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Abstract— This paper deals with the design of a reduced-
order H filter for a stochastic bilinear systems with a pre-
scribed Hs norm criterion. The problem is transformed into
the search of a unique gain matrix by using a Sylvester-like
condition on the drift term. The considered system is bi-
linear in control and with multiplicative noise in the state
and in the measurement equations. The approach is based
on the resolution of LMI and is then easily implementable.

Keywords— Reduced-order H filter, Itd’s formula, Stochas-
tic systems, Bilinear systems, Lyapunov function.

I. INTRODUCTION

The bilinear systems represent sometimes a good mean
to physical systems modeling when the linear representa-
tion is not sufficiently significant. The stochastic systems
get a great importance during the last decades as shown
by numerous references (Kozin, 1969; Has’'minskii, 1980;
Florchinger, 1995; Mao, 1997; Carravetta et al., 2000; Ger-
mani et al., 2002; Xu and Chen, 2003).

Generally, bilinear stochastic system designs a stochastic
system with multiplicative noise instead of additive one
(Carravetta et al., 2000; Germani et al., 2002). The full
and the reduced-order H., filtering for stochastic systems
with multiplicative noise has been treated in many papers
(Hinrichsen and Pritchard, 1998; Gershon et al., 2001; Xu
and Chen, 2002; Stoica, 2002). Notice that the measure-
ment equation in (Xu and Chen, 2002; Stoica, 2002) is not
corrupted by noise. The problem is solved in terms of two
LMIs and a coupling non convex rank constraint.

In this paper the problem of reduced-order H filtering for
a larger class of stochastic systems than those studied in the
papers cited above is considered since the studied systems
are with multiplicative noise and multiplicative control in-
put (the bilinearity is also between the state and the control
input). The measurements are subjected to a multiplica-
tive noise too. Notice that, as in the deterministic case,
the multiplicative control input affects the observability of
the system.

The purpose is to design a reduced-order Ho filter for such
a system. We first use a “unbiasedness” (decoupling) con-
dition on the drift part of the estimation error and a change
of variable on the control input. Then applying the Ito for-
mula and LMI method permit to reduce the problem to the
search of a unique gain matrix. The reduced-order stochas-
tic filter matrices are then computed using this gain.
Throughout the paper, E represents expectation operator
with respect to some probability measure P. (X,Y) = XY
represents the inner product of the vectors X,Y € IR".

herm(A) stands for A+ A7,

L» (9,R*) is the space of square-integrable IR*-valued func-
tions on the probability space (2, F, P) where Q is the sam-
ple space, F is a o-algebra of subsets of the sample space
called events and P is the probability measure on . (%),
denote an increasing family of o-algebras (F) € F. We
also denote by L ([0, 00) ; R¥) the space of non-anticipatory
square-integrable stochastic process f(.) = (f(¢)) in
R* with respect to (F1),c(o o) Satisfying

IF1Z, =& {/OOO |\f(t)\|2dt} < 00

where ||.|| is the well-known Euclidean norm.

te[0,00)

II. PROBLEM STATEMENT

Let us consider the following stochastic bilinear system

dz(t) = (Awx(t) + ui(t)Anz(t)) dt
—|—BoU(t) dt+ Awol‘(t) d wo(t) (1)
dy(t) = Cz(t)dt + Jiz(t) dwi(t)
z(t) = Lx(t)

where z(t) € R" is the state vector, y(t) € IR? is the out-
put, ui(t) € R is the control input, 2(¢) € R" is a linear
combination of the state vector with r < n and v(t) € R?
is the perturbation signal. Without loss of generality L is
assumed to be a full row rank matrix. w;(t) is a Wiener
process verifying (Has’minskii, 1980)

E (dwi(t)) = 0, E(dw;(t)*) = dt, fori=0,1,
E (dwo(t)dwi(t)) = E(dwi(t)dwo(t)) = ¢dt
with |¢| < 1.

(2a)

(2b)

As in the most cases for physical processes, we assume that
the stochastic bilinear system (1) has known bounded con-
trol input, i.e. u1(¢) € T C R, where

I'= {u1 (t) cRR ‘ U1l min < Ul(t) <w max}- (3)

The study made here can be easily generalized for the case
where there are m control inputs.
First, we introduce the following definition and assumption.

Definition 1. (Kozin, 1969; Has’minskii, 1980) The
stochastic system (1) with v(t) = 0 is said to be asymp-
totically mean-square stable if all initial states x(0) yields

lim B lz@®)||> =0, Vui(t) €T, (4)



Assumption 1. The stochastic bilinear system (1) is as-
sumed to be asymptotically mean-square stable.

In this paper, the aim is to design a reduced-order filter in
the following form

dn(t) = (Mo + u1(t)M1) n(t)dt
+ (No + u1(t)N1) d y(t)

(5)

where n(t) € R" is the filter state with »r < n and the ma-
trices M; and N; (for i = 0,1) are to be determined.
Then the following problem is considered.

Problem 1. Given a real v > 0, the goal is to design a
asymptotically mean-square stable reduced-order Hoo filter
(5) such that the augmented state [z7(t) T (t)]T is asymp-
totically mean-square stable and the following Ho perfor-

mance
le®IZ, < Alo@)2, (6)

is achieved from the disturbance v(t) to the filtering error
e(t) = 2(t) — ().

Let us consider the following estimation error

e(t) = Lz(t) — n(t). (7)
So the estimation error dynamics becomes
de(t) = (Mo + Miuz (t)) 6(t) dt+ LB()’U(t) dt
+ {(LAto — MoL — N()C)
+ (LAtl — ML — NlC)ul(t)}x(t) dt
+ LAwox(t) dwo(t)
— ((N()—|—U1(t)N1)J113(t)d’w1(t). (8)

In order to supress the direct effect of the state z(t) on the
drift part of the filtering error, we consider the following
Sylvester-like conditions

LAy — M;L — N;C =0, i=0,1. (9)
Let us consider the following augmented state vector
§h(t) = [«" (1) " (1)] - (10)

Then under (9), the dynamics of the augmented system is
given by

d&(t) = (Aw + Auui (b)) () dt 4+ Bov(t) dt
+ Awo(t) dwo(t)

+ (Awt + Awaur () £(t) dwn, (11)

with
A = 1%“ ]\gj , for i=0,1,
Bo = :5900] ’ Avo = [Lﬁujo g] ’
An=[ s An=wn)

In the sequel the relations (9) are used to express the filter
matrices through a single gain matrix.

In fact, since L is a full row rank matrix, relations (9) are
equivalent to

(LA¢ — ML — N;C) [LJr (In, — LTL)} =0,

for i=0,1. (13)
where LT is a generalized inverse of matrix L satisfying L =
LL'L (Lancaster and Tismenetsky, 1985) (since rank L = r,
we have LLT = I,.).

Relations (13) give

0=LAuL' — M, — N;,CL' for i=0,1, (14a)
0= LZz — Nzé for 1= O, 1, (14b)
where
A =Au(l, — L'L) for i=0,1, (15a)
C=0(I, - L'L). (15b)
The relation (14a) gives
M; =A; — N,C, for i=0,1, (16)
where
A, = LAuLT, for i=0,1, (17a)
¢ =crL. (17b)
The relation (14b) becomes
KX = LA, (18)
where
K= [No N1, (19)
A=[4, 4], (20)
C 0
5= B 6} , (21)

and a general solution to equation (18), if it exists, is given
by

K=LAS +Z(I, — ¥ 51, (22)

where

7 =12 4], (23)

is an arbitrary matrix of appropriate dimensions.

III. TRANFORMATION OF THE BILINEAR SYSTEM
FILTERING PROBLEM INTO AN UNCERTAIN ONE

As in (Zasadzinski et al., 2003), let us introduce a change
of variable on the control u,(¢) as follows

ul(t) = o1 + O’1€1(t) (24)
where a; € R and o1 € R are given by
1 1
a1 = Q(ulmin + ulmax), g1 = §(u1max - ulmin)‘ (25)

The new “uncertain” variable is e1(t) € T C IR where the
polytope T is defined by
f:{al(t) eR I E1min =

—1 < 51(t) < Elmax — 1} . (26)



Then the error dynamics (8) can be rewritten as

de(t) = (At — ZCy+ (A — Z@t)Ag(sl(t))He) e(t)dt
+ Bov(t) dt + Awox(t) dwo(t) + (Awan — ZAwaz)
By = Zhu2)Ac (21 (0) Ha ) 2(t) duwn (1) (27)
where
Ar=Ag+ A —LAXIA,  Ci= (I — % ZHA,
Ay =01 A, — LA STA, Ci = (Iop — X SNHA,
Boy = LBy, Awo = LAuo,
Ay = LA ST, Awazy = (Iop — X 2N,
Ay = LA 210, Az = (Ip — = 21T,
and
CcLt 0
B Lucv] Ve { aJJ Yo = [—UJJ ’
— 1, H, =1,

e

Ac(er(t) = (W) Ir, Ay(e1(t)) = e1(t)]n.

Using the definition (26), the matrix A.(e1(t)) and A, (e1(t))

satisfy
and (28)

[Ae; (1 ()] < 1, [Az(e(®))]] < 1.

Using (24), the system state equation (see (1)) becomes

dz(t) = (Aw + a1 A + o161 (8) A) z(t) d t
+ Bov(t) dt + Awox(t) dwo(t). (29)
So the augmented system (11) is rewritten as
de(t) = (,&o + Afxto(t)) €(t)dt+ Bov(t) dt
+ Auof(t) dwo(t)
+ (Aur + AAua (1)) €(8) dwn (1) (30)
where
A= Ao +a14n 0
0 0 Ay — ZCy)”
AAuo(t) = HiA¢(e1(t)He,
=~ [Bo ~ [Awo O
BO - |:]BOl:| ; AwO - |:Aw() 0:| 5
= Loy 7 0
vt Auay — ZAywa2y 0]
Adui(t) = HaAg(e1(t)) Hu,
U’1At1 0 0
Hl = ~ ~ = | ~ ~
0 A,—ZC, Ay — ZAuaz)
I, 0O
Ht: |:0 I:|7 sz [In 0],A5(81(t))=81(t).
Notice that from (26), A¢(e1(t)) satisfy
[Ae(er(®)] < 1. (31)

IV. SYNTHESIS OF THE REDUCED-ORDER FILTER

Consider the following system obtained from (30)

dg(t) = (Aw+Adn(®)e(t)dt+Bov(t)dt
w0 E(t) dwo(t)+ (Xw1+A2w1(t)) () dwy (t)
e(t) = Cet)

(32)

where C = [0 I,].
Then the following theorem is given for the filter synthesis.

Theorem 1. The reduced-order Ho filtering problem 1 is
solved for the system (1) with the filter (5) such that the
augmented system (32) is asymptotically mean-square sta-
ble and verifies the Hoo performance (6) if, for some reals
p1 > 0,42 >0 and pz > 0 there exist matrices P, = P >
0eR™™, P, =P >0cR™", Pse R"*",G2 € R"™*% and
G3 € R"*?F such that

r (1,1) (1,2) P1Bo+P3Bo1 o1 P1 A4
1,2)T (2,2) P Bo+PaBo1 o1 P§ A
BE Pi+BL PY BY P3+BL Py —~21, 0
o1 Al Py o1 AL PT 0 —p1ln
AT Pl -crc? Al p,-cTct 0 0
(1,6) 0 0 0
(1,7) 0 0 0
1,87 0 0 0
1,97 0 0 0
107 0 0 0
- 0 0 0 0
P3Ay—GsCy (1,6) (1,7) (1,8) (1,9)  (1,10) 0o ]
Pyhy—GoCy 0O 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
—p1 Iy 0 0 0 0 0 0
0 —P, —P3 0 0 0 0
0 -Pf —-P, 0 0 0 0 <0 (33)
0 0 0 —psl, O 0 0
0 0 0 0 —P —-pP3  (11,9)
0 0 0 0 -prf —Py  (11,10)
0 0 0 o (11,97 (11,1007 —pol, J
where
(1,1) = (p1 + p2 + @p3) I + herm { P1 Aax
+o (Ago (PsAw(11) — G3Aya2))
+ A% (P2Ayany — G2Auan))},
(1,2) = A%y Ps + PsAy — G3Cy,
(2,2) = herm (P2Ay — G2Cy) + (1 + ) I,
(1,6) = Ao Pr + AuoPs,
(17 7) - AwOP3 + AwOP27
(1,8) = p2 (Aﬁo (P31§w(11) - G3Aw(12))
+A%0 (P2J&w(11) - G2;§w(12))) ;
(1,9) = w(ll)P3 _Aw(l2)G37
(1 10) w(ll)P2 w(12 GQ ’
(11 9) PsA w(l1l) — GgA (12)5
(113 10) = PQAw(ll) - GQAw(12)7

As1 = Ao + a1 An,

and such that the gain matrices G2 and Gs are the solution
of the following equation

{gj _ ﬁj z (34)



Proof. Consider the following Lyapunov function

V(e =¢"Pe, (35)
where
P P
P {PE PQ]. (36)

Applying It6 formula (Mao, 1997) to the system (30) (or
(32)), we get

AV (&) = LV(E(E) dt+ 267 () PE()E() (37)
where
W(t) = Awo dwo(t) + (ﬁwl + Aﬁwl(t)) dw (2), (38)
and
LV(£(t)) dt=2¢7 (¢) ((EtwAﬁw(t)) 5(t)+§ov(t)) i
+ETO(PY(1), ()E®).  (39)

By replacing (38) and (39), the relation (37) becomes

V() =
27 (£)P ((Ato + AAy(t )) €(t) + éou(t)) dt

€7 () AfoP Auwof(t) dwo(t)?

(t)( o+ AL () P

x (Ewl + Aﬁwl(t)) () dwy (1)

+ €7 () AboP (Aur + AR () €(8) duwo(t) dwn (1)
€7 (0) (B + AR (1)) P Auo8(r) dun (1) d o 1)
+2§ (t)PAwoﬁ(t)dwo(t)

1267 ()P (Awl + Aﬁwl(t)) () dw (). (40)

Using the majoration lemma (Wang et al., 1992), it can be
shown that

26" (YPAAw(t)E(t)
<€) (i PHUHTP 4+ HE L) €(0), (41)
~ —~ T —~ —~
(Aw1+AAw1<t)) P(Aw1+AAw1(t))
Eﬂl(P*l—u;le;H;“) 712w1+u2HZ;Hw, (42)
26" (1) ALoPAAwL (£)E()

<€7(t) (3 ALy PHHT P Ao + s Hi Ho ) €(1). (43)

Now, taking the expectation of (40) (see (Mao, 1997)) and
using the relations (2) and the last three inequalities, then
E{dV(£(¢))} can be bounded as

B{avEo)<e{E0” oole:]ad @)

where
PAw+ ALP +CTC PBo
BIp —21,

HIH, 0 1 [PHYHIP O
+‘“{ 0 o]+ ! 0 0

[Hg H, o]
+ pe2

0, =

AL (P~ —py ' HoHY) " 'Ayr 0

+ 0 0

0 O

A\gopA\wo 0

HIH, 0
0 0

—|—(p,u3|: 0 O—|—

oui (ALPH2HIPAuo ) 0
0 0

—+

AT PAw1 + AL P Ay 0

: ol )

+¢

Now, applying the Schur lemma (Boyd et al., 1994), ©;1 can
be rewritten as

(1,1) PBy PH, AL,P
BIP —~%1, 0 0
H’lr,P 0 _Mljn+r 0
P Awo 0 0 —P
O HIPAw 0 0 0
PAy 0 0 0
I 0 0 0 0
@2 AL PH, ALP 0 ]
0 0 0
0 0 0
0 0 0 (46)
_/1/3In+r 0 0
0 —-P PH:
0 HIP —pal,]
where
(1,1) = PAyo + AP + CTC + (pa + ops) HL Hy
+mH Hy+ ¢ (AP Aus + AL PAw) . (47)

Once the LMI (33) is verified, the asymptotic mean-square
stability of the system (32), for v(t) = 0, can be proved
using Schur lemma and the same method of (Souley Ali et
al., 2005).

Now consider the following performance index

Jew = / TE (€700 Ce) — " (0u(n) dt. (48)
Writting Je, as
Jew = / {E (t)CTOe(t) — 'y2vT(t)v(t)) dt
+dVEMN} —E(V(E1)jeee TEV(E®)m - (49)
Or, since E(V(£(t)),., = 0 because £(0) = 0 and
E (V(£(t)),_., = 0, this 1mphes
Jeo < /0 h {B((€7®)CCe(t) - 4" (Ho(t)) dt
+dV(E®))}.  (50)



Now if the LMI (33) holds, then applying Schur lemma
yields

R 1
Bfp o (51)

e PB
0 -,

[éTé 0

I
with
O =PAy+ A\Z;)P + ,LLIHtTHt + (2 + @M3)H£Hw
+ (AL P A1 + AL P Awo) + py "PHT HiP+
AATwOPA\wO + (P,U;g_l (A\;I;,Q’PHQHg'PA\wo) .

Therefore
* T ot [EG)
ng</0 E([g(t) o(t) ]H{v(t)}dt
cTC o

+[¢@®)" v(@®)7]

0 WQIq] [igﬂ dt) <0

so, if the LMI (33) holds the asymptotic mean-square sta-
bility and the Ho, performance are proved. M|
V. NUMERICAL EXAMPLE

Consider the stochastic bilinear system (1) and suppose
that the matrices have the following numerical value

15 1 -1 0.1 0.3
Aw= |05 —25 1 |, Bo=| -1 0.2/,
| 0 —0.6 —35 0.6 0.5
—0.01 01 0
An=1| 0 -005 0 |,
015 0 —0.02
T 10 02
Awo= | 0.5 0.3 —0.1],
—02 0 0.2
100 0-1 1
Ci_ow}’ L*LO—J’
S _[-003 0 003
Y1 0 -001 0

The control us (t) is defined as in (3), with
U1 min = —5 < u1(¢) € U1 max = 6,
and the initial state £(0) = [ 27 (0) e (0) |7 is
¢0)=[-1 05 1 05 —2]".

The gain Z is obtaind for v = 22 and p1 = 7.4628, s =
0.0057 and ps = 0.2476 and is then given by

—6179.565 —6191.2468 47.380 47.2190
—1810.724 —1819.847 20.760 20.796 |

Finally, the matrices of the reduced-order filter (5) are

A — [F9:201 —4.791  [~0.041 —0.020
= 14862 —7.362|" YT 120114 —0.146]°

N [4:201 —7.301 N, [0171 0.009
7 |5.862 —3.262| Y7 120.002 —0.002]

The following figures show the simulation results of the
augmented system (32). The state z(¢) and the estimation
error e(t) are plotted. The disturbance signal v(t) is pre-
sented with the error plots. The simulation is made for
the control u;(t) = 0.5sin(3t) + 2, and the covariance factor
between the Wiener processes defined in (2b) ¢ = 0.0215.

1

ash

0.5 "

Time [sec]

Fig. 1. The actual state x(t).

Time [sec]
Fig. 2. The error e(t) and the disturbance v(t).

VI. CONCLUSION

This paper provided a solution to the reduced-order Hoo
filtering problem for bilinear stochastic systems with mul-
tiplicative noise. The approach is based on a change of vari-
able on the control input and on the using of a Sylvester-
like condition on the drift term to transform the problem
into a robust reduced-order stochastic filtering one. Using
the LMI method and the It6 formula we reduced the prob-
lem to the search of a unique gain matrix. Then the filter
matrices are computed through this gain.
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