11)y21

− T
[
D12 F 11(k)

] [
w2

f1(k)

]
+

m∑

i=1

ui(N iTE − TAi + L0
221C

i
221 + Li

222C
0
222)x− T F̃11(k)f̃1(k)

+
m∑

i=1

uiLi
21y21 +

m∑

i=1

uiLi
221



C0
221 +

m∑

j=1

ujCj
221



 x. (9)

Inserting (8) into (6b), the kth residual is given by

θk = M(u)e + (M0TE + J221C
0
221 + J222C

0
222)x +

m∑

i=1

ui(M iTE + J221C
i
221)x. (10)

The following assumption is made in order to ensure that the fault component f̃1(k) &= 0 has a non-zero
influence on the residual θk.



Assumption 1. (Kinnaert et al., 1995; Kinnaert, 1999) For all admissible inputs u ∈ Ω, the vector
fields T F̃11(k)f̃1(k) are not (N(u),M(u))-unobservable.

Using (9) and (10), the solution of the UIRG problem for SBS (5) (or (1)) is given by the following
theorem.

Theorem 1. Under Assumption 1, the system (6) (or (4)) is an exponential UIRG for the SBS (5) (or
(1)) if there exist N i, Li

21, Li
221, Li

222, G, M i, J221, J222, T and Q = QT > 0, and a real µ > 0, satisfying
the following constraints for all admissible u ∈ Ω and for i = 0, . . . ,m

N iTE − TAi + L0
221C

i
221 + Li

222C
0
222 = 0 (11a)

T
[
D12 F 11(k)

]
= 0 (11b)

M0TE + J221C
0
221 + J222C

0
222 = 0 (11c)

M iTE + J221C
i
221 = 0 (11d)

G = TB (11e)
L0

21 = TD11 (11f)
Li

21 = 0 (11g)
Li

221 = 0 (11h)
NT (u)Q + QN(u) + µI < 0. (11i)

Proof. If constraints (11a)-(11b) and (11e)-(11h) are verified, the error dynamics (9) becomes
ė = N(u)e− T F̃11(k)f̃1(k). (12)

Let V (e) = eT Qe be a candidate Lyapunov function with Q = QT > 0. The time derivative of V (e)
along the dynamics (12) with f̃1(k) ≡ 0, can be expressed as

V̇ (e, u) = eT (NT (u)Q + QN(u))e. (13)

If constraint (11i) holds, then the error dynamics (12) is quadratically stable and we have

V̇ (e, u) < −µeT e ! −µ

λmax(Q)
V (e) ∀u ∈ Ω. (14)

Then the error e (8) is exponentially stable, i.e., ∀u ∈ Ω

‖e(t)‖ !
√

λmax(Q)
λmin(Q)

‖z0 − TEx0‖ exp
(

−µ

2λmax(Q)
t

)
. (15)

If the constraints (11c) and (11d) are satisfied, the kth residual (10) can be written as
θk = M(u)e. (16)

Then conditions (i) and (ii) in Definition 1 are satisfied. Assumption 1 ensures that the contribution of
the non-zero failures f̃1(k) on the residual θk is different from zero, and the residual θk obtained from
(12) and (16) fulfills condition (iii) in Definition 1.
Notice that V̇ (e, u) is uniformly bounded with respect to u and the UIRG works for non-uniformly
observable systems as well as the control input u belongs to Ω, even if u is a non-universal input (see
(Bornard et al., 1988)).
The design of the kth UIRG is decomposed in three parts. First, in section 3.1, the equality constraints
(11a)-(11d) in Theorem 1 are solved in order to decouple the error e from the unknown inputs w and the
failure component f1(k). Second, in section 3.2, the error stability is obtained by solving the inequality
constraint (11i) in Theorem 1 using an approach based on an LMI. Third, in section 3.3, a parametrisation
is proposed in order to choose, among the solutions of this LMI, those satisfying the decoupling constraints
given in section 3.1.



3.1 Unknown inputs and failure mode decoupling
Equations (11c)-(11d) can be equivalently rewritten as

MTE + J C = 0 (17)

where matrices M , C and J are given by
M

T =
[
M0T

M1T · · · MmT
]
, (18a)

C
T

=
[
C0

221
T

C1
221

T
. . . Cm

221
T C0

222
T
]
, (18b)

J =





J221 0 . . . 0 J222

0 J221
. . . ... 0

... . . . . . . 0
...

0 . . . 0 J221 0




. (18c)

To solve equation (17) under the constraint (11b), we need to rewrite the latter in terms of TE (see (21)
and (22)). Since matrix E is of full row rank, equation

[
D12 F 11(k)

]
= Eϕ (19)

has always a solution given by ϕ = E† [ D12 F 11(k) ] where E† is any generalised inverse satisfying EE†E =
E. There exists a non-singular matrix U such that ϕ U = [ ϕ 0 ] where ϕ is of full column rank. We have
EE† = Ir1 since E is of full row rank, then (11b) can be rewritten as

T
[
D12 F 11(k)

]
U = TE

[
ϕ 0

]
= 0, (20)

or equivalently as

Tϕ = 0 (21)

where

T = TE. (22)

A general solution of (21) is given by

T = ZT (In − Φ) (23)

where Φ = ϕϕ† and ZT ∈ IRn×n is an arbitrary matrix which must be chosen such that equation (22)
has a solution T . Since E is of full row rank, we have rank T = rank T in relation (22). ZT can
be obtained as follows. Choose a non-singular matrix U such that EU = [ E 0 ] where E ∈ IRr1×r1 and
det E &= 0. Then, with the partition of T given by T U = [ T 1 T 2 ] where T 2 ∈ IRn×(n−r1), matrix ZT is
given by ZT = In − T 2T

†
2, and the unique solution T of (22) is given by

T = ZT (In − Φ)E†. (24)

Let ϕ̃c be the orthogonal complement of ϕ (Boyd et al., 1994). Since
[

ϕ ϕ̃c

]
∈ IRn×n is non-singular,

(17) can be equivalently rewritten as

M T
[

ϕ ϕ̃c

]
+ J C

[
ϕ ϕ̃c

]
= 0. (25)

Using (21), equation (25) is equivalent to
J Cϕ = 0, (26a)(
M T + J C

)
ϕ̃c = 0. (26b)

Equation (26a) can be equivalently rewritten as
[
J221 J222

]
Ĉ = 0 (27)



where Ĉ =
[

C0
221ϕ C1

221ϕ ... Cm
222ϕ

C0
222ϕ 0 ... 0

]
.

Then the solution of equation (27) is given by
[
J221 J222

]
= Ŵ

(
Iv − ĈĈ†

)
(28)

where Ŵ T ∈ IRv is an arbitrary vector. Using (26a) again, there exists a matrix W ∈ IR(m+1)×v such
that

J = W

(
Iv − Cϕ

(
Cϕ

)†
)

, (29)

where v = (m + 1)v1 + v2. Defining P ∈ IR(m+1)v×v as

P =





[
Iv1
0

]
0 . . . 0

[
0

Iv2

]

0
[

Iv1
0

] . . . ... 0
... . . . . . . 0

...

0 . . . 0
[

Iv1
0

]
0




(30)

and using (18c) and (28), J in (29) can be written as

J = W

(
Iv − Cϕ

(
Cϕ

)†
)

=
(
Ŵ

(
Iv − ĈĈ†

))
! P =

(
Ŵ ! I(m+1)v

) ((
Iv − ĈĈ†

)
! P

)
, (31)

where ! is a block per block product (see appendix A). Since (Iv−Cϕ(Cϕ)†) is a projector, the solution
of (31) is given by

W =
(
Ŵ ! I(m+1)v

) ((
Iv − ĈĈ†

)
! P

) (
Iv − Cϕ

(
Cϕ

)†
)

+ ZW Cϕ
(
Cϕ

)†
(32)

where ZW ∈ IR(m+1)×v is an arbitrary matrix. By using equations (23) and (29), relation (25) becomes

MZT (In − Φ) + W

(
Iv − Cϕ

(
Cϕ

)†
)

C = 0. (33)

Then, inserting (32) into (33) gives

0 =
[
M Ŵ ! I(m+1)v ZW

] [
W
0

]

=
[
M Ŵ ! I(m+1)v

]
W (34)

where W =
[

ZT (In−Φ)

((Iv− bC bC†)!P)
„

Iv−Cϕ
“
Cϕ

”†
«

C

]
.

Using the block Kronecker product (Koning et al., 1991), (34) is equivalent to

0=
(
WT "Im+1

)
vectbr

([
M Ŵ !I(m+1)v

])
=

(
WT "Im+1

)
S[(vect(M0))T ... (vect(Mm))T (vect(cW ))T ]T (35)

where " is the right block Kronecker product (see appendix A) and S ∈ IRs1×s2 is a selection matrix (see
appendix B for the construction of S) with s1 = (m + 1)(n + (m + 1)v) and s2 = v + (m + 1)n. Then M

and Ŵ are given by
[
(vect(M0))T . . . (vect(Mm))T (vect(Ŵ ))T

]T
=

(
Iv+(m+1)n−

((
WT "Im+1

)
S

)†(WT "Im+1
)
S
)
Z (36)

where Z ∈ IRv+(m+1)n is an arbitrary vector.
Write matrices N i as follows

N i = TAi −K0
1Ci

221 −Ki
2C

0
222 i = 0, . . . ,m, (37)



then using (11a), (22) and (23), matrices L0
221 and Li

222 satisfy the following equation[
L0

221 L0
222 L1

222 . . . Lm
222

]
Γ = Ψ (38)

where

Γ =





C0
221 C1

221 . . . Cm
221

C0
222 0 . . . 0

0 C0
222

. . . ...
... . . . . . . 0

0 . . . 0 C0
222





(39a)

Ψ = T
[
A0Φ . . . AmΦ

]

+
[„

[K0
1 K0

2 ]
»

C0
221

C0
222

–
T

«
...

„
[K0

1 Km
2 ]

»
Cm

221

C0
222

–
T

«]
(39b)

Φ = In − T = In − ZT (In − Φ). (39c)

A solution of equation (38) is given by

L =
[
L0

221 L0
222 L1

222 . . . Lm
222

]
= ΨΓ†. (40)

This solution L is a function of the gains K0
1 and Ki

2 which are computed in section 3.2 by solving
inequality (11i). The existence of L is obtained by using a parametrisation of the solution of inequality
(11i). This parametrisation is given in the section 3.3.

3.2 Stability analysis via an LMI approach
The aim of this section is the use of an LMI approach to determine matrices Q, K0

1 and Ki
2 such that

inequality (11i) in Theorem 1 holds. Consider each ui in equation (9) and (10) (or (12) and (16)) as a
“structured uncertainty”. Note that the definition of the “uncertainty set” Ω in relation (2) can leads
to some conservatism in the use of an LMI approach (Boyd et al., 1994) since, in general case, we have
|ui

min| &= |ui
max| with |ui

min| &= 1 and |ui
max| &= 1. To overcome this conservatism, each ui is rewritten as

follows
ui(t) = αi + σiεi(t) (41a)

where αi and σi are constant reals given by (i = 1, . . . ,m)
αi = 0.5(ui

max + ui
min) and σi = 0.5(ui

max − ui
min) (41b)

and α0 = 1 and σ0 = 0. Using (41a)-(41b), the new “uncertain” variable ε is defined as ε ∈ Ω ⊂ IRm,
where

Ω :=
{
ε ∈ IRm | −1 !εi ! 1 for i = 1, . . . ,m

}
. (42)

Using (41a), equation (12) becomes

ė =
m∑

i=0

αiN ie +
m∑

i=1

σiεiN ie− T F̃11(k)f̃1(k). (43)

Using (37), the matrix N can be defined as

N =
m∑

i=0

N i = A−KC (44)

with

A =
m∑

i=0

αiTAi, (45a)

K =
[
K0

1 K0
2 K1

2 . . . Km
2

]
, (45b)

C = [ Pm
i=0 αiCi

221
T

α0C0
222

T ... αmC0
222

T ]T . (45c)



If f̃1(k) ≡ 0, the insertion of equation (44) into (43) gives
ė =

(
N + H1∆(ε)H2

)
e (46)

where the matrices H1 ∈ IRn×mn, ∆(ε) ∈ IRmn×mn and H2 ∈ IRmn×n are given by
H1 =

[
σ1N1 · · · σmNm

]
, (47a)

∆(ε) = bdiag(εiIn) i = 1, . . . ,m, (47b)

H2 =
[
In . . . In

]T
, (47c)

where bdiag(#) denotes a block-diagonal matrix. From (42), the matrix ∆(ε) in (46) is bounded as∥∥∥∆(ε)
∥∥∥ ! 1. (48)

The conditions for the exponential stability of the UIRG are given in the following theorem.

Theorem 2. If the constraints (11a)-(11h) in Theorem 1 hold, the system (6) (or (4)) is an exponential
UIRG for the SBS (5) (or (1)) if there exist Q = QT > 0, S = ST > 0, Y and a real µ > 0, such that
the LMI

S =




sym

(
QA−Y T C

)
+HT

2 SH2+µIn (2, 1)T

ÃT T T Q− C̃T Y −S



<0 (49)

holds where
Y = KT Q, (50a)
Ã =

[
σ1A1 . . . σmAm

]
, (50b)

C̃ =





σ1C1
221 σ2C2

221 . . . σmCm
221

0 0 . . . 0

σ1C0
222 0 . . . 0

0 σ2C0
222

. . . ...
... . . . . . . 0

0 . . . 0 σmC0
222





. (50c)

Proof. Assume that the constraints (11a)-(11h) in Theorem 1 hold and that f̃1(k) ≡ 0, the error dynamics
(9) can be rewritten as (46) and the residual θk is given by (16).
Let V (e) = eT Qe be a Lyapunov function candidate with Q = Q T > 0. The reconstruction error e is
exponentially stable for all ε in the polytope Ω if the time-derivative of V (e) along the trajectory of (46)
satisfies

V̇ (e, ε) + µeT e = eT
(
N Q + Q N

T + H1∆(ε)H2Q + QHT
2 ∆(ε)HT

1 + µIn

)
e < 0 (51)

where µ > 0 is a given real, and ∆(ε) given by (47b) satisfies (48). Now defining Q = Q
−1 and choosing

a real µ > 0 such that µIn > µQ2, inequality (51) can be rewritten as the following LMI

S =



QN + N
T
Q + HT

2 SH2 + µIn QH1

HT
1 Q −S



 < 0, (52)

by using the Schur Lemma (see (Boyd et al., 1994)), where S = ST > 0 must be chosen such that (Boyd
et al., 1994)

S∆(ε) = ∆(ε)S (53)

in order to take the structure of ∆(ε) into account. From the structure of ∆(ε) given by (47b), relation
(53) holds for all matrices S = ST > 0 of appropriate dimension. Using the notations introduced in
(44), (45) and (50), LMI (52) is equivalent to LMI (49). It is easy to see that if LMI (49) holds, then
constraint (11i) in Theorem 1 is verified and the error dynamics (12) is exponentially stable. Since LMI
(49) has an affine dependence on variables Q and Y , then the feasibility and the solution of LMI (49)
can be performed with convex optimisation methods (Boyd et al., 1994).



3.3 Parametrisation of the solutions of LMI (49)
Note that matrix Ψ in (39b) is a function of the solutions Q and Y of LMI (49) (see Theorem 2). The
problem to be solved can be stated as follows : parametrise the solution Y of LMI (49) in order to obtain
a matrix Ψ such that equation (38) has a solution L given by (40).
Define matrices Φd = bdiag(Φ) ∈ IR (m+1)n×(m+1)n and Ψ as follows

Ψ =
[
TA0 . . . TAm

]
−

[
(K0

1C0
221+K0

2C0
222) . . . (K0

1Cm
221+Km

2 C0
222)

]
. (54)

Using (39c) and (54), equation (38) can be rewritten as
([

L0
221 L0

222 . . . Lm
222

]
−

[
K0

1 K0
2 . . . Km

2

])
Γ = ΨΦd (55)

and has a solution L if and only if

Im
(
ΦT

d ΨT
)
⊂ Im

(
ΓT

)
. (56)

Two cases can be considered. First, assume that condition (56) holds, then equation (38) has a solution
L given by (40) when the matrix Ψ, given by (39b), is computed with the gain matrix K (45b) obtained
from the solutions Q and Y of LMI (49). In this case, the parametrisation given below is not required.
Second, assume that condition (56) does not hold. In this case, equation (38) does not have a solution L
when the matrix Ψ is computed with K (45b) obtained from the solutions Q and Y of LMI (49). Then,
to solve equation (38), we must find another gain K. Since, K depends on the solution Y of LMI (49)
(see (50a)), we propose to parametrise the solution Y in order that both LMI (49) holds (i.e. stability
condition) and equation (38) has a solution L.
In the sequel, we assume that we can not solve equation (38) by using the solutions Y and Q of LMI
(49). In other words, the following assumption is made.
Assumption 2. Im

(
ΦT

d ΨT
)
&⊂ Im

(
ΓT

)
.

Then, to solve equation (38), a parametrisation of the solution Y of LMI (49) will be introduced. Let Ŷ
be a matrix, with the same dimensions as Y , such that

Ŷ T
[
C C̃

]
= 0. (57)

Then replacing Y by (Y + Ŷ ) in LMI (49) does not modify matrix S, i.e. we still have

S =




sym

(
QA−(Y +Ŷ )T C

)
+HT

2 SH2+µIn (2, 1)T

ÃT T T Q−C̃T (Y +Ŷ) −S



< 0. (58)

There exist a matrix Ỹ and a scaling factor δ $ 0 such that the following LMI

S = S −



δ
(
C

T
Ỹ + Ỹ T C

)
δỸ T C̃

δC̃T Ỹ 0



 ! S < 0. (59)

holds. Define matrices K̂, K̃ and K as follows
K̂ = Q−1Ŷ T , (60a)
K̃ = Q−1Ỹ T , (60b)
K = K + K̂ + δK̃ =

[
K

0
1 K

0
2 K

1
2 . . . K

m
2

]
. (60c)

To compute the matrix N in equation (44), replace in (45b) the gain K given by (50a) by K obtained by
(60c). The stability condition (11i) in Theorem 1 is satisfied since LMI (59) holds if LMI (49) is satisfied.
Using (60a) and (60b), and inserting (23) into (39b), (38) is equivalent to

(L−K)Γ =
(
Ψ + K̂Γ + δK̃Γ

)
Φd. (61)

Define a matrix Λ (with (m + 1)n columns as Φd) such that



Im (ΛT ) = Im (ΦT
d ) ∩ Im (ΓT ) &= 0. (62)

Then a necessary and sufficient condition to solve equation (61) (i.e. to have a solution L) is
Im

(
ΦT

d

(
ΨT + ΓT K̂T + δΓT K̃T

))
⊂ Im Λ. (63)

To study the necessary and sufficient condition given by (63), Ψ is decomposed using a non-singular
matrix Σ

ΣΨ =
[
Ψ

T
Ψ

T

c

]T
(64)

such that (see condition (56))

Im (Ψ
T
) ∩ Im (Ψ

T

c ) = 0 and Im
(

ΦT
d Ψ

T
)
⊂ Im

(
ΓT

)
. (65)

Since Assumption 2 holds, we have Ψc &= 0.
Using (62)-(65), equation (61) has a solution L if and only if([

0 Ψ
T

c

]T
+ ΣK̂Γ + δΣK̃Γ

)
Φd = 0. (66)

Using (57) and (60a), the kernels of [ C eC ]T and ΦT
d are given by (where χ and χd are arbitrary matrices)

ker
([

C C̃
]T

)
= Im

(
K̂T

)
= Im

(
ΘT χT

)
, (67a)

ker
(
ΦT

d

)
= Im

(
ΘT

d χT
d

)
, (67b)

with Θ = Iv1+(m+1)v2
−

[
C C̃

][
C C̃

]†
and Θd = I(m+1)n − ΦdΦ

†
d. Using the matrices introduced in

(67), equation (66) can be rewritten as

[
χ K̃ χd

]




ΘΓ

δΓ

−Θd



 = Σ−1

[
0

Ψc

]
. (68)

The necessary and sufficient condition to solve (68) is given by

rank
[
(ΘΓ)T ΓT ΘT

d

]
=rank

[
(ΘΓ)T ΓT ΘT

d

[
0 Ψ

T

c

]
Σ−T

]
(69)

and a solution of equation (68) is given by

[
χ K̃ χd

]
= Σ−1

[
0

Ψc

]




ΘΓ

δΓ

−Θd





†

. (70)

With χ, χd and K̃ given by (70), and the gains K (50a) and K̂ (60a), and using an appropriate choice
of δ (see (59)), the solution of (38) is then obtained by replacing in (45b) K by K (60c).
Remark 1. The above parametrisation can be considered in a particular important case : the bilinear
system (1) is not singular and has linear measurements, i.e. E ∈ IRn×n, det E &= 0 and Ci# = 0 for
i = 1, . . . ,m. In this case, if condition

rank C0
222 = rankC0

222ϕ (71)

holds, then equation (38) can be reduced to
Li

222 = Ki
2 + N iϕ

(
C0

222ϕ
)†

i = 0, . . . ,m. (72)

and the parametrisation is not needed. But if condition (71) does not hold, assumption 2 must be checked
to know if the parametrisation is required since relation (38) can be rewritten as follows

Li
222C

0
222 = Ki

2C
0
222 + N iϕϕ† i = 0, . . . ,m (73)

which is an implicit equation in the unknowns Li
222.



4 Illustrative example
Let us consider the following SBS with bilinear measurements (see (1)) which is affected by one unknown
input w and one default f where the matrices of the system are

E# =
[

1 0 0
0 1 0
0 0 0

]
, A0# =

[−5 12 0
1 0.7 −2
2 −3 −7

]
, A1# =

[−1 −1 2
2.5 −1 3
0.1 −3 0

]
,

A2# =
[

2 3.5 1
0 1 3

0.2 −1 0

]
, B# =

[
0 1
1 0
−1 −1

]
, D1# =

[
52
0
0

]
,

D2# =
[

0
0
0

]
, F 1# =

[
0
8
0

]
, F 2# =

[
0
0
0

]
,

C0# =
[

1 1 0
1 0 1
0 0 1

]
, C1# =

[
1 0 0
0 0 0
0 0 0

]
, C2# =

[
2 0 0
0 0 0
0 0 0

]
.

The control inputs are bounded as follows (see (2))

u1
min = −3, u1

max = 3, u2
min = −1, u2

max = 1.

After the decompositions described in section 2, we get the following SBS (see (5))
E = [ 1 0 0

0 1 0 ] , A0 =
[−5 12 0

1 0.7 −2

]
, A1 =

[−1 −1 2
2.5 −1 3

]
, F11 = [ 0

8 ] ,

A2 = [ 2 3.5 1
0 1 3 ] , B = [ 0 1

1 0 ] , D12 = [ 52
0 ] , C0

221 =
[

2 −3 −7
1 1 0

]
,

C1
221 =

[
0.1 −3 0
1 0 0

]
, C2

221 =
[

0.2 −1 0
2 0 0

]
, C0

222 = [ 1 0 1
0 0 1 ] .

Notice that y1, y21 and D11 are empty in this example.
Choosing U = [ 1 0

0 1 ] and U =
[

1 −1 −1
0 1 1
0 0 1

]
, and taking µ = 10−2, we get as solutions to the LMI (49)

Q =





1337384.3 1651.1387 1542.3736

1651.1387 668883.55 667234.9

1542.3736 667234.9 669355.82



 , S = 5I6,

Y =





17.224282 261.4016 −336.19197

0 931341.11 0

653097.2 −806240.67 1

−633467.38 −265840.18 1155928.1

134.17052 −929306.33 −2617.3595

28.841755 931779.54 −563.65639

−3.3460855 −1862734.7 66.974164

166.35836 1865207.9 −3247.99





.

We deduce the gain K from (50a). Then, after computing Γ, Φ, Φd and Ψ using (39a), (39c) and (54),
we remark that Assumption 2 holds. So the parametrisation described in section 3.3 is needed to solve
equation (38). The new matrix Y , which is obtained by computing the solutions Ŷ and Ỹ of the LMI
(59), is given by Y = Y + Ŷ + Ỹ = QK

Y =





17.27087 261.2787 −336.26988

−917914.08 2032649 180359.88

1602313.2 −1485682.4 −838290.34

−706149.45 223886.96 1515697.3

918047.93 −2030613 −182977.03

−917887.68 2033046.6 179847.63

1835824.6 −4065349.9 −360652.44

−1835589.9 4068908.8 356074.46







and then matrices of the UIRG (6) can be deduced by using relations given above.
Figure 1 shows the error with a good convergence rate as well as Figure 2 shows the convergence of the
residual. In Figures 2 and 3, the failure f appears at t = 15 s and disappears at t = 15.5 s, while the
unmeasurable disturbance w appears at t = 18 s and disappears at t = 18.3 s. Figure 2 shows that the
residual θ is sensitive to f and insensitive to w. This is well seen in Figure 3 where a zoom has been done
on the occurence time window. So the designed UIRG can be efficiently used to detect default which
appears on a SBS.

5 Conclusion
The objective of this paper is the design of a bank of UIRG for SBS subjected to unmeasurable dis-
turbances and with bounded control inputs and bilinear measurements. Sufficient condition is given in
order to obtain disturbance decoupled residuals. Considering the bounded control inputs as “structured
uncertainties”, the exponential stability of the kth UIRG of the bank is guaranteed by solving an LMI
associated to a robust stabilisation problem. A control inputs change of coordinates has been used to
reduce the conservatism inherent to the robust control theory. To take algebraic design constraints into
account, a parametrisation has been introduced to solve this LMI. The use of this parametrisation is
conditioned by a relationship given in Assumption 2.

A Appendix : Right block Kronecker product
The right block Kronecker product (A"B) is defined as follows (Koning et al., 1991)

A"B =





A⊗B11 . . . A⊗B1p

... . . . ...

A⊗Bq1 . . . A⊗Bqp





where Bij denotes the (i, j)th block of partitioned matrix B and (A⊗B) is the Kronecker product. The
two following relations

(A"B)(C"D) = (AC)"(BC)
vectbr(AXB) = (BT "A)vectbr(X)

hold, where the operators vect(#) (matrix vectorization) and vectbr(#) (partitioned matrix vectorization
per block) are defined as

vect

([
a b

c d

])
=





a

c

b

d




, vectbr

([
A B

C D

])
=





vect(A)

vect(B)

vect(C)

vect(D)




.

The block per block product (A ! B) is defined as follows

A ! B =





AB11 . . . AB1p

... . . . ...

ABq1 . . . ABqp



 ,

and has the following property
(AC) ! B = (A ! Iαq) (C ! B)

where B is partitioned in q × p blocks

B =





B11 . . . B1p

... . . . ...

Bq1 . . . Bqp





and Iαq is partitioned in q × q blocks where α is the number of columns of matrix A.



B Appendix : Selection matrix S in relation (35)

For example, if m = 2, the vector vectbr

([
M Ŵ ! I3v

])
in relation (35) is computed as follows

vectbr

([
M | Ŵ ! I3v

])
=





In 0 0 0

0 0 0 Iv

02v×n 0 0 0

0 In 0 0

0v×n 0 0 0

0 0 0 Iv

0v×n 0 0 0

0 0 In 0

02v×n 0 0 0

0 0 0 Iv





︸ ︷︷ ︸
S





vect(M0)

vect(M1)

vect(M2)

vect(Ŵ )




.
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Figure 1: Reconstruction error e(t).
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Figure 2: Residual θ(t), failure f(t) and disturbance w(t).
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Figure 3: Zoom on figure 2.


