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Abstract— This paper deals with the design of a reduced-
order H∞ filter for a stochastic bilinear systems with a pre-
scribed H∞ norm criterion. The problem is transformed into
the search of a unique gain matrix by using a Sylvester-like
condition on the drift term. The considered system is bi-
linear in control and with multiplicative noise in the state
and in the measurement equations. The approach is based
on the resolution of LMI and is then easily implementable.

Keywords—Reduced-order H∞ filter, Itô’s formula, Stochas-
tic systems, Bilinear systems, Lyapunov function.

I. Introduction

The bilinear systems represent sometimes a good mean
to physical systems modeling when the linear representa-
tion is not sufficiently significant. The stochastic systems
get a great importance during the last decades as shown
by numerous references (Kozin, 1969; Has’minskii, 1980;
Florchinger, 1995; Mao, 1997; Carravetta et al., 2000; Ger-
mani et al., 2002; Xu and Chen, 2003).
Generally, bilinear stochastic system designs a stochastic
system with multiplicative noise instead of additive one
(Carravetta et al., 2000; Germani et al., 2002). The full
and the reduced-order H∞ filtering for stochastic systems
with multiplicative noise has been treated in many papers
(Hinrichsen and Pritchard, 1998; Gershon et al., 2001; Xu
and Chen, 2002; Stoica, 2002). Notice that the measure-
ment equation in (Xu and Chen, 2002; Stoica, 2002) is not
corrupted by noise. The problem is solved in terms of two
LMIs and a coupling non convex rank constraint.
In this paper the problem of reduced-order H∞ filtering for
a larger class of stochastic systems than those studied in the
papers cited above is considered since the studied systems
are with multiplicative noise and multiplicative control in-
put (the bilinearity is also between the state and the control
input). The measurements are subjected to a multiplica-
tive noise too. Notice that, as in the deterministic case,
the multiplicative control input affects the observability of
the system.
The purpose is to design a reduced-order H∞ filter for such
a system. We first use a “unbiasedness” (decoupling) con-
dition on the drift part of the estimation error and a change
of variable on the control input. Then applying the Itô for-
mula and LMI method permit to reduce the problem to the
search of a unique gain matrix. The reduced-order stochas-
tic filter matrices are then computed using this gain.
Throughout the paper, E represents expectation operator
with respect to some probability measure P. 〈X, Y 〉 = XT Y
represents the inner product of the vectors X, Y ∈ IRn.

herm(A) stands for A + AT .
L2

`
Ω, IRk

´
is the space of square-integrable IRk-valued func-

tions on the probability space (Ω,F ,P) where Ω is the sam-
ple space, F is a σ-algebra of subsets of the sample space
called events and P is the probability measure on F . (Ft)t!0

denote an increasing family of σ-algebras (Ft) ∈ F . We
also denote by bL2

`
[0,∞) ; IRk

´
the space of non-anticipatory

square-integrable stochastic process f(.) = (f(t))t∈[0,∞) in
IRk with respect to (Ft)t∈[0,∞) satisfying

‖f‖2bL2
= E

Z ∞

0

‖f(t)‖2 d t

ff
< ∞

where ‖.‖ is the well-known Euclidean norm.

II. Problem statement

Let us consider the following stochastic bilinear system
8
>><

>>:

d x(t) = (At0x(t) + u1(t)At1x(t)) d t
+B0v(t) d t + Aw0x(t) d w0(t)

d y(t) = Cx(t) d t + J1x(t) d w1(t)
z(t) = Lx(t)

(1)

where x(t) ∈ IRn is the state vector, y(t) ∈ IRp is the out-
put, u1(t) ∈ IR is the control input, z(t) ∈ IRr is a linear
combination of the state vector with r < n and v(t) ∈ IRq

is the perturbation signal. Without loss of generality L is
assumed to be a full row rank matrix. wi(t) is a Wiener
process verifying (Has’minskii, 1980)

E (d wi(t)) = 0,E(d wi(t)
2) = d t, for i = 0, 1, (2a)

E (d w0(t) d w1(t)) = E(d w1(t) d w0(t)) = ϕ d t ,
with |ϕ| < 1. (2b)

As in the most cases for physical processes, we assume that
the stochastic bilinear system (1) has known bounded con-
trol input, i.e. u1(t) ∈ Γ ⊂ IR, where

Γ = {u1(t) ∈ IR | u1 min ! u1(t) ! u1 max}. (3)

The study made here can be easily generalized for the case
where there are m control inputs.
First, we introduce the following definition and assumption.

Definition 1. (Kozin, 1969; Has’minskii, 1980) The
stochastic system (1) with v(t) ≡ 0 is said to be asymp-
totically mean-square stable if all initial states x(0) yields

lim
t→∞

E ‖x(t)‖2 = 0, ∀u1(t) ∈ Γ. (4)



Assumption 1. The stochastic bilinear system (1) is as-
sumed to be asymptotically mean-square stable.

In this paper, the aim is to design a reduced-order filter in
the following form

d η(t) = (M0 + u1(t)M1) η(t) d t

+ (N0 + u1(t)N1) d y(t) (5)

where η(t) ∈ IRr is the filter state with r < n and the ma-
trices Mi and Ni (for i = 0, 1) are to be determined.
Then the following problem is considered.

Problem 1. Given a real γ > 0, the goal is to design a
asymptotically mean-square stable reduced-order H∞ filter
(5) such that the augmented state [xT (t) eT (t)]T is asymp-
totically mean-square stable and the following H∞ perfor-
mance

‖e(t)‖2bL2
! γ‖v(t)‖2bL2

(6)

is achieved from the disturbance v(t) to the filtering error
e(t) = z(t)− η(t).

Let us consider the following estimation error

e(t) = Lx(t)− η(t). (7)

So the estimation error dynamics becomes

d e(t) = (M0 + M1u1(t)) e(t) d t + LB0v(t) d t

+ {(LAt0 −M0L−N0C)

+ (LAt1 −M1L−N1C)u1(t)}x(t) d t

+ LAw0x(t) d w0(t)

− ((N0 + u1(t)N1) J1x(t) d w1(t). (8)

In order to supress the direct effect of the state x(t) on the
drift part of the filtering error, we consider the following
Sylvester-like conditions

LAti −MiL−NiC = 0, i = 0, 1. (9)

Let us consider the following augmented state vector

ξT (t) =
ˆ
xT (t) eT (t)

˜
. (10)

Then under (9), the dynamics of the augmented system is
given by

d ξ(t) = (At0 +At1u1(t)) ξ(t) d t + B0v(t) d t

+Aw0ξ(t) d w0(t)

+ (Aw1 +Aw2u1(t)) ξ(t) d w1, (11)

with

Ati =

»
Ati 0
0 Mi

–
, for i = 0, 1,

B0 =

»
B0

LB0

–
, Aw0 =

»
Aw0 0

LAw0 0

–
,

Aw1 =

»
0 0

−N0J1 0

–
, Aw2 =

»
0 0

−N1J1 0

–
.

In the sequel the relations (9) are used to express the filter
matrices through a single gain matrix.

In fact, since L is a full row rank matrix, relations (9) are
equivalent to

(LAti −MiL−NiC)
ˆ
L† (In − L†L)

˜
= 0,

for i = 0, 1. (13)

where L† is a generalized inverse of matrix L satisfying L =
LL†L (Lancaster and Tismenetsky, 1985) (since rank L = r,
we have LL† = Ir).
Relations (13) give

0 = LAtiL
† −Mi −NiCL† for i = 0, 1, (14a)

0 = LAi −NiC for i = 0, 1, (14b)

where

Ai = Ati(In − L†L) for i = 0, 1, (15a)

C = C(In − L†L). (15b)

The relation (14a) gives

Mi = Ai −NiC, for i = 0, 1, (16)

where

Ai = LAtiL
†, for i = 0, 1, (17a)

C = CL†. (17b)

The relation (14b) becomes

KΣ = LA, (18)

where

K =
ˆ
N0 N1

˜
, (19)

A =
ˆ
A0 A1

˜
, (20)

Σ =

»
C 0
0 C

–
, (21)

and a general solution to equation (18), if it exists, is given
by

K = LA Σ† + Z(I2p − Σ Σ†), (22)

where
Z =

ˆ
Z0 Z1

˜
, (23)

is an arbitrary matrix of appropriate dimensions.

III. Tranformation of the bilinear system
filtering problem into an uncertain one

As in (Zasadzinski et al., 2003), let us introduce a change
of variable on the control u1(t) as follows

u1(t) = α1 + σ1ε1(t) (24)

where α1 ∈ IR and σ1 ∈ IR are given by

α1 =
1
2
(u1min + u1max), σ1 =

1
2
(u1max − u1min). (25)

The new “uncertain” variable is ε1(t) ∈ Γ ⊂ IR where the
polytope Γ is defined by

Γ = {ε1(t) ∈ IR | ε1min = −1 ! ε1(t) ! ε1max = 1} . (26)



Then the error dynamics (8) can be rewritten as

d e(t) =
“

At − ZCt + (eAt − Z eCt)∆ε(ε1(t))He

”
e(t) d t

+ B0v(t) d t + Aw0x(t) d w0(t) +
`
Aw(11) − ZAw(12)

+(eAw(11) − Z eAw(12))∆x(ε1(t))Hx

”
x(t) d w1(t) (27)

where

At = A0 + α1A1 − LA Σ†Λ, Ct = (I2p − Σ Σ†)Λ,

eAt = σ1A1 − LA Σ†Λ, eCt = (I2p − Σ Σ†)Λ,

B01 = LB0, Aw0 = LAw0,

Aw(11) = LA Σ†Ψα, Aw(12) = (I2p − Σ Σ†)Ψα,

eAw(11) = LA Σ†Ψσ, eAw(12) = (I2p − Σ Σ†)Ψσ,

and

Λ =

»
CL†

α1CL†

–
, Ψα =

»
−J1

−αJ1

–
, Ψσ =

»
0

−σJ1

–
,

He = Ir, Hx = In,

∆ε(ε1(t)) = ε1(t)Ir, ∆x(ε1(t)) = ε1(t)In.

Using the definition (26), the matrix ∆ε(ε1(t)) and ∆x(ε1(t))
satisfy

‖∆ε1(ε1(t))‖ ! 1, and ‖∆x(ε1(t))‖ ! 1. (28)

Using (24), the system state equation (see (1)) becomes

d x(t) = (At0 + α1At1 + σ1ε1(t)At1) x(t) d t

+ B0v(t) d t + Aw0x(t) d w0(t). (29)

So the augmented system (11) is rewritten as

d ξ(t) =
“

bAt0 + ∆ bAt0(t)
”

ξ(t) d t + bB0v(t) d t

+ bAw0ξ(t) d w0(t)

+
“

bAw1 + ∆ bAw1(t)
”

ξ(t) d w1(t) (30)

where

bAt0 =

»
At0 + α1At1 0

0 At − ZCt

–
,

∆ bAt0(t) = H1∆ξ(ε1(t))Ht,

bB0 =

»
B0

B01

–
, bAw0 =

»
Aw0 0
Aw0 0

–
,

bAw1 =

»
0 0

Aw(11) − ZAw(12) 0

–
,

∆ bAw1(t) = H2∆ξ(ε1(t))Hw,

H1 =

"
σ1At1 0

0 eAt − Z eCt

#
, H2 =

"
0

eAw(11) − Z eAw(12)

#
,

Ht =

»
In 0
0 Ir

–
, Hw =

ˆ
In 0

˜
, ∆ξ(ε1(t)) = ε1(t).

Notice that from (26), ∆ξ(ε1(t)) satisfy

‖∆ξ(ε1(t))‖ ! 1. (31)

IV. Synthesis of the reduced-order filter

Consider the following system obtained from (30)
8
>><

>>:

d ξ(t) =
“

bAt0+∆ bAt0(t)
”
ξ(t) d t+ bB0v(t) d t

+ bAw0 ξ(t)d w0(t)+
“

bAw1+∆ bAw1(t)
”

ξ(t) d w1(t)

e(t) = bCξ(t)

(32)

where bC =
ˆ
0 Ir

˜
.

Then the following theorem is given for the filter synthesis.

Theorem 1. The reduced-order H∞ filtering problem 1 is
solved for the system (1) with the filter (5) such that the
augmented system (32) is asymptotically mean-square sta-
ble and verifies the H∞ performance (6) if, for some reals
µ1 > 0, µ2 > 0 and µ3 > 0 there exist matrices P1 = P T

1 >
0 ∈ IRn×n, P2 = P T

2 > 0 ∈ IRr×r, P3 ∈ IRn×r, G2 ∈ IRr×2p and
G3 ∈ IRn×2p such that

2

66666666664

(1,1) (1,2) P1B0+P3B01 σ1P1At1
(1,2)T (2,2) P T

3 B0+P2B01 σ1P T
3 At1

BT
0 P1+BT

01P T
3 BT

0 P3+BT
01P2 −γ2Iq 0

σ1AT
t1P1 σ1AT

t1P T
3 0 −µ1In

eAT
t P T

3 −eCT
t GT

3
eAT

t P2−eCT
t GT

2 0 0

(1,6) 0 0 0
(1,7) 0 0 0

(1,8)T 0 0 0

(1,9)T 0 0 0

(1,10)T 0 0 0
0 0 0 0

P3eAt−G3eCt (1,6) (1,7) (1,8) (1,9) (1,10) 0

P2eAt−G2eCt 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−µ1Ir 0 0 0 0 0 0
0 −P1 −P3 0 0 0 0

0 −P T
3 −P2 0 0 0 0

0 0 0 −µ3In 0 0 0
0 0 0 0 −P1 −P3 (11,9)

0 0 0 0 −P T
3 −P2 (11,10)

0 0 0 0 (11,9)T (11,10)T −µ2In

3

7777777775

< 0 (33)

where

(1, 1) = (µ1 + µ2 + ϕµ3)In + herm {P1Aα1

+ ϕ
“
AT

w0

`
P3Aw(11) −G3Aw(12)

´

+ AT
w0

`
P2Aw(11) −G2Aw(12)

´´¯
,

(1, 2) = AT
α1P3 + P3At −G3Ct,

(2, 2) = herm (P2At −G2Ct) + (1 + µ1) Ir,

(1, 6) = AT
w0P1 + AT

w0P
T
3 ,

(1, 7) = AT
w0P3 + AT

w0P2,

(1, 8) = ϕ
1
2

“
AT

w0

“
P3

eAw(11) −G3
eAw(12)

”

+AT
w0

“
P2

eAw(11) −G2
eAw(12)

””
,

(1, 9) = AT
w(11)P

T
3 − AT

w(12)G
T
3 ,

(1, 10) = AT
w(11)P2 − AT

w(12)G
T
2 ,

(11, 9) = P3
eAw(11) −G3

eAw(12),

(11, 10) = P2
eAw(11) −G2

eAw(12),

Aα1 = At0 + α1At1,

and such that the gain matrices G2 and G3 are the solution
of the following equation

»
G2

G3

–
=

»
P2

P3

–
Z. (34)



Proof. Consider the following Lyapunov function

V (ξ) = ξTPξ, (35)

where

P =

»
P1 P3

P T
3 P2

–
. (36)

Applying Itô formula (Mao, 1997) to the system (30) (or
(32)), we get

d V (ξ(t)) = LV (ξ(t)) d t + 2ξT (t)PΨ(t)ξ(t) (37)

where

Ψ(t) = bAw0 d w0(t) +
“

bAw1 + ∆ bAw1(t)
”

d w1(t), (38)

and

LV (ξ(t)) d t=2ξT (t)
““

bAt0+∆ bAt0(t)
”

ξ(t)+ bB0v(t)
”

d t

+ ξT (t)〈PΨ(t), Ψ(t)〉ξ(t). (39)

By replacing (38) and (39), the relation (37) becomes

d V (ξ(t)) =

2ξT (t)P
““

bAt0 + ∆ bAt0(t)
”

ξ(t) + bB0v(t)
”

d t

+ ξT (t) bAT
w0P bAw0ξ(t) d w0(t)

2

+ ξT (t)
“

bAw1 + ∆ bAw1(t)
”T

P

×
“

bAw1 + ∆ bAw1(t)
”

ξ(t) d w1(t)
2

+ ξT (t) bAT
w0P

“
bAw1 + ∆ bAw1(t)

”
ξ(t) d w0(t) d w1(t)

+ ξT (t)
“

bAw1 + ∆ bAw1(t)
”T

P bAw0ξ(t) d w1(t) d w0(t)

+ 2ξT (t)P bAw0ξ(t) d w0(t)

+ 2ξT (t)P
“

bAw1 + ∆ bAw1(t)
”

ξ(t) d w1(t). (40)

Using the majoration lemma (Wang et al., 1992), it can be
shown that

2ξT (t)P∆ bAt0(t)ξ(t)

! ξT (t)
“
µ−1

1 PH1H
T
1 P + µ1H

T
t Ht

”
ξ(t), (41)

“
bAw1+∆ bAw1(t)

”T
P

“
bAw1+∆ bAw1(t)

”

! bAT
w1

“
P−1−µ−1

2 H2H
T
2

”−1bAw1+µ2H
T
wHw, (42)

2ξT (t) bAT
w0P∆ bAw1(t)ξ(t)

! ξT (t)
“
µ−1

3
bAT

w0PH2H
T
2 P bAw0 + µ3H

T
wHw

”
ξ(t). (43)

Now, taking the expectation of (40) (see (Mao, 1997)) and
using the relations (2) and the last three inequalities, then
E{d V (ξ(t))} can be bounded as

E {d V (ξ(t))}!E

̂
ξ(t)T v(t)T

˜
Θ1

»
ξ(t)
v(t)

–
d t

ff
(44)

where

Θ1 =

"
P bAt0 + bAT

t0P + CT C P bB0

bBT
0 P −γ2Iq

#

+ µ1

»
HT

t Ht 0
0 0

–
+ µ−1

1

»
PHT

1 H1P 0
0 0

–

+

"
bAT

w1

`
P−1−µ−1

2 H2H
T
2

´−1bAw1 0
0 0

#
+ µ2

»
HT

wHw 0
0 0

–

+ ϕµ3

»
HT

wHw 0
0 0

–
+

"
bAT

w0P bAw0 0
0 0

#

+

"
ϕµ−1

3

“
bAT

w0PH2H
T
2 P bAw0

”
0

0 0

#

+ ϕ

"
bAT

w0P bAw1 + bAT
w1P bAw0 0

0 0

#
. (45)

Now, applying the Schur lemma (Boyd et al., 1994), Θ1 can
be rewritten as

2

66666666664

(1, 1) P bB0 PH1
bAT

w0P
bBT

0 P −γ2Iq 0 0
HT

1 P 0 −µ1In+r 0

P bAw0 0 0 −P
ϕ

1
2 HT

2 P bAw0 0 0 0

P bAw1 0 0 0
0 0 0 0

ϕ
1
2 bAT

w0PH2
bAT

w1P 0
0 0 0
0 0 0
0 0 0

−µ3In+r 0 0
0 −P PH2

0 HT
2 P −µ2In

3

7777777775

(46)

where

(1, 1) = P bAt0 + bAT
t0P + bCT bC + (µ2 + ϕµ3)H

T
wHw

+ µ1H
T
t Ht + ϕ

“
bAT

w0P bAw1 + bAT
w1P bAw0

”
. (47)

Once the LMI (33) is verified, the asymptotic mean-square
stability of the system (32), for v(t) ≡ 0, can be proved
using Schur lemma and the same method of (Souley Ali et
al., 2005).
Now consider the following performance index

Jξv =

Z ∞

0
E

“
ξT (t) bCT bCξ(t)− γ2vT (t)v(t)

”
d t. (48)

Writting Jξv as

Jξv =

Z ∞

0

n
E

““
ξT (t) bCT bCξ(t)− γ2vT (t)v(t)

”
d t

+ d V (ξ(t)))}−E (V (ξ(t))t=∞ + E (V (ξ(t))t=0 . (49)

Or, since E (V (ξ(t))t=0 = 0 because ξ(0) = 0 and
E (V (ξ(t))t=∞ " 0, this implies

Jξv !
Z ∞

0

n
E

““
ξT (t) bCT bCξ(t)− γ2vT (t)v(t)

”
d t

+ d V (ξ(t)))} . (50)



Now if the LMI (33) holds, then applying Schur lemma
yields "

Θ P bB0

bBT
0 P 0

#

| {z }
Π

+

"
bCT bC 0
0 −γ2Iq

#
< 0 (51)

with

Θ = P bAt0 + bAT
t0P + µ1H

T
t Ht + (µ2 + ϕµ3)H

T
wHw

+ ϕ( bAT
w0P bAw1 + bAT

w1P bAw0) + µ−1
1 PHT

1 H1P+

bAT
w0P bAw0 + ϕµ−1

3

“
bAT

w0PH2H
T
2 P bAw0

”
.

Therefore

Jξv !
Z ∞

0
E

„ˆ
ξ(t)T v(t)T

˜
Π

»
ξ(t)
v(t)

–
d t

+
ˆ
ξ(t)T v(t)T

˜
"

bCT bC 0
0 −γ2Iq

# »
ξ(t)
v(t)

–
d t

!
< 0,

so, if the LMI (33) holds the asymptotic mean-square sta-
bility and the H∞ performance are proved. ❏

V. Numerical example

Consider the stochastic bilinear system (1) and suppose
that the matrices have the following numerical value

At0 =

2

4
−1.5 1 −1
0.5 −2.5 1
0 −0.6 −3.5

3

5 , B0 =

2

4
−0.1 0.3
−1 0.2
0.6 0.5

3

5 ,

At1 =

2

4
−0.01 0.1 0

0 −0.05 0
0.15 0 −0.02

3

5 ,

Aw0 =

2

4
1 0 0.2

0.5 0.3 −0.1
−0.2 0 0.2

3

5 ,

C =

»
1 0 0
0 1 0

–
, L =

»
0 −1 1
1 0 −1

–
,

J1 =

»
−0.03 0 −0.03

0 −0.01 0

–
.

The control u1(t) is defined as in (3), with

u1 min = −5 ! u1(t) ! u1 max = 6,

and the initial state ξ(0) = [ xT (0) eT (0) ]T is

ξ(0) =
ˆ
−1 0.5 1 0.5 −2

˜T
.

The gain Z is obtaind for γ = 22 and µ1 = 7.4628, µ2 =
0.0057 and µ3 = 0.2476 and is then given by

Z =

»
−6179.565 −6191.2468 47.380 47.2190
−1810.724 −1819.847 20.760 20.796

–
.

Finally, the matrices of the reduced-order filter (5) are

M0 =

»
−9.291 −4.791
−4.862 −7.362

–
, M1 =

»
−0.041 −0.020
−0.114 −0.146

–
,

N0 =

»
4.291 −7.391
5.862 −3.262

–
, N1 =

»
0.171 0.009
−0.002 −0.002

–
.

The following figures show the simulation results of the
augmented system (32). The state x(t) and the estimation
error e(t) are plotted. The disturbance signal v(t) is pre-
sented with the error plots. The simulation is made for
the control u1(t) = 0.5 sin(3t) + 2, and the covariance factor
between the Wiener processes defined in (2b) ϕ = 0.0215.

Time [sec] 

Fig. 1. The actual state x(t).

v(t)

Time [sec] 

Fig. 2. The error e(t) and the disturbance v(t).

VI. Conclusion

This paper provided a solution to the reduced-order H∞
filtering problem for bilinear stochastic systems with mul-
tiplicative noise. The approach is based on a change of vari-
able on the control input and on the using of a Sylvester-
like condition on the drift term to transform the problem
into a robust reduced-order stochastic filtering one. Using
the LMI method and the Itô formula we reduced the prob-
lem to the search of a unique gain matrix. Then the filter
matrices are computed through this gain.
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