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We start with a given modular invariant M of a two dimensional su(n) k conformal field theory (CFT) and present a general method for solving the Ocneanu modular splitting equation and then determine, in a step-by-step explicit construction, 1) the generalized partition functions corresponding to the introduction of boundary conditions and defect lines; 2) the quantum symmetries of the higher ADE graph G associated to the initial modular invariant M. Notice that one does not suppose here that the graph G is already known, since it appears as a by-product of the calculations. We analyze several su(3) k exceptional cases at levels 5 and 9.

Introduction

Following the works of [START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, notes taken[END_REF], it was shown that to every modular invariant of a 2d CFT one can associate a special kind of quantum groupoïd B(G), constructed from the combinatorial and modular data [START_REF] Gannon | Modular data: the algebraic combinatorics of conformal field theory[END_REF] of a graph G [START_REF] Petkova | The many faces of Ocneanu cells[END_REF][START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF][START_REF] Trinchero | Quantum symmetries of faces models and the double triangle algebra[END_REF][START_REF] Coquereaux | Racah -Wigner quantum 6j Symbols, Ocneanu Cells for A N diagrams, and quantum groupo ïds[END_REF]. This quantum groupoïd B(G) plays a central role in the classification of 2d CFT, since it also encodes information on the theory when considered in various environments (not only on the bulk but also with boundary conditions and defect lines): the corresponding generalized partition functions are expressed in terms of a set of non-negative integer coefficients that can be determined from associative properties of structural maps of B(G) [START_REF] Behrend | Boundary Counditions in Rational Conformal Field Theories[END_REF][START_REF] Zuber | ADE and all that[END_REF][START_REF] Petkova | Generalised twisted partition functions[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF]. A series of papers [START_REF] Petkova | Generalised twisted partition functions[END_REF][START_REF] Coquereaux | Notes on the quantum tetrahedron[END_REF][START_REF] Petkova | The many faces of Ocneanu cells[END_REF][START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF][START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF] presents the computations allowing to obtain these coefficients from a general study of the graph G and its quantum symmetries. In this approach, the set of graphs G is taken as an input. For the su(2) k model, the graphs G are the ADE Dynkin diagram, and for the su(3) k the Di Francesco-Zuber diagrams. A list of graphs has also been proposed in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF] for the su(4) k model. For a general SU (N ) system, the set of graphs G presents the following pattern. There is always the infinite series of A k graphs, which are the truncated Weyl alcoves at some level k of SU (N ) irreps. Other infinite series are obtained by orbifolding and conjugation methods, but there are also some exceptional graphs (generalizing the E 6 and E 8 diagrams of the SU (2) series) that can not be obtained in that way (to some extent, the E 7 diagram can be obtained from a careful study of the D 10 case). One of the purposes of this article is actually to present a method to obtain these graphs.

We start with a modular invariant of a 2d su(n) k CFT as initial data. Classification of modular invariants is only completed for n = 2 and 3, but there exist several algorithms, mostly due to T. Gannon, that allow one to obtain modular invariants up to rather high levels of any affine algebra. By solving the modular splitting equation (to be recalled later), we obtain the coefficients of the generalized partition functions, as well as the quantum symmetries of the graph G, encoded in the Ocneanu graph Oc(G). The graph G itself is then obtained at this stage as a subgraph or a module graph of its own Ocneanu graph: it appears as a by-product of the computations.

Notice that the determination of the higher ADE graphs G by solving the modular splitting equation seems to be the method followed by A. Ocneanu (see [START_REF] Ocneanu | Higher Coxeter systems, Talk given at MSRI[END_REF]) to obtain the lists of SU (3) and SU (4) graphs presented in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF], as a generalization of the Xu's algorithm [START_REF] Xu | New braided endomorphisms from conformal inclusions[END_REF] (see also [START_REF] Petkova | Boundary conditions in charge conjugate sl(N ) WZW theories[END_REF]). But explicitation of his method was never been made available in the literature. The method that we describe here (that incorporates the solution of the modular splitting equation itself) was briefly presented in [START_REF] Coquereaux | On quantum symmetries of the non-ADE graph F 4[END_REF] for the study of the non simply laced diagram F 4 , and is extended and presented in more general grounds.

The paper is organized as follows. In section 2 we review some results of CFT in order to fix our notations, and present the basic steps of the method allowing to solve the modular splitting equation. Section 3 treats with more technical details of the resolution, making the difference between commutativity or non commutativity of the quantum symmetry algebra.

In the last section we analyze some examples in order to illustrate the techniques. First we treat two exceptional SU (3) modular invariants at level 5, labelled by the graphs E 5 and E 5 /3. The last example is the level 9 exceptional SU (3) modular invariant, which is a special case since it leads to a non-commutative algebra of quantum symmetries and that there are two different graphs, E 9 and E 9 /3, associated to it. We also discuss the third graph initially associated to the same modular invariant in [START_REF] Di Francesco | SU(N) Lattice integrable models associated with graphs[END_REF] but later rejected by Ocneanu in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF].

CFT and graphs

Consider a 2d CFT defined on a torus, where the chiral algebra is an affine algebra su(n) k at level k. The modular invariant partition function reads

Z = λ,µ χ λ M λµ χ µ , (1) 
where χ λ is the character of the element λ of the finite set of integrable representations of su(n) k , and where the matrix M is called the modular invariant: it commutes with the generators S and T of the modular group P SL(2, Z). The introduction of boundary conditions (labelled by a, b), defect lines (labelled by x, y) or the combination of both, result in the following generalized partition functions (see [START_REF] Cardy | Boundary conditions, fusions rules and the Verlinde formula[END_REF][START_REF] Behrend | Boundary Counditions in Rational Conformal Field Theories[END_REF][START_REF] Petkova | Generalised twisted partition functions[END_REF]):

Z a|b = λ (F λ ) ab χ λ (2) 
Z x|y = λ,µ (V λµ ) xy χ λ χ µ (3) 
Z x|ab = λ (F λ S x ) ab χ λ (4) 
All coefficients appearing in the above expressions express multiplicities of irreducible representations in the Hilbert space of the corresponding theory and are therefore non-negative integers. They are conveniently encoded in a set of matrices: the annular matrices F λ with coefficients (F λ ) ab ; the double annular matrices V λµ with coefficients (V λµ ) xy and the dual annular matrices S x with coefficients (S x ) ab . The different set of indices run as λ, µ = 0, . . . , d I -1; a, b = 0, . . . , d G -1 and x, y = 0, . . . , d O -1. The integer d I is the number of irreps at the given level k; the integers d G and d O are given in terms of the modular invariant M by d G = T r(M) and d O = T r(MM † ) (see [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF][START_REF] Evans | Subfactor realization of modular invariants[END_REF]). Compatibilities conditions -in the same spirit than those defined by Cardy in [START_REF] Cardy | Boundary conditions, fusions rules and the Verlinde formula[END_REF] for boundary conditions -impose relations on the above coefficients (see [START_REF] Di Francesco | SU(N) Lattice integrable models associated with graphs[END_REF][START_REF] Behrend | Boundary Counditions in Rational Conformal Field Theories[END_REF][START_REF] Petkova | Generalised twisted partition functions[END_REF]). Altogether they read:

F λ F λ ′ = λ ′′ N λ ′′ λλ ′ F λ ′′ (5) 
V λµ V λ ′ µ ′ = λ ′′ µ ′′ N λ ′′ λλ ′ N µ ′′ µµ ′ V λ ′′ µ ′′ (6) 
S x S y = z O z yx S z (7) 
N ν λµ are the fusion coefficients describing the tensor product decomposition λ ⋆ µ = ν N ν λµ ν of representations λ and µ of su(n) k . They can be encoded in matrices N λ called fusion matrices. O z xy are the quantum symmetry coefficients and can be encoded in matrices O x called quantum symmetry matrices.

The matrices {F λ , N λ , O x , V λµ , S x } have non negative integer coefficients: they can be seen as the adjacency matrices of a set of graphs. Knowledge of these graphs helps therefore to the complete determination of the partition functions (2), ( 3) and [START_REF] Coquereaux | Notes on the quantum tetrahedron[END_REF]. All these coefficients also define (or can be obtained by) structural maps of a special kind of quantum groupoïd [START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, notes taken[END_REF][START_REF] Petkova | The many faces of Ocneanu cells[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF][START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF][START_REF] Coquereaux | Racah -Wigner quantum 6j Symbols, Ocneanu Cells for A N diagrams, and quantum groupo ïds[END_REF]. It is not the purpose of this paper to explore those correspondences, nor to study the mathematical aspects of this quantum groupoïd. What we will do here is to determine, taking as initial data the knowledge of the modular invariant M, all the coefficients of the above matrices.

Steps of the resolution

We start with the double fusion equations [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF], which are matrix equations involving the double annular matrices V λµ , of size d O × d O , with coefficients (V λµ ) xy . Notice that these coefficients can also be encoded in matrices W xy , of size d I × d I , with coefficients (W xy ) λµ = (V λµ ) xy . The W xy are called double toric matrices. When no defect lines are present (x = y = 0), we must recover the modular invariant of the theory, therefore W 00 = M. Using the double toric matrices W xy , the set of equations ( 6) read:

z (W xz ) λµ W zy = N λ W xy N tr µ . (8) 
The successive steps of resolution are the following:

Step 1: toric matrices Setting x = y = 0 in (8) and using the fact that W 00 = M we get:

z (W 0z ) λµ W z0 = N λ M N tr µ . (9) 
This equation was first presented by A. Ocneanu in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF] and is called the modular splitting equation. The r.h.s. of (9) involves only known quantities, namely the modular invariant M and the fusion matrices N λ . The l.h.s. involves the set of toric matrices W z0 and W 0z , that we determine from this equation.

Step 2: double fusion matrices Setting y = 0 in (8) we get:

z (W xz ) λµ W z0 = N λ W x0 N tr µ (10) 
Once the toric matrices W x0 have been determined from Step 1, the r.h.s. of (10) then involves only known quantities. Resolution of these equations determine the double toric matrices W xy -and equivalently the double fusion matrices V λµ -appearing in the l.h.s. of [START_REF] Coquereaux | Racah -Wigner quantum 6j Symbols, Ocneanu Cells for A N diagrams, and quantum groupo ïds[END_REF].

Step 3: Ocneanu graph The double fusion matrices V λµ are generated by a subset of fundamental matrices V f 0 and V 0f , where f stands for the generators of the fusion algebra (for SU (n) there are n-1 fundamental generators). These matrices are the adjacency matrices of a graph called the Ocneanu graph. Its graph algebra is the quantum symmetry algebra, encoded in the set of matrices O x .

Step 4: higher ADE graph G The higher ADE graph G corresponding to the initial modular invariant M is recovered at this stage as a module graph of the Ocneanu graph. It may be a subgraph of Oc(G) or an orbifold of one of its subgraphs. One also distinguishes type I cases (also called subgroup or self-fusion cases) and type II cases (also called module or non self-fusion cases).

Step 5: realization of the Ocneanu algebra Once the higher ADE graph G has been obtained, and following the works of [START_REF] Coquereaux | Notes on the quantum tetrahedron[END_REF][START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF], we propose a realization of its quantum symmetry algebra Oc(G) as a particular tensor product of graph algebras. Each case being singular, we refer to the examples treated in the last section for more details. This realization allows a simple expression for the matrices O x and S x .

Comments The first three steps of the method presented here can be seen as a generalization of an algorithm proposed by Xu [START_REF] Xu | New braided endomorphisms from conformal inclusions[END_REF] for the determination of generalized Dynkin diagrams (see also [START_REF] Petkova | Boundary conditions in charge conjugate sl(N ) WZW theories[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF]). The role of the annular matrix element (F λ ) 00 in Xu's construction is played here by the partition function multiplicity M λµ = (V λµ ) 00 . The method described here is more general, allowing the determination of the set of matrices {F λ , N λ , O x , V λµ , S x } and the corresponding graphs.

3 From the modular invariant to graphs

We start with a modular invariant M at a given level k of a su(n) CFT, and the corresponding fusion matrices N λ .

Determination of toric matrices W x0

We compute the set of matrices K λµ defined by:

K λµ = N λ M N tr µ . (11) 
The modular splitting equation ( 9) then reads:

K λµ = d O -1 z=0 (W 0z ) λµ W z0 . (12) 
This equation can be viewed as the linear expansion of the matrix K λµ over the set of toric matrices W z0 , where the coefficients of this expansion are the non-negative integers (W 0z ) λµ . The number d O is the dimension of the Ocneanu quantum symmetry algebra, it is evaluated by d O = T r(MM † ). The algebra of quantum symmetries comes with a basis (call its elements z) which is special because structure constants of the algebra, in this basis, are non-negative integers. We introduce the linear map from the space of quantum symmetries to the space of d I × d I matrices defined by z → W z0 . This map is not necessarily injective: although elements z of the quantum symmetries are linearly independent, it may not be so for the toric matrices W z0 (in particular two distinct elements of the quantum symmetries can sometimes be associated with the same toric matrix). Let us call r the number of linearly independent matrices W z0 . Equation [START_REF] Evans | Subfactor realization of modular invariants[END_REF] tells us that each K λµ (a matrix), defined by [START_REF] Di Francesco | SU(N) Lattice integrable models associated with graphs[END_REF], can be decomposed on the r dimensional vector space spanned by the vectors (matrices) W z0 .

The number r can be obtained as follows. From [START_REF] Di Francesco | SU(N) Lattice integrable models associated with graphs[END_REF] we build a matrix K with elements of the form K {λµ},{λ ′ µ ′ } , which means that each line of K is a flattened 1 matrix K λµ . Then r is obtained as the (line) rank of the matrix K, since the rank gives precisely the maximal number of independent lines of K, therefore the number r of linearly independent matrices W z0 . Two cases are therefore to be considered: depending if toric matrices are all linearly independent (the map z → W z0 is injective and r = d O ) or not (r < d O ).

We also introduce a scalar product in the vector space of quantum symmetries for which the z basis is orthonormal. We consider the squared norm of the element z (W 0z ) λµ z and denote it ||K λµ || 2 . This is an abuse of notation, "justified" by equation [START_REF] Evans | Subfactor realization of modular invariants[END_REF], and in the same way, we shall often talk, in what follows, of the "squared norm of the matrix K λµ ", therefore identifying z with W z0 , although the linear map is not necessarily an isomorphism. We have the following property:

Property 1 The squared norm of the matrix K λµ is given by:

||K λµ || 2 = (K λµ ) λ * µ * . ( 13 
)
Proof: We have:

||K λµ || 2 = z |(W 0z ) λ,µ | 2 = z (W 0z ) λµ (W z0 ) λ * µ * = (K λµ ) λ * µ *
From the first to the second line we used the following property:

(W 0z ) λµ = (W z0 ) λ * µ * (14) 
that can be derived from the relation V λ * µ * = (V λµ ) tr , where λ * is the conjugated irrep of λ (see [START_REF] Petkova | The many faces of Ocneanu cells[END_REF]). From the second to the third line we use Eq. ( 12) in matrix components.

We now treat the two cases to be considered. Note: an explicit study of all cases seems to indicate that the linear independence (or not) of the toric matrices reflects the commutativity (or not) of the quantum symmetry algebra.

Non-degenerate case r = d O . This happens when all toric matrices W z0 are linearly independent. The set of K λµ matrices are calculated from the initial data M and N λ from [START_REF] Di Francesco | SU(N) Lattice integrable models associated with graphs[END_REF]. The determination of the toric matrices W z0 are recursively obtained from a discussion of the squared norm of matrices K λµ , directly obtained from [START_REF] Gannon | Modular data: the algebraic combinatorics of conformal field theory[END_REF], which has to be a sum of squared integers.

• Consider the set of linearly independent matrices K λµ of squared norm 1. From [START_REF] Evans | Subfactor realization of modular invariants[END_REF] the solution is that each such matrix is equal to a toric matrix W z0 .

• Next we consider the set of linearly independent matrices K λµ of squared norm 2. In this case from [START_REF] Evans | Subfactor realization of modular invariants[END_REF] each such matrix is equal to the sum of two toric matrices. We have three cases: (i) K λµ is equal to the sum of two already determined toric matrices (no new information); (ii) it is the sum of an already determined toric matrix and of a new one; (iii) it is equal to the sum of two new toric matrices. To distinguish from cases (ii) and (iii), we calculate the set of differences K λµ -W i where W i runs into the set of determined toric matrices, and check if the obtained matrix has non-negative integer coefficients: in this case we determine a new toric matrix given by K λµ -W i .

• Next we consider the set of linearly independent matrices K λµ of squared norm 3. From [START_REF] Evans | Subfactor realization of modular invariants[END_REF] each such matrix is equal to the sum of three toric matrices. Either (i) K λµ is equal to the sum of three already determined toric matrices; (ii) it is equal to the sum of a determined toric matrix and of two new ones; (iii) it is equal to the sum of two already determined matrices and a new one; or (iv) it is equal to the sum of three new toric matrices. We calculate the set of differences K λµ -W i and K λµ -W i -W j where W i , W j runs into the set of determined toric matrices, and check whenever the obtained matrix has non-negative integer coefficients.

• For the set of linearly independent matrices K λµ of squared norm 4 there are two possibilities. Either K λµ is the sum of four toric matrices, either it is equal to twice a toric matrix. In the last case, the matrix elements of K λµ should be either 0 or a multiple of 2, and the new toric matrix is obtained as K λµ /2. If not, a similar discussion as the one made for the previous items allows the determination of the new toric matrices.

• The next step is to generalize the previous discussions for higher values of the squared norm, in a straightforward way.

Once the set of toric matrices W z0 is determined, we can of course use equation ( 9) to check the results. Degenerate case r < d O . The integer r may be strictly smaller than d O : this happens when toric matrices W z0 are not linearly independent. In order to better illustrate what has to be done in this case, let us treat a "virtual" example. Suppose the dimension of the Ocneanu algebra is d O = 3, and call z 1 , z 2 , z 3 the basis elements. The corresponding toric matrices are W z 1 , W z 2 , W z 3 , and suppose they are not linearly independent. For example let us take W z 3 = W z 1 +W z 2 , in this case we have r = 2 < d O . We still use the same scalar product in the algebra of quantum symmetries, and the norm of z 3 is of course 1, but, because of the abuse of langage and notation already made before, we shall say that the "squared norm" of W z 3 is equal to 1 (and not 2, of course!). The problem arising from the fact that toric matrices may not be linearly independent, so that the linear expansion (12) of K λµ over the family of toric matrices may be not unique, can be solved by considering the squared norm of K λµ . Continuing with our virtual example, we could hesitate between writing

K λµ = W z 1 +2W z 2 or K λµ = W z 2 + W z 3 , since W z 3 = W z 1 + W z 2 .
In the first case the corresponding squared norm would be 5, and in the second case it would be 2. In all cases we have met, the knowledge of the squared norm of K λµ from equation ( 13) is sufficient to bypass the ambiguity and obtain the correct linear expansion. The determination of the toric matrices can then be done step by step, in the same way as we did in the non degenerate case, starting from squared norm 1 to higher values. We refer to the su(3) case at level 9 treated in the next section for more technical details.

Determination of double toric matrices W xy

Once we have determined the toric matrices W x0 , we calculate the following set of matrices:

K x λµ = N λ W x0 N tr µ ( 15 
)
Then equation [START_REF] Coquereaux | Racah -Wigner quantum 6j Symbols, Ocneanu Cells for A N diagrams, and quantum groupo ïds[END_REF] reads:

K x λµ = z (W xz ) λµ W z0 . (16) 
This equation can be viewed as the linear expansion of the matrix K x λµ over the set of toric matrices W z0 , where the coefficients of this expansion are the non-negative integers (W xz ) λµ , that we want to determine. In the non degenerate case, toric matrices W z0 are linearly independent, the decomposition ( 16) is unique and the calculation is straightforward. In the degenerate case, some care has to be taken since toric matrices W z0 are not linearly independent: the expansion ( 16) is therefore not unique. Some coefficients may remain free and one needs further information to a complete determination (see next subsection).

The coefficients (W xz ) λµ can also be encoded in the double fusion matrices V λµ , that satisfy the double fusion equations [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF]. Setting µ = µ ′ = 0, λ = λ ′ = 0 and λ ′ = µ = 0 respectively in Eq. ( 6) gives:

V λ0 V λ ′ 0 = λ ′′ N λ ′′ λλ ′ V λ ′′ 0 , (17) 
V 0µ V 0µ ′ = µ ′′ N µ ′′ µµ ′ V 0µ ′′ , (18) 
V λµ ′ = V λ0 V 0µ ′ = V 0µ ′ V λ0 . (19) 
From Eqs.( 17) and ( 18), we see that the set of matrices V λ0 and V 0λ satisfy the fusion algebra. These matrices can therefore be determined using these equations from the subset of matrices V f 0 and V 0f , where f stands for the fundamental generators of the fusion algebra. For su( 2), there is one generator f = 1, while for su(3), there are two conjugated generators (1, 0) and (0, 1). The determination of double fusion matrices is reduced, by the use of Eqs. (17-19), to the determination of the generators V f 0 and V 0f . It is therefore sufficient to solve Eq. ( 16) only for the pair of indices (λµ) = (f 0) and (λµ) = (0f ), and then use Eqs. (17-19), which simplifies a lot the computational task.

Determination of the Ocneanu algebra O x

The matrices V f 0 and V 0f are the adjacency matrices of the Ocneanu graph. We denote

O f L = V f 0 and O f R = V 0f
, where f L and f R now stands for the left and right generators of the Ocneanu quantum symmetry algebra. For SU (n), there are n -1 generators f of the fusion algebra, and therefore 2(n -1) generators of the quantum symmetry algebra. The Ocneanu graph is also the Cayley graph of multiplication by these generators. From the multiplication by these generators, we can reconstruct the full table of multiplication of the quantum symmetry algebra (with elements denoted x, y, z)

x y = z O z xy z . ( 20 
)
This multiplication table is encoded in the "quantum symmetry matrices" O x , which are the graph algebra matrices of the Ocneanu graph, with coefficients (O x ) yz = O z xy . They satisfy the following relations (take care with the order of indices since the quantum symmetry algebra may be non commutative):

O x O y = z (O y ) xz O z . (21) 
Once the generators O f L = V f 0 and O f R = V 0f have been determined from the previous step, all quantum symmetry matrices can be computed from [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF].

In the degenerate case the determination of the double toric matrices W xy from equation ( 16) is not straightforward, some coefficients being still free. A solution to this problem is provided by an analysis of the structure of the Ocneanu graph itself, since it must satisfy some conjugation and chiral conjugation properties (we refer to the level 9 su(3) example treated in the next section for further details). Further compatibility conditions have also to be satisfied and can be used to check the results, or to determine the remaining coefficients (for degenerate cases). One of these conditions read [START_REF] Petkova | The many faces of Ocneanu cells[END_REF][START_REF] Coquereaux | Comments about quantum symmetries of SU (3) graphs[END_REF]:

O x V λµ = V λµ O x = z (V λµ ) xz O z . (22) 
A special case of this equation, for x = 0, being:

W yy ′ = z (O z ) yy ′ W 0z . (23) 

Determination of the higher ADE graph G

For any su(n) at level k, we have the infinite series of A k graphs which are the truncated Weyl alcoves at level k of SU (n) irreps. Other infinite series are obtained by orbifolding

(D k = A k /p) and conjugation (A * k , D * k )
methods, but there are also some exceptional graphs that can not be obtained in that way. Even using the fact that graphs have to obey a list of requirements (such as conjugation, N-ality, spectral properties and that G must be an A k module), one still needed to use some good "computer aided flair" to find them [START_REF] Di Francesco | SU(N) Lattice integrable models associated with graphs[END_REF][START_REF] Petkova | From CFT's to Graphs[END_REF]. The basic method to obtain the exceptional graphs was to use the Xu algorithm (see [START_REF] Xu | New braided endomorphisms from conformal inclusions[END_REF][START_REF] Petkova | Boundary conditions in charge conjugate sl(N ) WZW theories[END_REF]) for solving [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF], at least when the initial data (F λ ) 00 is known (from conformal embedding for instance).

In this "historical approach", the problem of determining the algebra of quantum symmetries Oc(G) was not addressed and this algebra was even less used as a tool to determine G itself. The procedure described in this paper is different. Starting from the modular invariant M λµ = (V λµ ) 00 as initial data, one solves the modular splitting equation derived from (6) (as explained in the previous section) and determines directly the algebra of quantum symmetries Oc(G), without knowing what G itself can be. Then one uses the fact that G should be both an A k module and an Oc(G) module (see comments in [START_REF] Coquereaux | Comments about quantum symmetries of SU (3) graphs[END_REF]). Denoting λ an element of the fusion algebra, the first module property reads λ a = b (F λ ) ab b, with coefficients encoded by the annular matrices F λ . The associativity property (λ µ) a = λ (µ a) imposes the annular matrices to satisfy the fusion algebra [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF]. Denoting x an element of the quantum symmetry algebra, the second module property reads x a = b (S x ) ab b, with coefficients encoded by the dual annular matrices S x . The associativity property (x y) a = x (y a) imposes the dual annular matrices to satisfy the quantum symmetry algebra [START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF]. In some cases (including all Type I cases), G directly appears as a subgraph of the Ocneanu graph. In other cases, it appears as a module over the algebra of a particular subgraph.

The methods we have described allow for the determination of the graph G even when orbifold and conjugation arguments from the A k graphs do not apply (the exceptional cases). It can be used for a general affine algebra g k at any given level k, once the corresponding modular invariant is known. In the next section, we present and illustrate this method using several exceptional examples. In the su(3) family, there are three exceptional graphs with self fusion. They are called E 5 , E 9 and E 21 . In this paper we have chosen E 5 (a kind of generalization of the E 6 case of su [START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF]) and E 9 . The case of E 21 (a kind of generalization of the E 8 case of su( 2)) is actually very simple to discuss, even simpler than E 5 because it does not admit any non trivial module graph, and we could have described it as well, along the same lines. Results concerning E 21 and its quantum symmetries can be found in [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF] (in those references, the graph itself is a priori given). The su(3) -analogue of the E 7 case of su(2), which is an exceptional twist of D 9 , can also be analysed thank's to the modular splitting formula, of course, but the discussion is quite involved (see [START_REF] Hammaoui | [END_REF][START_REF] Hammaoui | Quantum symmetries of the higher Coxeter graphs associated to affine su(3) modular invariants[END_REF]). We refer to [START_REF] Schieber | Bimodule structure and quantum symmetries: an exceptional affine su(4) example in preparation[END_REF] for a description of an su(4) example. In [START_REF] Coquereaux | On quantum symmetries of the non-ADE graph F 4[END_REF], these methods were applied to a non simply-laced example of the su(2) family, where the initial partition function is not modular invariant (it is invariant under a particular congruence subgroup) and where there is no associated quantum groupo ïd.

Comments

All module, associativity and compatibility conditions described here between the different set of matrices follow from properties of the quantum groupo ïd B(G) constructed from the higher ADE graph G [START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, notes taken[END_REF][START_REF] Petkova | The many faces of Ocneanu cells[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF]. General results have been published on this quantum groupo ïd (see [START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, notes taken[END_REF][START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF][START_REF] Coquereaux | Racah -Wigner quantum 6j Symbols, Ocneanu Cells for A N diagrams, and quantum groupo ïds[END_REF]17,[START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]). But we are not aware of any definite list of properties that the graphs G should satisfy to obtain the right classification. The strategy adopted here is to take as granted the existence of a quantum groupoïd and its corresponding set of properties, and to derive the graph G as a by-product of the calculations, starting from the only knowledge of the modular invariant. Notice that this seems to be the method adopted by Ocneanu in order to produce his list of SU (3) and SU (4) graphs presented in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF]. One crucial check for the existence of the underlying quantum groupo ïd is the existence of dimensional rules:

dim(B(G)) = λ d 2 λ = x d 2 x , (24) 
where the dimensions d λ and d x are calculated from the annular and dual annular matrices:

d λ = a,b (F λ ) ab , d x = a,b (S x ) ab . 4 Examples 4.1 The E 5 case of su(3)
We start with the su(3) 5 modular invariant partition function:

Z = = |χ 5 (0,0) + χ 5 (2,2) | 2 + |χ 5 (0,2) + χ 5 (3,2) | 2 + |χ 5 (2,0) + χ 5 (2,3) | 2 + |χ 5 (2,1) + χ 5 (0,5) | 2 + |χ 5 (3,0) + χ 5 (0,3) | 2 + |χ 5 (1,2) + χ 5 (5,0) | 2 , ( 25 
)
where χ 5 λ 's are the characters of su(3) 5 , labelled by λ = (λ 1 , λ 2 ) with 0 ≤ λ 1 , λ 2 ≤ 5, λ 1 + λ 2 ≤ 5. The modular invariant matrix M is read from Z when the later is written 2 Z = λ χ λ M λµ χµ . The number of irreps is d A = 21. λ = (0, 0) is the trivial representation and there are two fundamental irreps (1, 0) and (0, 1) = (1, 0) * , where (λ 1 , λ 2 ) * = (λ 2 , λ 1 ) is the conjugated irrep. N (1,0) is the adjacency matrix of the oriented graph A 5 , which is the truncated Weyl alcove of SU(3) irreps at level k = 5 (see figure 1). The fusion matrix N (0,1) is the transposed matrix of N (1,0) and is the adjacency matrix of the same graph with reversed arrows. Once N (1,0) is known, the other fusion matrices can be obtained from the truncated recursion formulae of SU (3) irreps, applied for increasing level up to k:

N (λ,µ) = N (1,0) N (λ-1,µ) -N (λ-1,µ-1) -N (λ-2,µ+1) if µ = 0 N (λ,0) = N (1,0) N (λ-1,0) -N (λ-2,1) (26) 
N (0,λ) = (N (λ,0) ) tr
where it is understood that 

N (λ,µ) = 0 if λ < 0 or µ < 0. u u u E t t t t ) u u E t t t t ) u u E t t t t ) u u E t t t t ) u u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) u E t t t t ) (0,0) (1,0) (0,1) (5, 0) (0, 5)

Determination of toric matrices W z0

We have d O = T r(MM † ) = 24. The matrices K λµ = N λ M N tr µ span a vector space of dimension r = 24. Since r = d O , the toric matrices W x0 are linearly independent and form a special basis for this vector space. For each matrix K λµ we calculate the squared norm given by ||K λµ || 2 = (K λµ ) λ * µ * .

• For squared norm 1 we have 21 linearly independent matrices K λµ , each one being equal to a toric matrix W z0 .

• There are 45 linearly independent matrices K λµ of squared norm 2. Some of them are equal to the sum of two already determined toric matrices. For a matrix not satisfying this property, say K ab , we build the set of matrices K ab -W x , where W x runs into the set of determined toric matrices, and look for those which have non-negative integer coefficients. This condition is strong enough and leads to only one solution (if K ab is the sum of a determined matrix and a new one). We determine in that way the last three toric matrices.

• We have therefore determined the set of 24 toric matrices W x , with 0 ≤ x ≤ 23 and we can check our result by an explicit verification of the modular splitting equation [START_REF] Coquereaux | Comments about quantum symmetries of SU (3) graphs[END_REF].

Determination of V λµ Having determined the set of toric matrices W x0 , we compute the set of matrices K x λµ = N λ W x0 N tr µ . For SU (3) cases, all double fusion matrices V λµ are generated by the two fundamental matrices V (1,0),(0,0) , V (0,0),(1,0) and their transposed V (0,1),(0,0) = V tr (1,0),(0,0) , V (0,0),(0,1) = V tr (0,0), [START_REF] Behrend | Boundary Counditions in Rational Conformal Field Theories[END_REF]0) . In order to determine these matrices, it is therefore sufficient to compute the decomposition of K x

(1,0),(0,0) and K x (0,0),(1,0) on the set of toric matrices W x0 using Eq.( 16). The calculation is straightforward. From the knowledge of the fundamental matrices V (1,0),(0,0) , V (0,0),(1,0) and their transposed, all double fusion matrices V λµ are recursively calculated from Eqs. (17)[START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, notes taken[END_REF][START_REF] Ocneanu | Higher Coxeter systems, Talk given at MSRI[END_REF].

The Ocneanu graph of quantum symmetries The four fundamental matrices explicitly given below, in Eqs. [START_REF] Trinchero | Quantum symmetries of faces models and the double triangle algebra[END_REF], are the adjacency matrices of the graph of quantum symmetries (Ocneanu graph) associated to the initial modular invariant. We display in figure 2 the graph corresponding to the matrix V (1,0),(0,0) associated to the vertex labelled by 2 1 ⊗ 1 0 . V (0,0),(1,0) is associated to the vertex 1 5 ⊗ 2 0 , and instead of displaying the corresponding arrows, we display the action of the chiral conjugation C in order to not clutter the figure (warning: see the last footnote). The arrows corresponding to the matrix V (0,1),(0,0) , associated to the vertex 2 2 ⊗ 1 0 , are obtained by reversing the ones of figure 2; for the matrix V (0,0),(0,1) , associated to the vertex 1 4 ⊗ 2 0 , we use the chiral conjugation and the reversed arrows. The unit is 1 0 and the generators are 2 1 and 2 2 , the orientation of the graph corresponds to multiplication by 2 1 . Conjugation corresponds to the symmetry with respect to the axis passing through vertices 1 0 and 1 3 :

1 0 ⊗ 1 0 1 4 ⊗ 1 0 1 1 ⊗ 1 0 1 3 ⊗ 1 0 1 5 ⊗ 1 0 1 2 ⊗ 1 0 2 1 ⊗ 1 0 2 0 ⊗ 1 0 2 3 ⊗ 1 0 2 4 ⊗ 1 0 2 2 ⊗ 1 0 2 5 ⊗ 1 0 t t
1 0 ⊗ 2 0 1 4 ⊗ 2 0 1 1 ⊗ 2 0 1 3 ⊗ 2 0 1 5 ⊗ 2 0 1 2 ⊗ 2 0 2 1 ⊗ 2 0 2 0 ⊗ 2 0 2 3 ⊗ 2 0 2 4 ⊗ 2 0 2 2 ⊗ 2 0 2 5 ⊗ 2 0
1 * 0 = 1 0 , 1 * 1 = 1 5 , 1 * 2 = 1 4 , 1 * 3 = 1 3 ; 2 * 0 = 2 3 , 2 * 1 = 2 2 , 2 * 4 = 2 5
. The E 5 graph determines in a unique way its graph algebra (it is a subgroup graph). The commutative multiplication table is given by:

1 i .1 j = 1 i+j 1 i .2 j = 2 i .1 j = 2 i+j i, j = 0, 1, . . . , 5 mod 6 2 i .2 j = 2 i+j + 2 i+j-3 + 1 i+j-3 (27) 
From this multiplication table we get the graph algebra matrices G a associated to the vertices a ∈ E 5 . The one corresponding to the generator 2 1 is the adjacency matrix of the graph. The vector space spanned by vertices of E 5 is a module under the action of vertices of A 5 , the action being encoded by the annular matrices F λ obtained form the recurrence relation [START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF] with starting point

F (0,0) = l 1 12 , F (1,0) = G 2 1 and F (0,1) = G 2 2 .
Choosing a special ordering in the set of indices z of the algebra of quantum symmetries, and using the 12 × 12 graph algebra matrices G a of the graph E 5 , the fundamental double fusion matrices are given by

V (1,0),(0,0) = G 2 1 . . G 2 1 V (0,0),(1,0) = . G 1 5 G 1 2 G 1 2 + G 1 5 V (0,1),(0,0) = G 2 2 . . G 2 2 V (0,0),(0,1) = . G 1 4 G 1 1 G 1 1 + G 1 4 (28) 
Realization of Oc(E 5 ) The algebra of quantum symmetries Oc(E 5 ) can be realized as

Oc(E 5 ) = E 5 ⊗ J E 5 with a ⊗ J b.c = a.b * ⊗ J c for b ∈ J = {1 i } , ( 29 
)
where J is a subalgebra characterized by modular properties (see [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF]). The algebra Oc(E 5 ) has dimension 12 × 2 = 24, and a basis is given by elements a ⊗ J 1 0 and a ⊗ J 2 0 . The identifications in Oc(E 5 ) are given by:

1 i ⊗ J 1 j = 1 i+j * ⊗ J 1 0 2 i ⊗ J 1 j = 2 i+j * ⊗ J 1 0 1 i ⊗ J 2 j = 1 i ⊗ J 1 j .2 0 = 1 i+j * ⊗ J 2 0 2 i ⊗ J 2 j = 2 i ⊗ J 1 j .2 0 = 2 i+j * ⊗ J 2 0 (30)
The chiral conjugation is defined by (a ⊗ J b) C = b ⊗ J a. The left chiral generator is 2 1 ⊗ J 1 0 and the right chiral generator is 1 0 ⊗ J 2 1 = 1 5 ⊗ J 2 0 . Multiplication in Oc(E 5 ) is defined from the multiplication ( 27) of E 5 together with the identifications [START_REF] Zuber | ADE and all that[END_REF], and is encoded by the quantum symmetries matrices O x . We get:

O x=a⊗ J 1 0 = G a . . G a O x=a⊗ J 2 0 = . G a G a .G 1 3 G a ( l 1 + G 1 3 ) (31)
The vector space of E 5 vertices is also a module under the action of vertices of Oc(E 5 ) defined by (a ⊗ J 1 0 ).b = a.b and (a ⊗ J 2 0 ).b = a.2 0 .b. The dual annular matrices S x are given by S x=a⊗ J 1 0 = G a and S x=a⊗ J 2 0 = G 2 0 .G a . We check the dimensional rules dim(B(E 5 )) =

λ d 2 λ = x d 2 x = 29 376.

The E * 5 case of su(3)

We start now with the following su(3) 5 modular invariant partition function:

Z = |χ 5 (0,0) + χ 5 (2,2) | 2 + |χ 5 (3,0) + χ 5 (0,3) | 2 + [(χ 5 (0,2) + χ 5 (3,2) ).(χ 5 (2,0) + χ 5 (2,3) ) + h.c.] +(χ 5 (2,1) + χ 5 (0,5) ).(χ 5 (1,2) + χ 5 (5,0) ) + h.c.] , (32) 
and compute the modular matrix3 M. The fusion matrices N λ are the same as in the previous case.

Determination of toric matrices and double fusion matrices

We have d O = T r(MM † ) = 24. The matrices K λµ = N λ M N tr µ span a vector space of dimension r = d O = 24. The discussion is the same as in the previous case.

• For squared norm 1 we have 21 linearly independent matrices K λµ defining 21 toric matrices W z0 .

• There are 45 linearly independent matrices K λµ of squared norm 2 and the last three toric matrices W z0 can be obtained.

Once the toric matrices have been determined, the double fusion matrices are obtained straightforwardly. For the fundamental ones we get:

V (1,0),(0,0) = G 2 1 . . G 2 1 V (0,0),(1,0) = . G 1 1 G 1 4 G 1 1 + G 1 4 V (0,1),(0,0) = G 2 2 . . G 2 2 V (0,0),(0,1) = . G 1 2 G 1 5 G 1 2 + G 1 5 (33)
The Ocneanu graph of quantum symmetries We display in figure 3 the graph corresponding to the matrix V (1,0),(0,0) associated with the vertex labelled by 2 1 ⊗ 1 0 . V (0,0),(1,0) is associated with the vertex 1 1 ⊗ 2 0 . The algebra of quantum symmetries can be realized as

Oc(E * 5 ) = E 5 ⊗ J E 5 with a ⊗ J b.c = a.b ⊗ J c for b ∈ J = {1 i } . (34) 
The algebra Oc(E * 5 ) has also dimension 12 × 2 = 24 and a basis is given by elements a ⊗ J 1 0 and a ⊗ J 2 0 . The identifications in Oc(E * 5 ) are given by (different from those of Oc(E 5 ))

1 i ⊗ J 1 j = 1 i+j ⊗ J 1 0 2 i ⊗ J 1 j = 2 i+j ⊗ J 1 0 1 i ⊗ J 2 j = 1 i ⊗ J 1 j .2 0 = 1 i+j ⊗ J 2 0 2 i ⊗ J 2 j = 2 i ⊗ J 1 j .2 0 = 2 i+j ⊗ J 2 0 (35)
The left chiral generator is 2 1 ⊗ J 1 0 and the right chiral generator is 1 0 ⊗ J 2 1 = 1 1 ⊗ J 2 0 . The algebra Oc(E * 5 ) is isomorphic to Oc(E 5 ), the quantum symmetry matrices O x are still given by (31). The difference is in the chiral conjugacy. The graph associated to the initial modular invariant (32) is a module graph for the Ocneanu graph displayed on figure 3. It must therefore be a module graph of the E 5 graph itself: it is obtained as the Z 3 -orbifold graph of E 5 (see [START_REF] Hammaoui | Higher Coxeter graphs associated to affine su(3) modular invariants[END_REF]). We write this module property a b = c(F E a ) bc c, for a ∈ E 5 and b, c ∈ E 5 /3, encoded by the 12 matrices F E a . From the associative property (a.b).c = a.(b.c), these matrices must satisfy the same commutation relations [START_REF] Schieber | Bimodule structure and quantum symmetries: an exceptional affine su(4) example in preparation[END_REF] as the graph algebra of E 5 , and can be recursively calculated from F E 2 1 , which is the adjacency matrix of the E 5 /3 graph displayed on figure 4. The E 5 /3 graph is also a module over the algebra of quantum symmetries, the action being defined by (a ⊗ J 1 0 ). b = a. b and (a ⊗ J 2 0 ).b = a.2 0 . b. The dual annular matrices S x are therefore given by

1 0 ⊗ 1 0 1 4 ⊗ 1 0 1 1 ⊗ 1 0 1 3 ⊗ 1 0 1 5 ⊗ 1 0 1 2 ⊗ 1 0 2 1 ⊗ 1 0 2 0 ⊗ 1 0 2 3 ⊗ 1 0 2 4 ⊗ 1 0 2 2 ⊗ 1 0 2 5 ⊗
1 0 ⊗ 2 0 1 4 ⊗ 2 0 1 1 ⊗ 2 0 1 3 ⊗ 2 0 1 5 ⊗ 2 0 1 2 ⊗ 2 0 2 1 ⊗ 2 0 2 0 ⊗ 2 0 2 3 ⊗ 2 0 2 4 ⊗ 2 0 2 2 ⊗ 2 0 2 5 ⊗ 2 0
S x=a⊗ J 1 0 = F E a and S x=a⊗ J 2 0 = F E 2 0 .F E a . We check the dimensional rules dim(B(E * 5 )) = λ d 2 λ = x d 2
x = 3 264. So both graphs G = E 5 and E 5 /3 have the same (isomorphic) algebra Oc(G) of quantum symmetries, but its realization in terms of tensor square of E 5 is different in the two cases, as well as the chiral conjugation, and, of course, its module action on E 5 or on E 5 /3.

The E 9 case of su(3)

We start with the following su(3) 9 modular invariant partition function: Z = |χ 9 0,0 + χ 9 0,9 + χ 9 9,0 + χ where χ 9 λ 's are the characters of su(3) 9 , labelled by λ = (λ 1 , λ 2 ) with 0 ≤ λ 1 , λ 2 ≤ 9, λ 1 +λ 2 ≤ 9. Notice that this modular invariant can be obtained from the conformal embedding of affine algebras su(3) 9 ⊂ ( E 6 ) 1 . The modular invariant matrix is recovered from Z = λ χ λ M λµ χ µ . The number of irreps is d A = 55. The fusion matrix N (1,0) is the adjacency matrix of the A 9 graph, the truncated Weyl alcove of SU(3) irreps at level 9. The other fusion matrices are determined by the recurrence relation [START_REF] Schieber | Bimodule structure and quantum symmetries: an exceptional affine su(4) example in preparation[END_REF].

Determination of toric matrices W z0

We have d O = T r(MM † ) = 72 and therefore an Ocneanu algebra with 72 generators z and also 72 toric matrices W z0 . However these toric matrices span a vector space of dimension r = 45 < 72, i.e. they are not all linearly independent. For each matrix K λµ = N λ MN tr µ we consider its "squared norm" defined by

||K λµ || 2 = (K λµ ) λ * µ * :
• There are 27 matrices K λµ with squared norm 1, each one defines a toric matrix W z0 .

• There are 12 linearly independent matrices K λµ with squared norm 2, but each one is equal to the sum of two already determined matrices. We don't find any new toric matrix in this family.

• There are 21 linearly independent matrices K λµ of squared norm 3, none of them being equal to the sum of three already obtained matrices. Twelve amoung these 21 are equal to the sum of one determined matrix and a matrix having coefficients multiple of 2. A solution leading to squared norm 3 is to define a new toric matrix by dividing by 2 the matrix with coefficients multiple of 2, and adding them to the list with a multiplicity two. From these twelve we obtain actually only eight different toric matrices (because some are obtained more than once), each one coming with multiplicity two. Nine of the 21 matrices have coefficients which are multiple of 3. We define nine new toric matrices by dividing these matrices by 3, each toric matrix obtained in that way appearing with multiplicity 3. At that stage, we have determined 27 + (2 × 8) + (3 × 9) = 70 toric matrices.

• There are 24 linearly independent matrices K λµ with squared norm 4, but each one is equal to the sum of four already obtained matrices. We don't recover any new toric matrix. This is also the case for squared norm 5.

• There are 10 linearly independent matrices K λµ with squared norm 6. We discard those that can be written as a linear combination of already determined toric matrices, and pick up one of the others, for example K ab . We build the list of matrices K ab -W x , for W x running into the set of already obtained toric matrices, searching for matrices with non-negative coefficients. With our choice, it is so that K ab is the sum of two times a toric matrix plus a new one which has matrix elements multiple of 2. Dividing the later by 2 and adding it to the list, with multiplicity 2, we get the last toric matrices.

We have indeed therefore determined the 72 toric matrices, 45 (=27+9+8+1) of them being linearly independent, but appearing with multiplicities (27 of multiplicity one, 9 (=8+1) of multiplicity two and 9 of multiplicity three). We can check the result by a direct substitution in the 55 × 55 = 3025 matrix equations over non-negative integers [START_REF] Evans | Subfactor realization of modular invariants[END_REF].

Determination of V (1,0),(0,0) and V (0,0), [START_REF] Behrend | Boundary Counditions in Rational Conformal Field Theories[END_REF]0) We compute the set of matrices K x λµ = N λ W x0 N tr µ for {λµ} = {(1, 0), (0, 0)} and {(0, 0), (1, 0)}, and decompose them on the family (not a base) of toric matrices W z0 using [START_REF] Evans | Subfactor realization of modular invariants[END_REF]. Since the W z0 are not linearly independent, the decomposition is not unique, and we introduce some undetermined coefficients. Imposing that they should be non-negative integers allows to fix some of them or to obtain relations between them. More constraints come from the fact that we have V (0,0),(1,0) = C.V (0,0),(1,0) .C -1 , where C is the chiral operator. Notice that C itself is deduced from the previous relation even if V (0,0),(1,0) and V (0,0),(1,0) still contain free parameters, by using the fact that it is a permutation matrix. Choosing an appropriate order on the set of indices z, we obtain the following structure for V (1,0),(0,0) : 

V (1,0),(0,0) =         Ad(E 9 ) . . . . . .
        (37) 
where Ad(E 9 ) and Ad(M 9 ) are 12 × 12 matrices (still containing some unknown coefficients).

The generalized Dynkin diagram E 9 The Ad(E 9 ) matrix is the adjacency matrix of the graph E 9 displayed on the l.h.s. of figure 5. It possesses a Z 3 -symmetry corresponding to the permutation of the three "wings" formed by vertices 0 i , 1 i and 2 i . The undetermined coefficients of the adjacency matrix reflect this symmetry; they are simply fixed once an ordering has been chosen for the vertices (something similar happens for the D even series of the su(2) family).

The vector space of the E 9 graph is a module over the left-right action of the graph algebra of the A 9 graph, encoded by the annular matrices

F E λ A 9 × E 9 → E 9 : λ • a = a • λ = b (F E λ ) ab b λ ∈ A 9 , a, b ∈ E 9 . (38) 
The F E λ matrices give a representation of dimension 12 of the fusion algebra and are determined from the recursion relation [START_REF] Schieber | Bimodule structure and quantum symmetries: an exceptional affine su(4) example in preparation[END_REF] with

F E (0,0) = l 1 12×12 , F E (1,0) = Ad(E 9
). We notice that fundamental matrices (for instance F (1,0) ) contain, in this case, elements bigger than 1, however, the "rigidity 4 condition" (F λ ) ab = (F λ * ) ba holds, so that this example is indeed an higher analogue of the ADE graphs, not an higher analogue of the non simply laced cases. Triality and conjugation compatible with the action of A 9 can be defined on the E 9 graph. Triality is denoted by the index i ∈ {0, 1, 2} in the set of vertices 0 i , 1 i , 2 i . The conjugation corresponds to the vertical axis going through vertices 0 0 and 3 0 :

0 * 0 = 0 0 , 1 * 0 = 2 0 , 3 * 0 = 3 0 , 0 * 1 = 0 2 , 1 * 1 = 2 2 , 1 * 2 = 2 1 , 3 * 1 = 3 2 .
The Z 3 -symmetry action on vertices of E 9 is denoted ρ 3 . The axis formed by vertices 3 i is invariant under ρ 3 and the symmetry permutes the three wings ρ 3 (0

0 ) = 1 0 , ρ 3 (1 0 ) = 2 0 , ρ 3 (2 0 ) = 0 0 ; ρ 3 (0 1 ) = 1 1 , ρ 3 (1 1 ) = 2 1 , ρ 3 (2 1 ) = 0 1 ; ρ 3 (0 2 ) = 1 2 , ρ 3 (1 2 ) = 2 2 , ρ 3 (2 2 ) = 0 2 .
Once we have fixed the origin of the graph (the vertex 0 0 ), the graph still possesses a Z 2 -symmetry corresponding to the permutation of the two remaining wings, formed by vertices 1 i and 2 i . We denote ρ 2 this operation: ρ 2 (1 i ) = 2 i and ρ 2 2 = l 1. The E 9 graph has also self-fusion: the vector space spanned by its vertices has an associative algebra structure, with non-negative structure constants, compatible with the action of A 9 . 0 0 is the unity and the two conjugated generators are 0 1 and 0 2 . The graph itself is also the Cayley graph of multiplication by 0 1 . Due to the symmetry of the wings of the graph, the knowledge of the multiplication by generators 0 1 and 0 2 is not sufficient to reconstruct the whole multiplication table; we have to impose structure coefficients to be non-negative integers in order to determine a unique solution (see [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF]). The whole multiplication table is encoded in the graph algebra matrices G a , for a ∈ E 9 . We give the expression for G 1 0 and G 2 0 , the other matrices are computed by 

G 0 0 = l 1, G 0 1 = G tr 0 2 = Ad(E 9 ), G 3 0 = G 0 1 G 0 2 -G 0 0 , G 3 2 = G tr 3 1 = G 0 1 G 0 1 -G 0 2 , G 1 1 = G tr 2 2 = G 0 1 G 1 0 , G 1 2 = G tr 2 1 = G 0 2 G 1 0 . In the ordered basis (0 0 , 1 0 , 2 0 , 3 0 ; 0 1 , 1 1 , 2 1 , 3 1 ; 0 2 , 1 2 , 2 2 , 3 2 ), G 1 0 and G 2 0 are given by G 1 0 = G tr 2 0 =                      . 1 
                     (39) 
Notice that multiplication by 1 0 corresponds to the Z 3 operation: 1 0 .a = ρ 3 (a). The matrix G 1 0 is the permutation matrix representing the action of the Z 3 operator

ρ 3 : (G 1 0 ) ab = δ b,ρ 3 (a) .
We have (G

1 0 ) 3 = l 1 and (G 1 0 ) 2 = G 2 0 , so G 2 0 represents the operator (ρ 3 ) 2 .
Other aspects and properties of the E 9 graph and of its algebra of quantum symmetries (semi-simple structure of the associated quantum groupo ïd, semi-simple structure of Oc(E 9 ) itself, quantum dimensions and quantum mass) are presented in [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF][START_REF] Coquereaux | Comments about quantum symmetries of SU (3) graphs[END_REF].

The generalized Dynkin diagram M 9 The matrix Ad(M 9 ) is a 12×12 matrix with some unknown coefficients to be determined. Imposing this matrix to be the adjacency matrix of a graph such that the vector space spanned by its vertices is a module over the graph algebras of A 9 and of E 9 leads to a unique solution. The graph is displayed on the r.h.s. of figure 5 and corresponds to the Z 3 -orbifold graph of E 9 , denoted M 9 = E 9 /3. The vector space spanned by vertices of the M 9 graph is a module over the left-right action of the graph algebra of A 9 encoded by the annular matrices

F M λ A 9 × M 9 → M 9 : λ • ã = ã • λ = b (F M λ ) ãb b λ ∈ A 9 , ã, b ∈ M 9 . (40) 
The F M λ matrices give a representation of dimension 12 of the fusion algebra and can be determined from the recursion relation [START_REF] Schieber | Bimodule structure and quantum symmetries: an exceptional affine su(4) example in preparation[END_REF] with

F M (0,0) = l 1 12×12 , F M (1,0) = Ad(M 9
). Triality and conjugation compatible with the action of A 9 can be defined on the M 9 graph. Triality is denoted by the index i ∈ {0, 1, 2} in the set of vertices ãi ∈ M 9 . The conjugation corresponds to the vertical axis going through vertex 00 : 0 * 0 = 00 , 0 * 1 = 02 , 3 * 0 = 30 , 3′

0 * = 3′ 0 , 3′′ 0 * = 3′′ 0 , 3 * 1 = 32 , 3′ 1 * = 3′ 2 , 3′′ 1 * = 3′′ 2 .
The vector space spanned by vertices of M 9 is also a module under the action of the graph algebra of E 9 . Here we will distinguish between left and right action. The left action of E 9 is encoded by a set of 12 × 12 matrices denoted P ℓ λ

E 9 × M 9 → M 9 : a • b = c (P ℓ a ) bc c a ∈ E 9 , b, c ∈ M 9 . (41) 
The module property (a • b) • c = a • (b • c) imposes P ℓ a matrices to form a representation of the graph algebra of E 9 ; they satisfy P ℓ a P ℓ b = c (G a ) bc P ℓ c . We compute the set of matrices P ℓ a using the multiplicative structure of E 9 from the previous relation. We give below the expression for P ℓ 1 0 and P ℓ 2 0 , the other matrices being computed by P ℓ 0 0 = l 1, P ℓ 0 1 = (P ℓ 0 2 ) tr = Ad(M 9 ), P ℓ 3 0 = P ℓ 0 1 P ℓ 0 2 -P ℓ 0 0 , P ℓ 3 2 = (P ℓ 3 1 ) tr = P ℓ 0 1 P ℓ 0 1 -P ℓ 0 2 , P ℓ and P ℓ 2 0 are given by 

1 1 = (P ℓ 2 2 ) tr = P ℓ 0 1 P ℓ 1 0 , P ℓ 1 2 = (P ℓ 2 
P ℓ 1 0 = (P ℓ 2 0 ) tr =                      1 
                     (42) 
There is also an operator ρ ′ 3 acting on vertices of the M 9 graph, inherited from the Z 3 symmetry of the E 9 graph through the orbifold procedure. It satisfies the following property:

ρ 3 (a) b = a ρ ′ 3 ( b) (43) 
We have 1

0 a = ρ 3 (a), so ρ ′ 3 (ã) = 1 0 ã. It is defined by ρ ′ 3 ( 0i ) = 0i , ρ ′ 3 ( 3i ) = 3′ i , ρ ′ 3 ( 3′ i ) = 3′′ i , ρ ′ 3 ( 3′′ i ) = 3i
, for i = 0, 1, 2. The matrix P ℓ 1 0 is therefore the permutation matrix representing the action of the Z 3 operator ρ ′ 3 . We have (P ℓ 1 0 ) 3 = l 1 and (P ℓ 1 0 ) 2 = P ℓ 2 0 , so P ℓ 2 0 represents the operator (ρ ′ 3 ) 2 .

The vector space E 9 ⊕ M 9 We define the vector space H = E 9 ⊕ M 9 , and we want to define (this will be used later) an associative product on H with the following structure:

ր E 9 M 9 E 9 E 9 M 9 M 9 M 9 E 9
We define the following actions: so that we have P r a = P ℓ ρ 2 (a) . The coefficients of the H ã matrices are given by:

E 9 × E 9 → E 9 : a b = c (G a ) bc c E 9 × M 9 → M 9 : a b = c (P ℓ a ) bc c M 9 × E 9 → M 9 : b a = c (P r a ) bc c M 9 × M 9 → E 9 : ã b = c (H ã) bc c. (44 
(H ã) bc = (P ℓ ρ 2 (c) ) ã * b = (P r c ) ã * b . (46) 
The Ocneanu algebra of quantum symmetries and a realization The matrix V (1,0),(0,0) is the adjacency matrix of the left chiral part of the Ocneanu graph. The graph is composed of six subgraphs, three copies of the E 9 graph and three copies of the M 9 graph, as showed on figure 6. We label the vertices as follows: x = a ⊗ 0 i with a, 0 i ∈ E 9 and i = 0, 1, 2 for vertices of E 9 -type subgraphs and x = ã ⊗ 3i with ã, 3i ∈ M 9 and i = 0, 1, 2 for vertices of M 9 -type subgraphs. The matrix V (1,0),(0,0) corresponds to the multiplication by the left chiral generator 0 1 ⊗ 0 0 . The matrix V (0,0),(1,0) is the adjacency matrix of the right chiral part of the Ocneanu graph Oc(E 9 ), and corresponds to the multiplication by the right chiral generator 0 0 ⊗ 0 1 . The dashed lines in the graph corresponds to the chiral operator C.

We have V (0,0),(1,0) = CV (1,0),(0,0) C -1 . The multiplication by 0 0 ⊗ 0 1 is obtained as follows.

We start with x, apply C, multiply the result by 0 1 ⊗ 0 0 , and apply C -1 = C. From matrices V (1,0),(0,0) and V (0,0),(1,0) all others V λµ (hence also the double toric matrices W xy ) are calculated straightforwardly using equations (17)[START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, notes taken[END_REF][START_REF] Ocneanu | Higher Coxeter systems, Talk given at MSRI[END_REF].

From the multiplication by chiral left and right generators 0 1 ⊗ 0 0 and 0 0 ⊗ 0 1 (and their conjugate) we reconstruct the multiplication table of Oc(E 9 ). As for the graph matrices of E 9 , the calculation is not straightforward, but imposing non-negative integer coefficients leads to a unique solution. The result is encoded in the 72 quantum symmetry matrices O x of dimension 72 × 72.

Realization of the quantum symmetry algebra In order to have a compact (readable) description of these matrices and the multiplicative structure of the algebra of quantum symmetries, we propose the following realization of this algebra:

Oc = "E 9 ⊗ Z 3 E 9 " • = (E 9 ⊗ ρ E 9 ) ⊕ (M 9 ⊗ ρ M 9 ) , (47) 
where the notation ⊗ ρ means that the tensor product is quotiented using the Z 3 symmetry of graphs E 9 and M 9 in the following way. A basis of the quantum symmetry algebra is given by elements {a ⊗ 0 i , ã ⊗ 3i } for i = 0, 1, 2. The other elements of E 9 ⊗ E 9 and M 9 ⊗ M 9 are identified with basis elements {a ⊗ 0 i , ã ⊗ 3i } using the Z 3 symmetry operators ρ 3 and ρ ′

3

of graphs E 9 and M 9 and the induction-restruction rules between the two graph algebras, as follows: ). The two left chiral generators are 0 1 ⊗ 0 0 and 0 2 ⊗ 0 0 , the two right chiral generators are 0 0 ⊗ 0 1 and 0 0 ⊗ 0 2 . The tensor product a ⊗ b is denoted with the shorthand notation ab.

• a ⊗ 1 i = a ⊗ 1 0 • 0 i = 1 0 • a ⊗ 0 i = ρ 3 (a) ⊗ 0 i (48) • a ⊗ 2 i = a ⊗ 2 0 • 0 i = 2 0 • a ⊗ 0 i = (ρ 3 ) 2 (a) ⊗ 0 i (49) • a ⊗ 3 i = ã (E 00 ) aã ã ⊗ 3i (50) • ã ⊗ 3′ i = ã ⊗ 1 0 • 3i = 1 0 • ã ⊗ 3i = ρ ′ 3 (ã) ⊗ 3i (51) • ã ⊗ 3′′ i = ã ⊗ 2 0 • 3i = 2 0 • ã ⊗ 3i = (ρ ′ 3 ) 2 (ã) ⊗ 3i (52) • ã ⊗ 0i = a (E tr 00 ) ã,a a ⊗ 0 i ( 
Here the matrix E 00 encodes the branching rules E 9 ֒→ M 9 (obtained from matrices P ℓ implementing the E 9 (left) action on M 9 as follows: (E b) ac = (P ℓ a ) bc ). Explicitely, we have: 

E 00 =                    1 
                   0 0 ֒→ 00 1 0 ֒→ 00 2 0 ֒→ 00 3 0 ֒→ 30 + 3′ 0 + 3′′ 0 0 1 ֒→ 01 1 1 ֒→ 01 2 1 ֒→ 01 3 1 ֒→ 31 + 3′ 1 + 3′′ 1 0 2 ֒→ 02 1 2 ֒→ 02 2 2 ֒→ 02 3 2 ֒→ 32 + 3′ 2 + 3′′ 2 (54) 
The multiplication of the basis generators {a ⊗ 0 i , ã ⊗ 3i } is then naturally defined using the multiplication rules (44) and the projections (48-53). We introduce the matrices R r defined from the right action of E 9 on M 9 : b a = c(P r a ) bc c = c(R r b ) ac c. It can be seen that the algebra Oc(E 9 ) is non commutative and isomorphic with the direct sum of 9 copies of 2 × 2 matrices and 36 copies of the complex numbers. With our parametrisation, the quantum symmetry matrices read: 

O a⊗0 0 =         Ga . . . .
.         O ã⊗ 30 =         . . . R r ã . . . R r ã E tr 0 . . R r ã( l 1 + P ℓ 1 0 ) . . . R r ãE tr 0 . . R r ã( l 1 + P ℓ 1 0 ) H a . . 2(H ã E 0 ) . . . H ã( l 1 + G 1 0 ) . . H ãE 0 . . . H ã( l 1 + G 1 0 ) . . H ãE 0         O ã⊗ 31 =         . . . . R r ã . . . R r ã E tr 0 . . R r ã . . . R r ã( l 1 + P ℓ 2 0 ) . . . H ã( l 1 + G 2 0 ) . . H ã E 0 . . . H ã . . H ã E 0 H ã . . H ã E 0 . .         O ã⊗ 32 =         . . . . . R r ã . . . R r ã( l 1 + P ℓ 2 0 ) . . . R r ã E tr 0 . . R r ã . . . H ã( l 1 + G 2 0 ) . . H ã E 0 H ã . . H ã E 0 . . . H ã . . H ã E 0 .         (55) 
Triality t is well defined on this algebra: t(a i ⊗ 0 j ) = t(ã i ⊗ 3j ) = i + j (mod3). The left chiral subalgebra (by definition the algebra generated by the left chiral generator 0 1 ⊗ 0 0 ) is L = {a ⊗ 0 0 }. The right chiral subalgebra (generated by 0 0 ⊗ 0 1 ) is R = {0 0 ⊗ a}. With the projections (48-53), R correspondonds to the set of elements {0 0 ⊗ 0 0 , 1 0 ⊗ 0 0 , 2 0 ⊗ 0 0 , 00 ⊗ 30 , 0 0 ⊗ 0 1 , 1 0 ⊗ 0 1 , 2 0 ⊗ 0 1 , 00 ⊗ 31 , 0 0 ⊗ 0 2 , 1 0 ⊗ 0 2 , 2 0 ⊗ 0 2 , 00 ⊗ 32 }. The ambichiral subalgebra (by definition the intersection of L and R) is A = {0 0 ⊗ 0 0 , 1 0 ⊗ 0 0 , 2 0 ⊗ 0 0 }. The chiral operation C on the basis elements is defined by C(u ⊗ v) = (v ⊗ u), for u, v ∈ H = E 9 ⊕ M 9 (and using the projections (48-53)). The self-dual elements obey C(u) = u, they are the ones in figure 6 which are connected to themselves by the dashed line. A-elements are, in particular, self-dual.

One modular invariant and two graphs Starting from the modular invariant (36), we obtain the set of toric matrices W x0 , double fusion matrices V λµ and quantum symmetry matrices O x , together with the corresponding Ocneanu graph. By an analysis of the latter, it clearly appears that there are two graphs that are modules under the quantum symmetry algebra, the E 9 and M 9 graphs. Using the realization of the quantum symmetry algebra described above, the module structure for E 9 is defined by:

Oc × E 9 → E 9    (a ⊗ 0 i ) • b . = a • b • 0 i = a • 0 i • b (ã ⊗ 30 ) • b . = ã • b • 30 (ã ⊗ 31,2 ) • b . = ã • ρ(b) • 31,2 = ã • b • ρ ′ ( 31,2 ) (56) 
and the corresponding dual annular matrices are: 

S E x=a⊗0 i = G 0 i G a ,
where the L b matrices are defined by a • b = c(L b) a c c. The module structure for M 9 is defined by:

Oc × M 9 → M 9 (a ⊗ 0 i ) • b . = a • b • 0 i = a • 0 i • b (ã ⊗ 3i ) • b . = ã • b • 3i (58)
and the corresponding dual annular matrices are:

S M x=a⊗0 i = P ℓ 0 i P ℓ a , S M x=ã⊗ 3i = H ã L 3i . (59) 
We have therefore two quantum groupo ïds associated with the initial modular invariant, constructed from the graphs E The rejected diagram In the first list of SU (3)-type graphs presented by Di Francesco and Zuber in [START_REF] Di Francesco | SU(N) Lattice integrable models associated with graphs[END_REF], there were three graphs associated with the exceptional modular invariant (36): the graphs E 9 , M 9 and the one displayed on figure 7, denoted Z 9 . This graph was later rejected by Ocneanu in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF] because some required cohomological property (written in terms of values for triangular cells) was not fullfilled. In other words, this graph gives rise to a module over the ring of A 9 , with the right properties, but the underlying category does not exist. In this paper, the higher Coxeter graphs are obtained as subgraphs or module graphs of their Ocneanu graph, which encodes the quantum symmetry algebra Oc(G) previously determined. For Type I partition functions (block diagonal with respect to the characters of the extended chiral algebra) the associated graphs have self-fusion, they appear directly as subgraphs of their Ocneanu graph (this is the case, for instance, for the E 5 and E 9 graphs presented here). For Type II partition functions, the associated graphs are called "module" graphs. They define a module over Oc, but they are most easily determined as a module over a self-fusion subgraph of the Ocneanu graph, called its parent graph. For all su(3) cases studied, module graphs can be obtained from orbifold or conjugation methods from their parent graph. This is indeed the case for the conjugate A series and the orbifold and conjugate orbifold series D and D * . This is also the case for the E 5 /3 and M 9 = E 9 /3 graphs. There is also the exceptional twist, but in this case the graph appears directly as a subgraph of its Ocneanu graph (see [START_REF] Hammaoui | [END_REF]). In the particular case of the graph displayed on figure 7, the graph can not be obtained from E 9 by orbifold or conjugation methods, and this fact may indicate a hint that such graph should be rejected.

Nevertheless, let us present some properties of this graph. The vector space of Z 9 is a module over the left-right action of A 9 , encoded by the annular matrices F Z λ computed as usual from the recursion relation [START_REF] Schieber | Bimodule structure and quantum symmetries: an exceptional affine su(4) example in preparation[END_REF] with F Z (0,0) = l 1, F Z (1,0) = Ad(Z 9 ). The vector space of Z 9 is also a module over the left action of the E 9 graph, encoded by the set of matrices D a 

We compute the set of matrices D a using the multiplicative structure of E 9 as previously. In the ordered basis ( 00 , 30 , 3′ 0 , 3′′ 0 ; 01 , 31 , 3′ 1 , 3′′ 1 ; 02 , 32 , 3′ 2 , 3′′ 2 ), the matrices D 1 0 and D 2 0 are given by the same matricial expression as in (42). The vector space of Z 9 is also a Oc-module.

Using the realization of the quantum symmetry algebra, the action is defined by:

Oc × Z 9 → Z 9    (a ⊗ 0 i ) • b . = a • 0 i • b (ã ⊗ 30 ) • b . = (ã • 30 ) • t( b) (ã ⊗ 31,2 ) • b . = (ã • ρ ′ ( 31,2 )) • t( b) (63) 
where the operator t is defined on the vertices of Z 9 by t( 0i ) = 0i , t( 3i ) = 3i , t( 3′ i ) = 3′′ i , t( 3′′ i ) = 3′

i . We also define the matrices D t a by the relations (D (64) We can also check the dimensional rules:

λ (d Z λ ) 2 = x (d Z x ) 2 = 754 272 .
Therefore, the graph Z 9 satisfy all module properties and dimensional rules. Even if it does not appear directly as a byproduct of the calculations presented in this paper (giving a hint for its rejection), its formal rejection only seems possible with additional data of cohomological nature (cells), by CFT arguments or in the subfactor approach.

Final Comment The Ocneanu graphs displayed in this paper (Oc(E 5 ), Oc(E 9 )) have been first obtained by Ocneanu himself. For instance those associated with members of the su(3) family were displayed on posters during the Bariloche conference (2000) but the full list never appeared in print. Several techniques [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D, PhD thesis[END_REF] allow one to recover some of them from the knowledge of the Di Francesco -Zuber diagrams. The present paper actually emerged from our wish to obtain the Ocneanu graphs Oc(G) (and the graphs G themselves, of course) from the only data provided by the modular invariant.
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 1 Figure 1: The A 5 diagram.
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 2 Figure 2: Ocneanu graph Oc(E 5 ). The two left chiral generators are 2 1 ⊗ 1 0 and 2 2 ⊗ 1 0 , the two right chiral generators are 1 5 ⊗ 2 0 and 1 4 ⊗ 2 0 .
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 3 Figure 3: Ocneanu graph Oc(E * 5). The two left chiral generators are 2 1 ⊗ 1 0 and 2 2 ⊗ 1 0 , the two right chiral generators are 1 1 ⊗ 2 0 and 1 2 ⊗ 2 0 .
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 4 Figure 4: The E * 5 = E 5 /3 generalized Dynkin diagram.
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 95 Figure 5: The graphs E 9 and M 9

)

  The associativity property on H reads a (b c) = (a b) c ; a (b c) = (a b) c ; a ( b c) = (a b) c ; ã (b c) = (ã b) c ; a ( b c) = (a b) c ; ã (b c) = (ã b) c ; ã ( b c) = (ã b) c ; ã ( b c) = (ã b) c, and induce a set of relations between matrices G a , P ℓ a , P r a and H ã. In order to satisfy them we found a unique solution for matrices P r a and H ã. The right action of E 9 on M 9 encoded by the set of matrices P r a is defined via the Z 2 operator ρ 2 : b • a = ρ 2 (a) • b (45)

9 Figure 6 :

 96 Figure 6: The Ocneanu graph Oc(E 9 ) = Oc(M 9). The two left chiral generators are 0 1 ⊗ 0 0 and 0 2 ⊗ 0 0 , the two right chiral generators are 0 0 ⊗ 0 1 and 0 0 ⊗ 0 2 . The tensor product a ⊗ b is denoted with the shorthand notation ab.

9 and M 9 . 2 Figure 7 :

 927 Figure 7: The rejected Di Francesco-Zuber graph.

E 9 ×

 9 Z 9 → Z 9 : a • b = ĉ (D a ) bĉ ĉ a ∈ E 9 , b, ĉ ∈ Z 9 .

  t a ) bĉ = (D a ) t( b)ĉ . The quantum symmetry matrices for Z 9 are:S Z x=a⊗0 i = D 0 i D a , S Z x=ã⊗ 30 = c (H ã) 30 c D t c , S Z x=ã⊗ 31,2 = c (H ã) ρ ′ ( 31,2 ) c D t c .

  1 ) tr = P ℓ 0 2 P ℓ 1 0 . In the ordered basis ( 00 , 30 , 3′

	0 , 3′′ 0 ; 01 , 31 , 3′ 1 , 3′′ 1 ; 02 , 32 , 3′ 2 , 3′′ 2 ), P ℓ 1 0
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  S E x=ã⊗ 30 = L 30 H ã , S E x=ã⊗ 31,2 = L ρ ′ ( 31,2 ) H ã ,

Some authors write instead Z = λ χ λ M λµ * χµ, and therefore some care has to be taken in order to compare results since conjugated cases (in particular figures 2 and

3) must then be interchanged. Here we follow the convention made in[START_REF] Coquereaux | Comments about quantum symmetries of SU (3) graphs[END_REF].

Same remark as in the last footnote.

We call it that way because of its relation with the theory of rigid categories (see for instance[START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]).
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