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We consider the problem of finding a function defined on (0, ∞) from a countable set of values of its Laplace transform. The problem is severely ill-posed. We shall use the expansion of the function in a series of Laguerre polynomials to convert the problem in an analytic interpolation problem. Then, using the coefficients of Lagrange polynomials we shall construct a stable approximation solution. Error estimate is given. Numerical results are produced.

Introduction

Let L 2 ρ (0, ∞) be the space of real Lebesgue measurable functions defined on (0, ∞) such that

f 2 L 2 ρ ≡ ∞ 0 |f (x)| 2 e -x dx < ∞.
This is a Hilbert space corresponding to the inner product < f, g >= ∞ 0 f (x)g(x)e -x dx.

We consider the problem of recovering a function f ∈ L 2 ρ (0, ∞) satisfying the equations

Lf (p j ) ≡ ∞ 0 e -pj x f (x)dx = µ j (DIL)
where p j ∈ (0, ∞), j = 1, 2, 3, ... Generally, we have the classical problem of finding a function f (x) from its given image g(p) satisfying

Lf (p) ≡ ∞ 0 e -px f (x)dx = g(p), (1) 
where p is in a subset ω of the complex plane. We note that Lf (p) is usually an analytic function on a half plane {Re p > α} for an appropriate real number α. Frequently, the image of a Laplace transform is known only on a subset ω of the right half plane {Re p > α}. Depending on the set ω, we shall have appropriate methods to construct the function f from the values in the set {Lf (p) : p ∈ ω}.

Hence, there are no universal methods of inversion of the Laplace transform.

If the data g(p) is given as a function on a line (-i∞ + a, +i∞ + a) (i.e., ω = {p : p = a + iy, y ∈ R}) on the complex plane then we can use the Bromwich inversion formula ( [START_REF] Widder | The Laplace transform[END_REF], p. 67) to find the function f (x).

If ω ⊂ {p ∈ R : p > 0} then we have the problem of real inverse Laplace transform. The right hand side is known only on (0, ∞) or a subset of (0, ∞). In this case, the use of the Bromwich formula is therefore not feasible. The literature on the subject is impressed in both theoretical and computational aspects (see, e.g. [START_REF] Ahn | A flexible inverse Laplace transform algorithm and its applications[END_REF][START_REF] Al-Shuaibi | A regularization method for approximating the inverse Laplace transform[END_REF][START_REF] Byun | A real inversion formula for the Laplace transform[END_REF][START_REF] De Mottoni | Stabilization and error bounds for the inverse Laplace transform[END_REF][START_REF] Rizzardi | A modification of Talbot's method for the simultaneous approximation of several values of the inverse transform[END_REF][START_REF] Soni | A unified inverse Laplace transform formula involving the product of a general class of polynomials and the Fox H-function[END_REF]). In fact, if the data g(p) is given exactly then, by the analyticity of g, we have many inversion formulas (see,e.g., [START_REF] Al-Shuaibi | A regularization method for approximating the inverse Laplace transform[END_REF][START_REF] Ang | Complex variables and regularization method of inversion of the Laplace transform[END_REF][START_REF] Boumenir | The inverse Laplace transform and analytic pseudodifferential operators[END_REF][START_REF] Saitoh | Integral transforms, Reproducing kernels and their Applications[END_REF][START_REF] Saitoh | Conditional stability of a real inverse formula for the Laplace transform[END_REF][START_REF] Talenti | Recovering a function from a finite number of moments[END_REF]). In [START_REF] Al-Shuaibi | A regularization method for approximating the inverse Laplace transform[END_REF], the author approximate the function f by

f (t) ∼ = N k=0 b k (a)d k (e x g(e x ))/dx k
where b k (a) are calculated and tabulated regularization coefficients and g is the given Laplace transform of f . Another method is developped by Saitoh and his group ( [START_REF] Amano | Error estimates of the real inversion formulas of the Laplace transform[END_REF][START_REF] Ang | A multidimensional Hausdorff moment problem: regularization by finite moments[END_REF][START_REF] Saitoh | Integral transforms, Reproducing kernels and their Applications[END_REF][START_REF] Saitoh | Conditional stability of a real inverse formula for the Laplace transform[END_REF]), where the function f is approximated by integrals having the form

u N (t) = ∞ 0 g(s)e -st P N (st)ds, N = 1, 2, ...
where P N is known (see [START_REF] Ang | A multidimensional Hausdorff moment problem: regularization by finite moments[END_REF]). Using the Saitoh formula, we can get directly error estimates. However, in the case of unexact data, we have a severely trouble by the ill-posedness of the problem. In fact, a solution corresponding to the unexact data do not exist if the data is nonsmooth, and in the case of existence, these do not depend continuously on the given data (that are represented by the right hand side of the equalities). Hence, a regularization method is in order. In [START_REF] Ang | Complex variables and regularization method of inversion of the Laplace transform[END_REF], the authors used the Tikhonov method to regularize the problem. In fact, in this method, we can approximate u 0 by functions u β satisfying

βu β + L * Lu β = L * g, β > 0.
Since L is self-adjoint (cf. [START_REF] Ang | Complex variables and regularization method of inversion of the Laplace transform[END_REF]), the latter equation can be written as

βu β + ∞ 0 u β (s) s + t ds = ∞ 0 e -st g(s)ds.
The latter problem is well-posed.

Although the inverse Laplace transform has a rich literature, the papers devoted to the problem with discrete data are scarce. In fact, from the analyticity of Lf (p),if Lf (p) is known on a countable subset of ω ⊂ {Re p > α} accumulating at a point then Lf (p) is known on the whole {Re p > α}. Hence, generally, a set of discrete data is enough for constructing an approximation function of f . It is a moment problem. In [START_REF] Lebedev | Special Functions and Their Applications[END_REF], the authors presented some theorems on the stabilization of the inverse Laplace transform. The Laplace image is measured at N points to within some error ǫ. This is achieved by proving parallel stabilization results for a related Hausdorff moment problem. For a construction of an approximate solution of (DIL), we note that the sequence of functions (e -pj x ) is (algebraically) linear independent and moreover the vector space generated by the latter sequence is dense in L 2 (0, ∞). The method of truncated expansion as presented in ([6], Section 2.1) is applicable and we refer the reader to this reference for full details. In [START_REF] Dung | A Hausdorff-like Moment Problem and the Inversion of the Laplace transform[END_REF][START_REF] Vu | A Hausdorff Moment Problems with Non-Integral Powers: Approximation by Finite Moments[END_REF], the authors convert (DIL) into a moment problem of finding a function in L 2 (0, 1) and, then, they use Muntz polynomials to construct an approximation for f . Now, in the present paper, we shall convert (DIL) to an analytic interpolation problem on the Hardy space of the unit disc. After that, we shall use Laguerre polynomials and coefficients of Lagrange polynomials to construct the function f . An approximation corresponding to the non exact data and error estimate will be given.

The remainder of the paper divided into two sections. In Section 2, we convert our problem into an interpolation one and give a uniqueness result. In Section 3, we shall give two regularization results in the cases of exact data and non exact data. Numerical comparisons with exact solution are given in the last section.

A uniqueness result

In this paper we shall use Laguerre polynomials

L n (x) = e x n! d n dx n (e -x x n ).
We note that {L n } is a sequence of orthonormal polynomials on L 2 ρ (0, ∞). We note that (see [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], [START_REF] Borwein | Polynomials and polynomial Inequalities[END_REF], page 67)

exp xz z -1 (1 -z) -1 = ∞ n=0 L n (x)z n .
Hence, if we have the expansion

f (x) = ∞ n-0 a n L n (x) then ∞ 0 f (x) exp xz z -1 (1 -z) -1 e -x dx = ∞ n=0 a n z n . It follows that ∞ n=0 a n z n = ∞ 0 f (x) exp x z -1 (1 -z) -1 dx. Put Φf (z) = ∞ n=0 a n z n , α j = 1 -1/p j , one has Φf (α j ) = p j µ j ,
i.e., we have an interpolation problem of finding an analytic function Φf in the Hardy space H 2 (U ).

Here, we denote by U the unit disc of the complex plane and by H 2 (U ) the Hardy space. In fact, we recall that H 2 (U ) is the space of all functions φ analytic in U and if, φ ∈ H 2 (U ) has the expansion

φ(z) = ∞ k=0 a k z k then φ 2 H 2 (U) = ∞ k=0 |a k | 2 = 1 2π 2π 0 |φ(e iθ )| 2 dθ.
We can verify directly that the linear operator Φ is an isometry from L 2 ρ onto H 2 (U ). In fact, we have

Lemma 1 Let f ∈ L 2 ρ (0, ∞). Then Lf (z) is analytic on {z ∈ C| Rez > 1/2}. If we have an expansion f = ∞ n=0 a n L n then one has Φf ∈ H 2 (U ) and Φf 2 H 2 (U) = ∞ n=0 |a n | 2 = f 2 L 2 ρ (0,∞) .
Moreover, If we have in addition that

√ xf ′ ∈ L 2 ρ then ∞ n=0 n|a n | 2 ≤ √ xf ′ 2 L 2 ρ .
Proof

Putting F z (t) = e -zt f (t), we have F z ∈ L 2 (0, ∞) for every Rez > 1/2. Hence Lf (z) = ∞ 0 F z (t)dt is analytic for Rez > 1/2.
From the definitions of L 2 ρ (0, ∞) and H 2 (U ), we have the isometry equality. Now we prove the second inequalities. We first consider the case

f ′ , f ′′ in the space B = {g Lebesgue measurable on (0, ∞)| √ xg ∈ L 2 ρ (0, ∞)}. We have the expansion f = ∞ n=0 a n L n where a n =< f, L n >.
The function y = L n satisfies the following equation (see [START_REF] Rabenstein | Introduction to Ordinary Differential Equations[END_REF])

xy ′′ + (1 -x)y ′ + ny = 0 which gives (xe -x y ′ ) ′ + nye -x = 0.
It follows that

na n = ∞ 0 f (x)nL n (x)e -x dx = - ∞ 0 f (x)(xe -x L ′ n (x)) ′ dx = ∞ 0 f ′ (x)xe -x L ′ n (x)dx = - ∞ 0 (f ′ (x)xe -x ) ′ L n (x)dx = - ∞ 0 (xf "(x) + f ′ (x) -xf ′ (x))L n (x)e -x dx = -< xf " + f ′ -xf ′ , L n > .
Since L n is an orthonormal basis, we have the Fourier expansion

xf " + f ′ -xf ′ = ∞ n=0 (-na n )L n .
Using the Parseval equality we have

< xf " + f ′ -xf ′ , f >= ∞ n=0 (-na n )a n .
It can be rewritten as

∞ 0 (xe -x f ′ (x)) ′ f (x)dx = - ∞ n=0 na 2 n .
Integrating by parts, we get

∞ 0 xe -x |f ′ (x)| 2 dx = ∞ n=0 na 2 n . Now, for f ′ ∈ B we choose (f k ) such that f ′ k , f " k ∈ B for every k = 1, 2, ... and √ xf ′ k (resp.f k ) → √ xf ′ (resp.f ) in L 2 ρ as k → ∞. Assume that f k = ∞ n=0 a kn L n .
Then we have

∞ 0 xe -x |f ′ k (x)| 2 dx = ∞ n=0 na 2 kn .
The latter equality involves for every N

N n=0 na 2 kn ≤ √ xf ′ k 2 L 2 ρ (0,∞) (2) 
Since f k → f in L 2 ρ as k → ∞ we have that a kn → a n as k → ∞, for each n. On the other hand, we have

√ xf ′ k → √ xf ′ in L 2 ρ as k → ∞. . Therefore, letting k → ∞ in (2) we get N n=0 na 2 n ≤ √ xf ′ 2 L 2 ρ (0,∞) .
Letting N → ∞ in the latter inequality, we get the desired inequality.

Using Lemma 1, one has a uniqueness result

Theorem 1. Let p j > 1/2 for every j = 1, 2, .... If pj >1 1 p j + 1/2<pj <1 2p j -1 p j = ∞
then Problem (DIL) has at most one solution in L 2 ρ (0, ∞).

Proof

Let f 1 , f 2 ∈ L 2 ρ (0, ∞) be two solutions of (DIL). Putting g = f 1 -f 2 then g ∈ L 2 ρ (0, ∞) and Lg(p j ) = 0. It follows that Φg(1 -1/p j ) = 0, j = 1, 2, ... It follows that α j = 1 -1/p j are zeros of Φg. We have Φg ∈ H 2 (U ) and

∞ j=1 (1 -|α j |) = pj >1 1 p j + 1/2<pj <1 2p j -1 p j = ∞.
Hence we get Φg ≡ 0 (see, e.g., [START_REF] Rudin | Real and Complex analysis[END_REF], page 308). It follows that g ≡ 0. This completes the proof of Theorem 1.

Regularization and error estimates

In the section, we assume that (p j ) is a bounded sequence, p j = p k for every j = k. Without loss of generality, we shall assume that ρ = 1 is an accumulation point of p j . In fact, if p j has an accumulation point ρ 0 > 1 then, by putting f (x) = e -(ρ0-1)x f (x) and p ′ j = p j -ρ 0 + 1, we can transform the problem to the one of finding f ∈ L 2 ρ (0, ∞) such that ∞ 0 e -p ′ j x f (x)dx = µ j , j = 1, 2, ... in which p ′ j has the accumulation point ρ = 1. In fact, in Theorem 2 below, we shall assume that 1 -1 pj ≤ σ for every j = 1, 2, ..., where σ is a given number. We denote by ℓ 

L m (ν)(z k ) = ν k , 1 ≤ k ≤ m,
where z k = α k . If φ is an analytic function on U , we also denote

L m (φ) = L m (φ(z 1 ), ..., φ(z m )).
We define

L θ m (ν)(z) = 0≤k≤θ(m-1) ℓ (m) k (ν)z k .
The polynomial L θ m (ν) is called a truncated Lagrange polynomial (see also [START_REF] Trong | Reconstructing an analytic function using truncated Lagrange polynomials[END_REF]). For every g ∈ L 2

ρ (0, ∞), we put

T n g = (p 1 Lg(p 1 ), ..., p n Lg(p n )), T g = (p 1 Lg(p 1 ), ..., p n Lg(p n ), ...) ∈ ℓ ∞ .
Here, we recall that α n = 1 -1/p n . We shall approximate the function f by

F m = Φ -1 L θ m (T m f ) = 0≤k≤θ(m-1) ℓ (m) k (T m f )L k .
We shall prove that F m is an approximation of f . Before stating and proving the main results, some remarks are in order. We first recall the concept of regularization. Let f be an exact solution of (DIL), we recall that a sequence of linear operator A n : ℓ ∞ → L 2 ρ (0, ∞) is a regularization sequence (or a regularizer) of Problem (DIL) if (A n ) satisfies two following conditions (see, e.g., [START_REF] Isakov | Inverse problems for Partial differential equations[END_REF], page 25) (R1) For each n, A n is bounded, (R2) lim n→∞ A n (T f ) -f = 0. The number "n" is called the regularization parameter. As a consequence of (R1), (R2), we can get (R3) For ǫ > 0, there exists the functions n(ǫ) and δ(ǫ) such that lim ǫ→0 n(ǫ) = ∞, lim ǫ→0 δ(ǫ) = 0 and that

A n(ǫ) (µ) -f ≤ δ(ǫ) for every µ ∈ ℓ ∞ such that µ -T f ∞ < ǫ.
In the present paper, the operator

A n is Φ -1 L θ m .
The number ǫ is the error between the exact data T f and the measured data µ. For a given error ǫ, there are infinitely many ways of choosing the regularization parameter n(ǫ). In the present paper, we give an explicit form of n(ǫ).

Next, in our paper, we have the interpolation problem of reconstruction the analytic function φ = Φf ∈ H 2 (U ) from a sequence of its values (φ(α n )). As known, the convergence of L m (φ) to φ depends heavily on the properties of the points (α n ). The Kalmár-Walsh theorem (see, e.g., [START_REF] Gaier | Lectures on Complex Approximation[END_REF], page 65) shows that L m (φ) → φ for every φ in C(U ) for all φ analytic in a neighborhood of U if and only if (α n ) is uniformly distributed in U, i.e., lim

m→∞ m max |z|≤1 |(z -α 1 )...(z -α m )| = 1.
The Fejer points and the Fekete points are the sequences of points satisfying the latter condition (see [START_REF] Gaier | Lectures on Complex Approximation[END_REF], page 67). The Kalmár-Walsh fails if C(U ) is replaced by H 2 (U ) (see [START_REF] Trong | Reconstructing an analytic function using truncated Lagrange polynomials[END_REF] for a counterexample). Hence, the Lagrange polynomial cannot use to reconstruct φ. In [START_REF] Gaier | Lectures on Complex Approximation[END_REF], we proved a theorem similar to the Kalmár-Walsh theorem for the case of H 2 (U ). In fact, the Lagrange polynomials will convergence if we "cut off" some terms of the Lagrange polynomial. Especially, in [START_REF] Gaier | Lectures on Complex Approximation[END_REF] and the present paper, the points (α n ) are, in general, not uniformly distributed.

In Theorem 2, we shall verify the condition (R2). More precisely, we have Theorem 2 Let σ ∈ (0, 1/3), let f ∈ L 2 ρ (0, ∞) and let p j > 1/2 for j = 1, 2, ... satisfy

1 - 1 p j ≤ σ.
Put θ 0 be the unique solution of the equation (unknown x)

2σ 1-x 1 -σ = 1.
Then for θ ∈ (0, θ 0 ), one has

f -F m 2 L 2 ρ -→ 0 as m → ∞. If, we assume in addition that √ xf ′ ∈ L 2 ρ (0, ∞) then f -F m 2 L 2 ρ ≤ (1 + mθ) 2 f 2 L 2 ρ 2σ 1-θ 1 -σ 2m + 1 mθ √ xf ′ 2 L 2 ρ (0,∞) .

Proof

We have in view of Lemma 1

f -F m 2 L 2 ρ = 0≤k≤θ(m-1) |δ (m) k | 2 + k>θ(m-1) |a k | 2 (3) 
where δ

(m) k = a k -ℓ (m) 
k (T m f ). We shall give an estimate for δ

k . In fact, we have

Φf -L m (T m f ) 2 H 2 (U) = m-1 k=0 |δ (m) k | 2 + ∞ k=m |a k | 2 .
On the other hand, the Hermite representation (see, e.g. [START_REF] Gaier | Lectures on Complex Approximation[END_REF], page 59, [START_REF] Taylor | Advanced Calculus[END_REF]) gives

Φf (z) -L m (T m f )(z) = 1 2πi ∂U ω m (z)(Φf )(ζ)dζ ω m (ζ)(ζ -z)
where ω m (z) = (z -α 1 )...(z -α m ). Now, if we denote by σ

(m) -1 = σ (m) -2 = ... = 0 and σ (m) 0 = 1 σ (m) r = 1≤j1<...<jr≤m α j1 ...α jr (1 ≤ r ≤ m), β (m) s 
= 1 2πi ∂U Φf (ζ)dζ ζ s+1 ω m (ζ)
then we can write in view of the Hermite representation

Φf (z) -L m (T m f )(z) = ∞ k=0 k r=0 (-1) r σ (m) m-r β (m) k-r z k .
From the latter representation, one gets

δ (m) k = k r=0 (-1) r σ (m) m-r β (m) k-r , 0 ≤ k ≤ m -1.

Now, by direct computation, one has

|β (m) s | ≤ 1 2π 2π 0 |Φf (e iθ )| |ω m (e iθ )| dθ. But one has |ω m (e iθ )| ≥ (|e iθ | -|α 1 |)...(|e iθ | -|α m |) ≥ (1 -σ) m .
Hence

|β (m) s | ≤ 1 2π(1 -σ) m 2π 0 |Φf (e iθ )|dθ ≤ Φf H 2 (U) (1 -σ) -m .
We also have

|σ (m) m-r | ≤ σ m-r C r m ≤ σ m-k 2 m , where C k m = m! k!(m-k)! . Hence, we have |δ (m) k | ≤ (1 + mθ) f L 2 ρ 2σ 1-θ 1 -σ m .
From the latter inequality, one has in view of ( 3)

f -F m 2 L 2 ρ ≤ (1 + mθ) 2 f 2 L 2 ρ 2σ 1-θ 1 -σ 2m + ∞ k≥mθ |a k | 2 .
For θ ∈ (0, θ 0 ), one has

0 < 2σ 1-θ 1 -σ < 2σ 1-θ0 1 -σ = 1.
Hence, we have lim

m→∞ f -F m 2 L 2
ρ = 0 as desired, since on the one hand we have the comparison between an exponential with base b < 1 and a power function and in the other hand the remain of a convergent series

∞ k=0 |a k | 2 . Now if √ xf ′ ∈ L 2 ρ (0, ∞) then one has since k mθ > 1 and from Lemma 1 ∞ k>mθ |a k | 2 ≤ 1 mθ ∞ k=0 k|a k | 2 ≤ 1 mθ √ xf ′ 2 L 2 ρ .
This completes the proof of Theorem 2. Now, we consider the case of non-exact data. In Theorem 3, we shall consider the condition (R3) of the definition of the regularization. Put

D m = max 1≤n≤m max |z|≤R ω m (z) (z -α n )ω ′ m (α n )
.

Let ψ : [0, ∞) → R be an increasing function satisfying

ψ(m) ≥ mD m , m = 1, 2, ... and m(ǫ) = [ψ -1 (ǫ -3/4 )] -1
where [x] is the greatest integer ≤ x.

Theorem 3. Let σ ∈ (0, 1/3), let f, √ xf ′ ∈ L 2 ρ (0, ∞) and let p j > 1/2 for j = 1, 2, ... satisfy 1 - 1 p j ≤ σ.
Put θ 0 be the unique solution of the equation (unknown x)

2σ 1-x 1 -σ = 1.
Let ǫ > 0 and let (µ ǫ j ) be a measured data of (Lf (p j )) satisfying

sup j |p j (Lf (p j ) -µ ǫ j )| < ǫ.
Then for θ ∈ (0, θ 0 ), one has

f -Φ -1 L θ m(ǫ) (ν ǫ ) 2 L 2 ρ ≤ 2(1 + m(ǫ)θ) 2 f 2 L 2 ρ 2σ 1-θ 1 -σ 2m(ǫ) + 2 m(ǫ)θ √ xf ′ 2 L 2 ρ + 2ǫ 1/2 .
where ν ǫ j = p j µ ǫ j for j = 1, 2, ... Proof We note that

L m (T m f )(z) -L m (ν ǫ )(z) = m j=1 (p j µ j -ν ǫ j ) ω m (z) (z -α j )ω ′ m (α j ) . It follows that L m (T m f ) -L m (ν ǫ ) ∞ ≤ ǫmD m . Hence L θ m (T m f ) -L θ m (ν ǫ ) H 2 (U) ≤ L m (T m f ) -L m (ν ǫ ) ∞ ≤ ǫmD m . It follows by the isometry property of Φ f -Φ -1 L θ m (ν ǫ ) 2 L 2 ρ ≤ 2 f -F m 2 L 2 ρ + 2 Φ -1 L θ m (T m f ) -Φ -1 L θ m (ν ǫ ) 2 L 2 ρ ≤ 2(1 + mθ) 2 f 2 L 2 ρ 2σ 1-θ 1 -σ 2m + 2 mθ √ xf ′ 2 L 2 ρ +2ǫ 2 m 2 D 2 m .
By choosing m = m(ǫ) we get the desired result.

Numerical results

We present some results of numerical comparison between the function f (x) given in L 2 p (0, ∞) and its approximated form F m as it is stated in Theorem 2.

First consider the function f (x) = e -x and its expansion in Laguerre series e

-x = n≥0 1 2 n+1 L n (x). (4) 
So in the Hardy space H 2 (U ), we have to interpolate the analytic function

Φf (x) = n≥0 1 2 n+1 x n = 1 2 -x (5) 
by the Lagrange polynomial L m (T m f ), interpolation defined by

L m (T m f ) 1 - 1 p i = p i ∞ 0
e -pix e -x dx = p i p i + 1 [START_REF] Ang | Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction[END_REF] where p i -→ 1 as i → ∞.

On the interval (-1.8, +1.8) we have drawn in Fig. 1 the curves e -x and its approximation L m (T m f )(x) for m = 10. If m = 12 there is divergence for our interpolation (Fig. 2) outside the interval (-1, +1). In both cases we have chosen θ 0 = 0.29 with σ = 0.25 (θ 0 given by 2σ 1-θo 1 -σ = 1, 0 < σ < 1 3 ). So in the 2nd case the truncated Lagrange polynomial is almost verified since 11 × 0.29 ∼ 3.2.
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