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2 Laboratoire de Physique Théorique et des Particules (LPTP)
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Abstract

We start with a given modular invariant M of a two dimensional ŝu(n)k conformal field
theory (CFT) and present a general method for solving the Ocneanu modular splitting
equation and then determine, in a step-by-step explicit construction, 1) the generalized
partition functions corresponding to the introduction of boundary conditions and defect
lines; 2) the quantum symmetries of the higher ADE graph G associated to the initial
modular invariant M. Notice that one does not suppose here that the graph G is already
known, since it appears as a by-product of the calculations. We analyze several ŝu(3)k
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1 Introduction

Following the works of [18], it was shown that to every modular invariant of a 2d CFT one
can associate a special kind of quantum groupöıd B(G), constructed from the combinatorial
and modular data [13] of a graph G [23, 7, 26, 28, 10]. This quantum groupöıd B(G) plays a
central role in the classification of 2d CFT, since it also encodes information on the theory
when considered in various environments (not only on the bulk but also with boundary
conditions and defect lines): the corresponding generalized partition functions are expressed
in terms of a set of non-negative integer coefficients that can be determined from associative
properties of structural maps of B(G) [1, 30, 24, 26]. A series of papers [24, 4, 23, 5, 6, 26]
presents the computations allowing to obtain these coefficients from a general study of the
graph G and its quantum symmetries. In this approach, the set of graphs G is taken as
an input. For the ŝu(2)k model, the graphs G are the ADE Dynkin diagram, and for the
ŝu(3)k the Di Francesco-Zuber diagrams. A list of graphs has also been proposed in [20] for
the ŝu(4)k model. For a general SU(N) system, the set of graphs G presents the following
pattern. There is always the infinite series of Ak graphs, which are the truncated Weyl
alcoves at some level k of SU(N) irreps. Other infinite series are obtained by orbifolding and
conjugation methods, but there are also some exceptional graphs (generalizing the E6 and
E8 diagrams of the SU(2) series) that can not be obtained in that way (to some extent, the
E7 diagram can be obtained from a careful study of the D10 case). One of the purposes of
this article is actually to present a method to obtain these graphs.

We start with a modular invariant of a 2d ŝu(n)k CFT as initial data. Classification of
modular invariants is only completed for n = 2 and 3, but there exist several algorithms,
mostly due to T. Gannon, that allow one to obtain modular invariants up to rather high
levels of any affine algebra. By solving the modular splitting equation (to be recalled later),
we obtain the coefficients of the generalized partition functions, as well as the quantum
symmetries of the graph G, encoded in the Ocneanu graph Oc(G). The graph G itself is then
obtained at this stage as a subgraph or a module graph of its own Ocneanu graph: it appears
as a by-product of the computations.

Notice that the determination of the higher ADE graphs G by solving the modular
splitting equation seems to be the method followed by A. Ocneanu (see [19]) to obtain the
lists of SU(3) and SU(4) graphs presented in [20], as a generalization of the Xu’s algorithm
[29] (see also [25]). But explicitation of his method was never been made available in the
literature. The method that we describe here (that incorporates the solution of the modular
splitting equation itself) was briefly presented in [8] for the study of the non simply laced
diagram F4, and is extended and presented in more general grounds.

The paper is organized as follows. In section 2 we review some results of CFT in order
to fix our notations, and present the basic steps of the method allowing to solve the modular
splitting equation. Section 3 treats with more technical details of the resolution, making the
difference between commutativity or non commutativity of the quantum symmetry algebra.
In the last section we analyze some examples in order to illustrate the techniques. First we
treat two exceptional SU(3) modular invariants at level 5, labelled by the graphs E5 and
E5/3. The last example is the level 9 exceptional SU(3) modular invariant, which is a special
case since it leads to a non-commutative algebra of quantum symmetries and that there are
two different graphs, E9 and E9/3, associated to it. We also discuss the third graph initially
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associated to the same modular invariant in [11] but later rejected by Ocneanu in [20].

2 CFT and graphs

Consider a 2d CFT defined on a torus, where the chiral algebra is an affine algebra ŝu(n)k at
level k. The modular invariant partition function reads

Z =
∑

λ,µ

χλ Mλµ χµ , (1)

where χλ is the character of the element λ of the finite set of integrable representations
of ŝu(n)k, and where the matrix M is called the modular invariant: it commutes with the
generators S and T of the modular group PSL(2, Z). The introduction of boundary conditions
(labelled by a, b), defect lines (labelled by x, y) or the combination of both, result in the
following generalized partition functions (see [3, 1, 24]):

Za|b =
∑

λ

(Fλ)abχλ (2)

Zx|y =
∑

λ,µ

(Vλµ)xyχλχµ (3)

Zx|ab =
∑

λ

(Fλ Sx)ab χλ (4)

All coefficients appearing in the above expressions express multiplicities of irreducible repre-
sentations in the Hilbert space of the corresponding theory and are therefore non-negative
integers. They are conveniently encoded in a set of matrices: the annular matrices Fλ with co-
efficients (Fλ)ab; the double annular matrices Vλµ with coefficients (Vλµ)xy and the dual annu-
lar matrices Sx with coefficients (Sx)ab. The different set of indices run as λ, µ = 0, . . . , dI −1;
a, b = 0, . . . , dG − 1 and x, y = 0, . . . , dO − 1. The integer dI is the number of irreps at the
given level k; the integers dG and dO are given in terms of the modular invariant M by
dG = Tr(M) and dO = Tr(MM†) (see [21, 2, 12]).

Compatibilities conditions – in the same spirit than those defined by Cardy in [3] for
boundary conditions – impose relations on the above coefficients (see [11, 1, 24]). Altogether
they read:

Fλ Fλ′ =
∑

λ′′

N λ′′

λλ′ Fλ′′ (5)

Vλµ Vλ′µ′ =
∑

λ′′µ′′

N λ′′

λλ′ N
µ′′

µµ′ Vλ′′µ′′ (6)

Sx Sy =
∑

z

Oz
yx Sz (7)

N ν
λµ are the fusion coefficients describing the tensor product decomposition λ⋆µ =

∑
ν N

ν
λµ ν

of representations λ and µ of ŝu(n)k. They can be encoded in matrices Nλ called fusion
matrices. Oz

xy are the quantum symmetry coefficients and can be encoded in matrices Ox

called quantum symmetry matrices.
The matrices {Fλ, Nλ, Ox, Vλµ, Sx} have non negative integer coefficients: they can be seen

as the adjacency matrices of a set of graphs. Knowledge of these graphs helps therefore to
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the complete determination of the partition functions (2), (3) and (4). All these coefficients
also define (or can be obtained by) structural maps of a special kind of quantum groupöıd
[18, 23, 26, 7, 10]. It is not the purpose of this paper to explore those correspondences,
nor to study the mathematical aspects of this quantum groupöıd. What we will do here
is to determine, taking as initial data the knowledge of the modular invariant M, all the
coefficients of the above matrices.

2.1 Steps of the resolution

We start with the double fusion equations (6), which are matrix equations involving the double
annular matrices Vλµ, of size dO × dO, with coefficients (Vλµ)xy. Notice that these coefficients
can also be encoded in matrices Wxy, of size dI × dI , with coefficients (Wxy)λµ = (Vλµ)xy.
The Wxy are called double toric matrices. When no defect lines are present (x = y = 0), we
must recover the modular invariant of the theory, therefore W00 = M. Using the double toric
matrices Wxy, the set of equations (6) read:

∑

z

(Wxz)λµ Wzy = Nλ Wxy N tr
µ . (8)

The successive steps of resolution are the following:

Step 1: toric matrices Setting x = y = 0 in (8) and using the fact that W00 = M we get:

∑

z

(W0z)λµ Wz0 = Nλ MN tr
µ . (9)

This equation was first presented by A. Ocneanu in [20] and is called the modular splitting

equation. The r.h.s. of (9) involves only known quantities, namely the modular invariant
M and the fusion matrices Nλ. The l.h.s. involves the set of toric matrices Wz0 and W0z,
that we determine from this equation.

Step 2: double fusion matrices Setting y = 0 in (8) we get:
∑

z

(Wxz)λµ Wz0 = Nλ Wx0 N tr
µ (10)

Once the toric matrices Wx0 have been determined from Step 1, the r.h.s. of (10) then involves
only known quantities. Resolution of these equations determine the double toric matrices Wxy

– and equivalently the double fusion matrices Vλµ – appearing in the l.h.s. of (10).

Step 3: Ocneanu graph The double fusion matrices Vλµ are generated by a subset of
fundamental matrices Vf0 and V0f , where f stands for the generators of the fusion algebra
(for SU(n) there are n−1 fundamental generators). These matrices are the adjacency matrices
of a graph called the Ocneanu graph. Its graph algebra is the quantum symmetry algebra,
encoded in the set of matrices Ox.

Step 4: higher ADE graph G The higher ADE graph G corresponding to the initial
modular invariant M is recovered at this stage as a module graph of the Ocneanu graph. It
may be a subgraph of Oc(G) or an orbifold of one of its subgraphs. One also distinguishes
type I cases (also called subgroup or self-fusion cases) and type II cases (also called module
or non self-fusion cases).
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Step 5: realization of the Ocneanu algebra Once the higher ADE graph G has been
obtained, and following the works of [4, 5, 26], we propose a realization of its quantum
symmetry algebra Oc(G) as a particular tensor product of graph algebras. Each case being
singular, we refer to the examples treated in the last section for more details. This realization
allows a simple expression for the matrices Ox and Sx.

Comments The first three steps of the method presented here can be seen as a gener-
alization of an algorithm proposed by Xu [29] for the determination of generalized Dynkin
diagrams (see also [25, 2]). The role of the annular matrix element (Fλ)00 in Xu’s construction
is played here by the partition function multiplicity Mλµ = (Vλµ)00. The method described
here is more general, allowing the determination of the set of matrices {Fλ, Nλ, Ox, Vλµ, Sx}
and the corresponding graphs.

3 From the modular invariant to graphs

We start with a modular invariant M at a given level k of a ŝu(n) CFT, and the corresponding
fusion matrices Nλ.

3.1 Determination of toric matrices Wx0

We compute the set of matrices Kλµ defined by:

Kλµ = Nλ MN tr
µ . (11)

The modular splitting equation (9) then reads:

Kλµ =

dO−1∑

z=0

(W0z)λµ Wz0 . (12)

This equation can be viewed as the linear expansion of the matrix Kλµ over the set of
toric matrices Wz0, where the coefficients of this expansion are the non-negative integers
(W0z)λµ. The number dO is the dimension of the Ocneanu quantum symmetry algebra, it is
evaluated by dO = Tr(MM†). The algebra of quantum symmetries comes with a basis (call
its elements z) which is special because structure constants of the algebra, in this basis, are
non-negative integers. We introduce the linear map from the space of quantum symmetries
to the space of dI × dI matrices defined by z 7→ Wz0. This map is not necessarily injective:
although elements z of the quantum symmetries are linearly independent, it may not be so
for the toric matrices Wz0 (in particular two distinct elements of the quantum symmetries
can sometimes be associated with the same toric matrix). Let us call r the number of linearly
independent matrices Wz0. Equation (12) tells us that each Kλµ (a matrix), defined by (11),
can be decomposed on the r dimensional vector space spanned by the vectors (matrices) Wz0.
The number r can be obtained as follows. From (11) we build a matrix K with elements of
the form K{λµ},{λ′µ′}, which means that each line of K is a flattened1 matrix Kλµ. Then r
is obtained as the (line) rank of the matrix K, since the rank gives precisely the maximal

1By flattened matrix we mean that if Kλµ =




a .. b

.. .. ..

c .. d



, then the flattened matrix is (a .. b .. .. .. c .. d).
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number of independent lines of K, therefore the number r of linearly independent matrices
Wz0. Two cases are therefore to be considered: depending if toric matrices are all linearly
independent (the map z 7→ Wz0 is injective and r = dO) or not (r < dO).

We also introduce a scalar product in the vector space of quantum symmetries for which
the z basis is orthonormal. We consider the squared norm of the element

∑
z(W0z)λµz and

denote it ||Kλµ||
2. This is an abuse of notation, “justified” by equation (12), and in the same

way, we shall often talk, in what follows, of the “squared norm of the matrix Kλµ”, therefore
identifying z with Wz0, although the linear map is not necessarily an isomorphism. We have
the following property:

Property 1 The squared norm of the matrix Kλµ is given by:

||Kλµ||
2 = (Kλµ)λ∗µ∗ . (13)

Proof: We have:

||Kλµ||
2 =

∑

z

|(W0z)λ,µ|
2

=
∑

z

(W0z)λµ (Wz0)λ∗µ∗

= (Kλµ)λ∗µ∗

From the first to the second line we used the following property:

(W0z)λµ = (Wz0)λ∗µ∗ (14)

that can be derived from the relation Vλ∗µ∗ = (Vλµ)tr, where λ∗ is the conjugated irrep of λ
(see [23]). From the second to the third line we use Eq. (12) in matrix components. �

We now treat the two cases to be considered. Note: an explicit study of all cases seems to
indicate that the linear independence (or not) of the toric matrices reflects the commutativity
(or not) of the quantum symmetry algebra.

Non-degenerate case r = dO. This happens when all toric matrices Wz0 are linearly
independent. The set of Kλµ matrices are calculated from the initial data M and Nλ from
(11). The determination of the toric matrices Wz0 are recursively obtained from a discussion
of the squared norm of matrices Kλµ, directly obtained from (13), which has to be a sum of
squared integers.

• Consider the set of linearly independent matrices Kλµ of squared norm 1. From (12)
the solution is that each such matrix is equal to a toric matrix Wz0.

• Next we consider the set of linearly independent matrices Kλµ of squared norm 2. In
this case from (12) each such matrix is equal to the sum of two toric matrices. We have
three cases: (i) Kλµ is equal to the sum of two already determined toric matrices (no
new information); (ii) it is the sum of an already determined toric matrix and of a new
one; (iii) it is equal to the sum of two new toric matrices. To distinguish from cases
(ii) and (iii), we calculate the set of differences Kλµ − Wi where Wi runs into the set
of determined toric matrices, and check if the obtained matrix has non-negative integer
coefficients: in this case we determine a new toric matrix given by Kλµ − Wi.
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• Next we consider the set of linearly independent matrices Kλµ of squared norm 3. From
(12) each such matrix is equal to the sum of three toric matrices. Either (i) Kλµ is
equal to the sum of three already determined toric matrices; (ii) it is equal to the sum
of a determined toric matrix and of two new ones; (iii) it is equal to the sum of two
already determined matrices and a new one; or (iv) it is equal to the sum of three new
toric matrices. We calculate the set of differences Kλµ −Wi and Kλµ −Wi −Wj where
Wi,Wj runs into the set of determined toric matrices, and check whenever the obtained
matrix has non-negative integer coefficients.

• For the set of linearly independent matrices Kλµ of squared norm 4 there are two
possibilities. Either Kλµ is the sum of four toric matrices, either it is equal to twice a
toric matrix. In the last case, the matrix elements of Kλµ should be either 0 or a multiple
of 2, and the new toric matrix is obtained as Kλµ/2. If not, a similar discussion as the
one made for the previous items allows the determination of the new toric matrices.

• The next step is to generalize the previous discussions for higher values of the squared
norm, in a straightforward way.

Once the set of toric matrices Wz0 is determined, we can of course use equation (9) to
check the results.

Degenerate case r < dO. The integer r may be strictly smaller than dO: this happens
when toric matrices Wz0 are not linearly independent. In order to better illustrate what has to
be done in this case, let us treat a “virtual” example. Suppose the dimension of the Ocneanu
algebra is dO = 3, and call z1, z2, z3 the basis elements. The corresponding toric matrices
are Wz1

,Wz2
,Wz3

, and suppose they are not linearly independent. For example let us take
Wz3

= Wz1
+Wz2

, in this case we have r = 2 < dO. We still use the same scalar product in the
algebra of quantum symmetries, and the norm of z3 is of course 1, but, because of the abuse
of langage and notation already made before, we shall say that the “squared norm” of Wz3

is equal to 1 (and not 2, of course!). The problem arising from the fact that toric matrices
may not be linearly independent, so that the linear expansion (12) of Kλµ over the family
of toric matrices may be not unique, can be solved by considering the squared norm of Kλµ.
Continuing with our virtual example, we could hesitate between writing Kλµ = Wz1

+2Wz2
or

Kλµ = Wz2
+ Wz3

, since Wz3
= Wz1

+ Wz2
. In the first case the corresponding squared norm

would be 5, and in the second case it would be 2. In all cases we have met, the knowledge of
the squared norm of Kλµ from equation (13) is sufficient to bypass the ambiguity and obtain
the correct linear expansion. The determination of the toric matrices can then be done step
by step, in the same way as we did in the non degenerate case, starting from squared norm
1 to higher values. We refer to the ŝu(3) case at level 9 treated in the next section for more
technical details.

3.2 Determination of double toric matrices Wxy

Once we have determined the toric matrices Wx0, we calculate the following set of matrices:

Kx
λµ = Nλ Wx0 N tr

µ (15)

Then equation (10) reads:

Kx
λµ =

∑

z

(Wxz)λµWz0 . (16)
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This equation can be viewed as the linear expansion of the matrix Kx
λµ over the set of toric

matrices Wz0, where the coefficients of this expansion are the non-negative integers (Wxz)λµ,
that we want to determine. In the non degenerate case, toric matrices Wz0 are linearly
independent, the decomposition (16) is unique and the calculation is straightforward. In
the degenerate case, some care has to be taken since toric matrices Wz0 are not linearly
independent: the expansion (16) is therefore not unique. Some coefficients may remain free
and one needs further information to a complete determination (see next subsection).

The coefficients (Wxz)λµ can also be encoded in the double fusion matrices Vλµ, that
satisfy the double fusion equations (6). Setting µ = µ′ = 0, λ = λ′ = 0 and λ′ = µ = 0
respectively in Eq. (6) gives:

Vλ0 Vλ′0 =
∑

λ′′

Nλ′′

λλ′ Vλ′′0 , (17)

V0µ V0µ′ =
∑

µ′′

Nµ′′

µµ′ V0µ′′ , (18)

Vλµ′ = Vλ0 V0µ′ = V0µ′ Vλ0 . (19)

From Eqs.(17) and (18), we see that the set of matrices Vλ0 and V0λ satisfy the fusion algebra.
These matrices can therefore be determined using these equations from the subset of matrices
Vf0 and V0f , where f stands for the fundamental generators of the fusion algebra. For ŝu(2),
there is one generator f = 1, while for ŝu(3), there are two conjugated generators (1, 0) and
(0, 1). The determination of double fusion matrices is reduced, by the use of Eqs. (17–19), to
the determination of the generators Vf0 and V0f . It is therefore sufficient to solve Eq. (16)
only for the pair of indices (λµ) = (f0) and (λµ) = (0f), and then use Eqs. (17–19), which
simplifies a lot the computational task.

3.3 Determination of the Ocneanu algebra Ox

The matrices Vf0 and V0f are the adjacency matrices of the Ocneanu graph. We denote
OfL

= Vf0 and OfR
= V0f , where fL and fR now stands for the left and right generators of

the Ocneanu quantum symmetry algebra. For SU(n), there are n − 1 generators f of the
fusion algebra, and therefore 2(n − 1) generators of the quantum symmetry algebra. The
Ocneanu graph is also the Cayley graph of multiplication by these generators. From the
multiplication by these generators, we can reconstruct the full table of multiplication of the
quantum symmetry algebra (with elements denoted x, y, z)

x y =
∑

z

Oz
xy z . (20)

This multiplication table is encoded in the “quantum symmetry matrices” Ox, which are the
graph algebra matrices of the Ocneanu graph, with coefficients (Ox)yz = Oz

xy. They satisfy the
following relations (take care with the order of indices since the quantum symmetry algebra
may be non commutative):

Ox Oy =
∑

z

(Oy)xz Oz . (21)

Once the generators OfL
= Vf0 and OfR

= V0f have been determined from the previous step,
all quantum symmetry matrices can be computed from (21).
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In the degenerate case the determination of the double toric matrices Wxy from equation
(16) is not straightforward, some coefficients being still free. A solution to this problem is
provided by an analysis of the structure of the Ocneanu graph itself, since it must satisfy
some conjugation and chiral conjugation properties (we refer to the level 9 ŝu(3) example
treated in the next section for further details). Further compatibility conditions have also to
be satisfied and can be used to check the results, or to determine the remaining coefficients
(for degenerate cases). One of these conditions read [23, 9]:

Ox Vλµ = Vλµ Ox =
∑

z

(Vλµ)xz Oz . (22)

A special case of this equation, for x = 0, being:

Wyy′ =
∑

z

(Oz)yy′ W0z . (23)

3.4 Determination of the higher ADE graph G

For any ŝu(n) at level k, we have the infinite series of Ak graphs which are the truncated
Weyl alcoves at level k of SU(n) irreps. Other infinite series are obtained by orbifolding
(Dk = Ak/p) and conjugation (A∗

k,D
∗
k) methods, but there are also some exceptional graphs

that can not be obtained in that way. Even using the fact that graphs have to obey a list
of requirements (such as conjugation, N-ality, spectral properties and that G must be an Ak

module), one still needed to use some good “computer aided flair” to find them [11, 22]. The
basic method to obtain the exceptional graphs was to use the Xu algorithm (see [29, 25]) for
solving (5), at least when the initial data (Fλ)00 is known (from conformal embedding for
instance).

In this “historical approach”, the problem of determining the algebra of quantum
symmetries Oc(G) was not addressed and this algebra was even less used as a tool to
determine G itself. The procedure described in this paper is different. Starting from the
modular invariant Mλµ = (Vλµ)00 as initial data, one solves the modular splitting equation
derived from (6) (as explained in the previous section) and determines directly the algebra of
quantum symmetries Oc(G), without knowing what G itself can be. Then one uses the fact
that G should be both an Ak module and an Oc(G) module (see comments in [9]). Denoting
λ an element of the fusion algebra, the first module property reads λa =

∑
b(Fλ)ab b, with

coefficients encoded by the annular matrices Fλ. The associativity property (λµ) a = λ (µ a)
imposes the annular matrices to satisfy the fusion algebra (5). Denoting x an element
of the quantum symmetry algebra, the second module property reads x a =

∑
b(Sx)ab b,

with coefficients encoded by the dual annular matrices Sx. The associativity property
(x y) a = x (y a) imposes the dual annular matrices to satisfy the quantum symmetry algebra
(7). In some cases (including all Type I cases), G directly appears as a subgraph of the Oc-
neanu graph. In other cases, it appears as a module over the algebra of a particular subgraph.

The methods we have described allow for the determination of the graph G even when
orbifold and conjugation arguments from the Ak graphs do not apply (the exceptional cases).
It can be used for a general affine algebra ĝk at any given level k, once the corresponding
modular invariant is known. In the next section, we present and illustrate this method using
several exceptional examples. In the su(3) family, there are three exceptional graphs with
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self fusion. They are called E5, E9 and E21. In this paper we have chosen E5 (a kind of
generalization of the E6 case of su(2)) and E9. The case of E21 (a kind of generalization of the
E8 case of su(2)) is actually very simple to discuss, even simpler than E5 because it does not
admit any non trivial module graph, and we could have described it as well, along the same
lines. Results concerning E21 and its quantum symmetries can be found in [6, 26] (in those
references, the graph itself is a priori given). The su(3) - analogue of the E7 case of su(2),
which is an exceptional twist of D9, can also be analysed thank’s to the modular splitting
formula, of course, but the discussion is quite involved (see [16, 15]). We refer to [27] for a
description of an ŝu(4) example. In [8], these methods were applied to a non simply-laced
example of the su(2) family, where the initial partition function is not modular invariant (it is
invariant under a particular congruence subgroup) and where there is no associated quantum
groupöid.

3.5 Comments

All module, associativity and compatibility conditions described here between the different set
of matrices follow from properties of the quantum groupöid B(G) constructed from the higher
ADE graph G [18, 23, 26]. General results have been published on this quantum groupöid
(see [18, 7, 10, 17, 21]). But we are not aware of any definite list of properties that the graphs
G should satisfy to obtain the right classification. The strategy adopted here is to take as
granted the existence of a quantum groupöıd and its corresponding set of properties, and to
derive the graph G as a by-product of the calculations, starting from the only knowledge of
the modular invariant. Notice that this seems to be the method adopted by Ocneanu in order
to produce his list of SU(3) and SU(4) graphs presented in [20]. One crucial check for the
existence of the underlying quantum groupöid is the existence of dimensional rules:

dim(B(G)) =
∑

λ

d2
λ =

∑

x

d2
x , (24)

where the dimensions dλ and dx are calculated from the annular and dual annular matrices:
dλ =

∑
a,b(Fλ)ab, dx =

∑
a,b(Sx)ab.

4 Examples

4.1 The E5 case of ŝu(3)

We start with the ŝu(3)5 modular invariant partition function:

Z = = |χ5
(0,0) + χ5

(2,2)|
2 + |χ5

(0,2) + χ5
(3,2)|

2 + |χ5
(2,0) + χ5

(2,3)|
2

+ |χ5
(2,1) + χ5

(0,5)|
2 + |χ5

(3,0) + χ5
(0,3)|

2 + |χ5
(1,2) + χ5

(5,0)|
2 , (25)

where χ5
λ’s are the characters of ŝu(3)5, labelled by λ = (λ1, λ2) with 0 ≤ λ1, λ2 ≤ 5,

λ1 + λ2 ≤ 5. The modular invariant matrix M is read from Z when the later is written2

Z =
∑

λ χλ Mλµ χ̄µ. The number of irreps is dA = 21. λ = (0, 0) is the trivial representation

2Some authors write instead Z =
∑

λ
χλ Mλµ∗ χ̄µ, and therefore some care has to be taken in order to

compare results since conjugated cases (in particular figures 2 and 3) must then be interchanged. Here we
follow the convention made in [9].
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and there are two fundamental irreps (1, 0) and (0, 1) = (1, 0)∗, where (λ1, λ2)
∗ = (λ2, λ1) is

the conjugated irrep. N(1,0) is the adjacency matrix of the oriented graph A5, which is the
truncated Weyl alcove of SU(3) irreps at level k = 5 (see figure 1). The fusion matrix N(0,1) is
the transposed matrix of N(1,0) and is the adjacency matrix of the same graph with reversed
arrows. Once N(1,0) is known, the other fusion matrices can be obtained from the truncated

recursion formulae of SU(3) irreps, applied for increasing level up to k:

N(λ,µ) = N(1,0) N(λ−1,µ) − N(λ−1,µ−1) − N(λ−2,µ+1) if µ 6= 0

N(λ,0) = N(1,0) N(λ−1,0) − N(λ−2,1) (26)

N(0,λ) = (N(λ,0))
tr

where it is understood that N(λ,µ) = 0 if λ < 0 or µ < 0.
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Figure 1: The A5 diagram.

Determination of toric matrices Wz0 We have dO = Tr(MM†) = 24. The matrices
Kλµ = Nλ MN tr

µ span a vector space of dimension r = 24. Since r = dO, the toric matrices
Wx0 are linearly independent and form a special basis for this vector space. For each matrix
Kλµ we calculate the squared norm given by ||Kλµ||

2 = (Kλµ)λ∗µ∗ .

• For squared norm 1 we have 21 linearly independent matrices Kλµ, each one being equal
to a toric matrix Wz0.

• There are 45 linearly independent matrices Kλµ of squared norm 2. Some of them are
equal to the sum of two already determined toric matrices. For a matrix not satisfying
this property, say Kab, we build the set of matrices Kab − Wx, where Wx runs into the
set of determined toric matrices, and look for those which have non-negative integer
coefficients. This condition is strong enough and leads to only one solution (if Kab is
the sum of a determined matrix and a new one). We determine in that way the last
three toric matrices.

• We have therefore determined the set of 24 toric matrices Wx, with 0 ≤ x ≤ 23 and we
can check our result by an explicit verification of the modular splitting equation (9).
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Determination of Vλµ Having determined the set of toric matrices Wx0, we compute
the set of matrices Kx

λµ = Nλ Wx0 N tr
µ . For SU(3) cases, all double fusion matrices Vλµ

are generated by the two fundamental matrices V(1,0),(0,0), V(0,0),(1,0) and their transposed
V(0,1),(0,0) = V tr

(1,0),(0,0), V(0,0),(0,1) = V tr
(0,0),(1,0). In order to determine these matrices, it is

therefore sufficient to compute the decomposition of Kx
(1,0),(0,0) and Kx

(0,0),(1,0) on the set of

toric matrices Wx0 using Eq.(16). The calculation is straightforward. From the knowledge of
the fundamental matrices V(1,0),(0,0), V(0,0),(1,0) and their transposed, all double fusion matrices
Vλµ are recursively calculated from Eqs.(17–19).

The Ocneanu graph of quantum symmetries The four fundamental matrices explicitly
given below, in Eqs.(28), are the adjacency matrices of the graph of quantum symmetries
(Ocneanu graph) associated to the initial modular invariant. We display in figure 2 the graph
corresponding to the matrix V(1,0),(0,0) associated to the vertex labelled by 21 ⊗ 10. V(0,0),(1,0)

is associated to the vertex 15 ⊗ 20, and instead of displaying the corresponding arrows, we
display the action of the chiral conjugation C in order to not clutter the figure (warning: see
the last footnote). The arrows corresponding to the matrix V(0,1),(0,0), associated to the vertex
22 ⊗ 10, are obtained by reversing the ones of figure 2; for the matrix V(0,0),(0,1), associated to
the vertex 14 ⊗ 20, we use the chiral conjugation and the reversed arrows.
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Ĵ
J
J

t�




�



J

Ĵ
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Figure 2: Ocneanu graph Oc(E5). The two left chiral generators are 21 ⊗ 10 and 22 ⊗ 10, the
two right chiral generators are 15 ⊗ 20 and 14 ⊗ 20.
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The generalized Dynkin diagram E5 The graph of figure 2 is made of two copies of the
generalized Dynkin diagram E5. The E5 graph has 12 vertices denoted by 1i, 2i, i = 0, 1, . . . , 5.
The unit is 10 and the generators are 21 and 22, the orientation of the graph corresponds to
multiplication by 21. Conjugation corresponds to the symmetry with respect to the axis
passing through vertices 10 and 13: 1∗0 = 10, 1

∗
1 = 15, 1

∗
2 = 14, 1

∗
3 = 13; 2∗0 = 23, 2

∗
1 = 22, 2

∗
4 =

25. The E5 graph determines in a unique way its graph algebra (it is a subgroup graph). The
commutative multiplication table is given by:

1i.1j = 1i+j

1i.2j = 2i.1j = 2i+j i, j = 0, 1, . . . , 5 mod 6
2i.2j = 2i+j + 2i+j−3 + 1i+j−3

(27)

From this multiplication table we get the graph algebra matrices Ga associated to the vertices
a ∈ E5. The one corresponding to the generator 21 is the adjacency matrix of the graph. The
vector space spanned by vertices of E5 is a module under the action of vertices of A5, the
action being encoded by the annular matrices Fλ obtained form the recurrence relation (26)
with starting point F(0,0) = l112, F(1,0) = G21

and F(0,1) = G22
.

Choosing a special ordering in the set of indices z of the algebra of quantum symmetries,
and using the 12 × 12 graph algebra matrices Ga of the graph E5, the fundamental double
fusion matrices are given by

V(1,0),(0,0) =

(
G21

.

. G21

)
V(0,0),(1,0) =

(
. G15

G12
G12

+ G15

)

V(0,1),(0,0) =

(
G22

.

. G22

)
V(0,0),(0,1) =

(
. G14

G11
G11

+ G14

) (28)

Realization of Oc(E5) The algebra of quantum symmetries Oc(E5) can be realized as

Oc(E5) = E5 ⊗J E5 with a ⊗J b.c = a.b∗ ⊗J c for b ∈ J = {1i} , (29)

where J is a subalgebra characterized by modular properties (see [6, 26]). The algebra Oc(E5)
has dimension 12 × 2 = 24, and a basis is given by elements a ⊗J 10 and a ⊗J 20. The
identifications in Oc(E5) are given by:

1i ⊗J 1j = 1i+j∗ ⊗J 10

2i ⊗J 1j = 2i+j∗ ⊗J 10

1i ⊗J 2j = 1i ⊗J 1j .20 = 1i+j∗ ⊗J 20

2i ⊗J 2j = 2i ⊗J 1j .20 = 2i+j∗ ⊗J 20

(30)

The chiral conjugation is defined by (a⊗J b)C = b⊗J a. The left chiral generator is 21 ⊗J 10

and the right chiral generator is 10 ⊗J 21 = 15 ⊗J 20. Multiplication in Oc(E5) is defined
from the multiplication (27) of E5 together with the identifications (30), and is encoded by
the quantum symmetries matrices Ox. We get:

Ox=a⊗J10
=

(
Ga .

. Ga

)
Ox=a⊗J20

=

(
. Ga

Ga.G13
Ga( l1 + G13

)

)
(31)

The vector space of E5 vertices is also a module under the action of vertices of Oc(E5) defined
by (a ⊗J 10).b = a.b and (a ⊗J 20).b = a.20.b. The dual annular matrices Sx are given by
Sx=a⊗J10

= Ga and Sx=a⊗J20
= G20

.Ga. We check the dimensional rules dim(B(E5)) =∑
λ d2

λ =
∑

x d2
x = 29376.
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4.2 The E∗
5 case of ŝu(3)

We start now with the following ŝu(3)5 modular invariant partition function:

Z = |χ5
(0,0) + χ5

(2,2)|
2 + |χ5

(3,0) + χ5
(0,3)|

2 + [(χ5
(0,2) + χ5

(3,2)).(χ
5
(2,0) + χ5

(2,3)) + h.c.]

+(χ5
(2,1) + χ5

(0,5)).(χ
5
(1,2) + χ5

(5,0)) + h.c.] , (32)

and compute the modular matrix3 M. The fusion matrices Nλ are the same as in the previous
case.

Determination of toric matrices and double fusion matrices We have dO =
Tr(MM†) = 24. The matrices Kλµ = Nλ MN tr

µ span a vector space of dimension
r = dO = 24. The discussion is the same as in the previous case.

• For squared norm 1 we have 21 linearly independent matrices Kλµ defining 21 toric
matrices Wz0.

• There are 45 linearly independent matrices Kλµ of squared norm 2 and the last three
toric matrices Wz0 can be obtained.

Once the toric matrices have been determined, the double fusion matrices are obtained
straightforwardly. For the fundamental ones we get:

V(1,0),(0,0) =

(
G21

.

. G21

)
V(0,0),(1,0) =

(
. G11

G14
G11

+ G14

)

V(0,1),(0,0) =

(
G22

.

. G22

)
V(0,0),(0,1) =

(
. G12

G15
G12

+ G15

) (33)

The Ocneanu graph of quantum symmetries We display in figure 3 the graph corre-
sponding to the matrix V(1,0),(0,0) associated with the vertex labelled by 21 ⊗ 10. V(0,0),(1,0) is
associated with the vertex 11 ⊗ 20. The algebra of quantum symmetries can be realized as

Oc(E∗
5 ) = E5 ⊗J E5 with a ⊗J b.c = a.b ⊗J c for b ∈ J = {1i} . (34)

The algebra Oc(E∗
5 ) has also dimension 12 × 2 = 24 and a basis is given by elements a ⊗J 10

and a ⊗J 20. The identifications in Oc(E∗
5 ) are given by (different from those of Oc(E5))

1i ⊗J 1j = 1i+j ⊗J 10

2i ⊗J 1j = 2i+j ⊗J 10

1i ⊗J 2j = 1i ⊗J 1j .20 = 1i+j ⊗J 20

2i ⊗J 2j = 2i ⊗J 1j .20 = 2i+j ⊗J 20

(35)

The left chiral generator is 21 ⊗J 10 and the right chiral generator is 10 ⊗J 21 = 11 ⊗J 20. The
algebra Oc(E∗

5 ) is isomorphic to Oc(E5), the quantum symmetry matrices Ox are still given
by (31). The difference is in the chiral conjugacy.

3Same remark as in the last footnote.
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Figure 3: Ocneanu graph Oc(E∗
5 ). The two left chiral generators are 21 ⊗ 10 and 22 ⊗ 10, the

two right chiral generators are 11 ⊗ 20 and 12 ⊗ 20.

The generalized Dynkin diagram E∗
5 = E5/3 The graph associated to the initial modular

invariant (32) is a module graph for the Ocneanu graph displayed on figure 3. It must therefore
be a module graph of the E5 graph itself: it is obtained as the Z3-orbifold graph of E5 (see
[14]). We write this module property a b̃ =

∑
c̃(F

E
a )b̃c̃ c̃, for a ∈ E5 and b̃, c̃ ∈ E5/3, encoded

by the 12 matrices F E
a . From the associative property (a.b).c̃ = a.(b.c̃), these matrices must

satisfy the same commutation relations (27) as the graph algebra of E5, and can be recursively
calculated from F E

21
, which is the adjacency matrix of the E5/3 graph displayed on figure 4.

The E5/3 graph is also a module over the algebra of quantum symmetries, the action being
defined by (a ⊗J 10).b̃ = a.b̃ and (a ⊗J 20).b = a.20.b̃. The dual annular matrices Sx are
therefore given by Sx=a⊗J10

= F E
a and Sx=a⊗J20

= F E
20

.F E
a . We check the dimensional rules

dim(B(E∗
5 )) =

∑
λ d2

λ =
∑

x d2
x = 3264.

So both graphs G = E5 and E5/3 have the same (isomorphic) algebra Oc(G) of quantum
symmetries, but its realization in terms of tensor square of E5 is different in the two cases, as
well as the chiral conjugation, and, of course, its module action on E5 or on E5/3.

4.3 The E9 case of su(3)

We start with the following ŝu(3)9 modular invariant partition function:

Z = |χ9
0,0 + χ9

0,9 + χ9
9,0 + χ9

1,4 + χ9
4,1 + χ9

4,4|
2 + 2 |χ9

2,2 + χ9
2,5 + χ9

5,2|
2 , (36)
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Figure 4: The E∗
5 = E5/3 generalized Dynkin diagram.

where χ9
λ’s are the characters of ŝu(3)9, labelled by λ = (λ1, λ2) with 0 ≤ λ1, λ2 ≤ 9, λ1+λ2 ≤

9. Notice that this modular invariant can be obtained from the conformal embedding of affine
algebras ŝu(3)9 ⊂ (Ê6)1. The modular invariant matrix is recovered from Z =

∑
λ χλMλµχµ.

The number of irreps is dA = 55. The fusion matrix N(1,0) is the adjacency matrix of the A9

graph, the truncated Weyl alcove of SU(3) irreps at level 9. The other fusion matrices are
determined by the recurrence relation (27).

Determination of toric matrices Wz0 We have dO = Tr(MM†) = 72 and therefore
an Ocneanu algebra with 72 generators z and also 72 toric matrices Wz0. However these
toric matrices span a vector space of dimension r = 45 < 72, i.e. they are not all linearly
independent. For each matrix Kλµ = NλMN tr

µ we consider its “squared norm” defined by
||Kλµ||

2 = (Kλµ)λ∗µ∗ :

• There are 27 matrices Kλµ with squared norm 1, each one defines a toric matrix Wz0.

• There are 12 linearly independent matrices Kλµ with squared norm 2, but each one
is equal to the sum of two already determined matrices. We don’t find any new toric
matrix in this family.

• There are 21 linearly independent matrices Kλµ of squared norm 3, none of them being
equal to the sum of three already obtained matrices. Twelve amoung these 21 are equal
to the sum of one determined matrix and a matrix having coefficients multiple of 2. A
solution leading to squared norm 3 is to define a new toric matrix by dividing by 2 the
matrix with coefficients multiple of 2, and adding them to the list with a multiplicity
two. From these twelve we obtain actually only eight different toric matrices (because
some are obtained more than once), each one coming with multiplicity two. Nine of the
21 matrices have coefficients which are multiple of 3. We define nine new toric matrices
by dividing these matrices by 3, each toric matrix obtained in that way appearing with
multiplicity 3. At that stage, we have determined 27 + (2 × 8) + (3 × 9) = 70 toric
matrices.

• There are 24 linearly independent matrices Kλµ with squared norm 4, but each one is
equal to the sum of four already obtained matrices. We don’t recover any new toric
matrix. This is also the case for squared norm 5.

• There are 10 linearly independent matrices Kλµ with squared norm 6. We discard those
that can be written as a linear combination of already determined toric matrices, and
pick up one of the others, for example Kab. We build the list of matrices Kab −Wx, for
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Wx running into the set of already obtained toric matrices, searching for matrices with
non-negative coefficients. With our choice, it is so that Kab is the sum of two times a
toric matrix plus a new one which has matrix elements multiple of 2. Dividing the later
by 2 and adding it to the list, with multiplicity 2, we get the last toric matrices.

We have indeed therefore determined the 72 toric matrices, 45 (=27+9+8+1) of them being
linearly independent, but appearing with multiplicities (27 of multiplicity one, 9 (=8+1) of
multiplicity two and 9 of multiplicity three). We can check the result by a direct substitution
in the 55 × 55 = 3025 matrix equations over non-negative integers (12).

Determination of V(1,0),(0,0) and V(0,0),(1,0) We compute the set of matrices Kx
λµ =

NλWx0N
tr
µ for {λµ} = {(1, 0), (0, 0)} and {(0, 0), (1, 0)}, and decompose them on the family

(not a base) of toric matrices Wz0 using (12). Since the Wz0 are not linearly independent,
the decomposition is not unique, and we introduce some undetermined coefficients. Imposing
that they should be non-negative integers allows to fix some of them or to obtain relations be-
tween them. More constraints come from the fact that we have V(0,0),(1,0) = C.V(0,0),(1,0).C

−1,
where C is the chiral operator. Notice that C itself is deduced from the previous relation
even if V(0,0),(1,0) and V(0,0),(1,0) still contain free parameters, by using the fact that it is a
permutation matrix. Choosing an appropriate order on the set of indices z, we obtain the
following structure for V(1,0),(0,0):

V(1,0),(0,0) =




Ad(E9) . . . . .
. Ad(E9) . . . .
. . Ad(E9) . . .
. . . Ad(M9) . .
. . . . Ad(M9) .
. . . . . Ad(M9)




(37)

where Ad(E9) and Ad(M9) are 12× 12 matrices (still containing some unknown coefficients).

The generalized Dynkin diagram E9 The Ad(E9) matrix is the adjacency matrix of the
graph E9 displayed on the l.h.s. of figure 5. It possesses a Z3-symmetry corresponding to
the permutation of the three “wings” formed by vertices 0i, 1i and 2i. The undetermined
coefficients of the adjacency matrix reflect this symmetry; they are simply fixed once an
ordering has been chosen for the vertices (something similar happens for the Deven series of
the su(2) family).

The vector space of the E9 graph is a module over the left-right action of the graph algebra
of the A9 graph, encoded by the annular matrices F E

λ

A9 × E9 → E9 : λ · a = a · λ =
∑

b

(F E
λ )ab b λ ∈ A9 , a, b ∈ E9 . (38)

The F E
λ matrices give a representation of dimension 12 of the fusion algebra and are deter-

mined from the recursion relation (27) with F E
(0,0) = l112×12, F E

(1,0) = Ad(E9). We notice

that fundamental matrices (for instance F(1,0)) contain, in this case, elements bigger than 1,
however, the “rigidity4 condition” (Fλ)ab = (Fλ∗)ba holds, so that this example is indeed an

4We call it that way because of its relation with the theory of rigid categories (see for instance [21]).
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higher analogue of the ADE graphs, not an higher analogue of the non simply laced cases.
Triality and conjugation compatible with the action of A9 can be defined on the E9 graph.
Triality is denoted by the index i ∈ {0, 1, 2} in the set of vertices 0i, 1i, 2i. The conjugation
corresponds to the vertical axis going through vertices 00 and 30: 0∗0 = 00, 1

∗
0 = 20, 3

∗
0 = 30,

0∗1 = 02, 1
∗
1 = 22, 1

∗
2 = 21, 3

∗
1 = 32. The Z3-symmetry action on vertices of E9 is denoted

ρ3. The axis formed by vertices 3i is invariant under ρ3 and the symmetry permutes the
three wings ρ3(00) = 10, ρ3(10) = 20, ρ3(20) = 00; ρ3(01) = 11, ρ3(11) = 21, ρ3(21) = 01;
ρ3(02) = 12, ρ3(12) = 22, ρ3(22) = 02. Once we have fixed the origin of the graph (the vertex
00), the graph still possesses a Z2-symmetry corresponding to the permutation of the two
remaining wings, formed by vertices 1i and 2i. We denote ρ2 this operation: ρ2(1i) = 2i and
ρ2
2 = l1.

The E9 graph has also self-fusion: the vector space spanned by its vertices has an associa-
tive algebra structure, with non-negative structure constants, compatible with the action of
A9. 00 is the unity and the two conjugated generators are 01 and 02. The graph itself is also
the Cayley graph of multiplication by 01. Due to the symmetry of the wings of the graph,
the knowledge of the multiplication by generators 01 and 02 is not sufficient to reconstruct
the whole multiplication table; we have to impose structure coefficients to be non-negative
integers in order to determine a unique solution (see [6, 26]). The whole multiplication table
is encoded in the graph algebra matrices Ga, for a ∈ E9. We give the expression for G10

and
G20

, the other matrices are computed by G00
= l1, G01

= Gtr
02

= Ad(E9), G30
= G01

G02
−G00

,
G32

= Gtr
31

= G01
G01

− G02
, G11

= Gtr
22

= G01
G10

, G12
= Gtr

21
= G02

G10
. In the ordered

basis (00, 10, 20, 30; 01, 11, 21, 31; 02, 12, 22, 32), G10
and G20

are given by

G10
= Gtr

20
=




. 1 . . . . . . . . . .

. . 1 . . . . . . . . .
1 . . . . . . . . . . .
. . . 1 . . . . . . . .
. . . . . 1 . . . . . .
. . . . . . 1 . . . . .
. . . . 1 . . . . . . .
. . . . . . . 1 . . . .
. . . . . . . . . 1 . .
. . . . . . . . . . 1 .
. . . . . . . . 1 . . .
. . . . . . . . . . . 1




(39)

Notice that multiplication by 10 corresponds to the Z3 operation: 10.a = ρ3(a). The matrix
G10

is the permutation matrix representing the action of the Z3 operator ρ3: (G10
)ab = δb,ρ3(a).

We have (G10
)3 = l1 and (G10

)2 = G20
, so G20

represents the operator (ρ3)
2.

Other aspects and properties of the E9 graph and of its algebra of quantum symmetries
(semi-simple structure of the associated quantum groupöid, semi-simple structure of Oc(E9)
itself, quantum dimensions and quantum mass) are presented in [6, 26, 9].

The generalized Dynkin diagram M9 The matrix Ad(M9) is a 12×12 matrix with some
unknown coefficients to be determined. Imposing this matrix to be the adjacency matrix of a
graph such that the vector space spanned by its vertices is a module over the graph algebras
of A9 and of E9 leads to a unique solution. The graph is displayed on the r.h.s. of figure 5
and corresponds to the Z3-orbifold graph of E9, denoted M9 = E9/3.
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Figure 5: The graphs E9 and M9

The vector space spanned by vertices of the M9 graph is a module over the left-right
action of the graph algebra of A9 encoded by the annular matrices FM

λ

A9 ×M9 → M9 : λ · ã = ã · λ =
∑

b̃

(FM
λ )ãb̃ b̃ λ ∈ A9 , ã, b̃ ∈ M9 . (40)

The FM
λ matrices give a representation of dimension 12 of the fusion algebra and can be

determined from the recursion relation (27) with FM
(0,0) = l112×12, FM

(1,0) = Ad(M9). Triality
and conjugation compatible with the action of A9 can be defined on the M9 graph. Triality is
denoted by the index i ∈ {0, 1, 2} in the set of vertices ãi ∈ M9. The conjugation corresponds
to the vertical axis going through vertex 0̃0: 0̃∗0 = 0̃0, 0̃

∗
1 = 0̃2, 3̃

∗
0 = 3̃0, 3̃′0

∗ = 3̃′0, 3̃′′0
∗ = 3̃′′0 , 3̃

∗
1 =

3̃2, 3̃
′
1
∗ = 3̃′2, 3̃

′′
1
∗ = 3̃′′2 .

The vector space spanned by vertices of M9 is also a module under the action of the graph
algebra of E9. Here we will distinguish between left and right action. The left action of E9 is
encoded by a set of 12 × 12 matrices denoted P ℓ

λ

E9 ×M9 → M9 : a · b̃ =
∑

c̃

(P ℓ
a)

b̃c̃
c̃ a ∈ E9 , b̃, c̃ ∈ M9 . (41)

The module property (a · b) · c̃ = a · (b · c̃) imposes P ℓ
a matrices to form a representation of

the graph algebra of E9; they satisfy P ℓ
a P ℓ

b =
∑

c(Ga)bcP
ℓ
c . We compute the set of matrices

P ℓ
a using the multiplicative structure of E9 from the previous relation. We give below the

expression for P ℓ
10

and P ℓ
20

, the other matrices being computed by P ℓ
00

= l1, P ℓ
01

= (P ℓ
02

)tr =
Ad(M9), P ℓ

30
= P ℓ

01
P ℓ

02
− P ℓ

00
, P ℓ

32
= (P ℓ

31
)tr = P ℓ

01
P ℓ

01
− P ℓ

02
, P ℓ

11
= (P ℓ

22
)tr = P ℓ

01
P ℓ

10
,

P ℓ
12

= (P ℓ
21

)tr = P ℓ
02

P ℓ
10

. In the ordered basis (0̃0, 3̃0, 3̃
′
0, 3̃

′′
0 ; 0̃1, 3̃1, 3̃

′
1, 3̃

′′
1 ; 0̃2, 3̃2, 3̃

′
2, 3̃

′′
2), P ℓ

10
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and P ℓ
20

are given by

P ℓ
10

= (P ℓ
20

)tr =




1 . . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
. 1 . . . . . . . . . .
. . . . 1 . . . . . . .
. . . . . . 1 . . . . .
. . . . . . . 1 . . . .
. . . . . 1 . . . . . .
. . . . . . . . 1 . . .
. . . . . . . . . . 1 .
. . . . . . . . . . . 1
. . . . . . . . . 1 . .




(42)

There is also an operator ρ′3 acting on vertices of the M9 graph, inherited from the Z3

symmetry of the E9 graph through the orbifold procedure. It satisfies the following property:

ρ3(a) b̃ = a ρ′3(b̃) (43)

We have 10 a = ρ3(a), so ρ′3(ã) = 10 ã. It is defined by ρ′3(0̃i) = 0̃i, ρ′3(3̃i) = 3̃′i, ρ′3(3̃
′
i) = 3̃′′i ,

ρ′3(3̃
′′
i ) = 3̃i, for i = 0, 1, 2. The matrix P ℓ

10
is therefore the permutation matrix representing

the action of the Z3 operator ρ′3. We have (P ℓ
10

)3 = l1 and (P ℓ
10

)2 = P ℓ
20

, so P ℓ
20

represents the
operator (ρ′3)

2.

The vector space E9 ⊕ M9 We define the vector space H = E9 ⊕ M9, and we want to
define (this will be used later) an associative product on H with the following structure:

ր E9 M9

E9 E9 M9

M9 M9 E9

We define the following actions:

E9 × E9 → E9 : a b =
∑

c

(Ga)bc c

E9 ×M9 → M9 : a b̃ =
∑

c̃

(P ℓ
a)

b̃c̃
c̃

M9 × E9 → M9 : b̃ a =
∑

c̃

(P r
a )b̃c̃ c̃

M9 ×M9 → E9 : ã b̃ =
∑

c

(Hã)b̃c c.

(44)

The associativity property on H reads a (b c) = (a b) c ; a (b c̃) = (a b) c̃ ; a (b̃ c) = (a b̃) c ;
ã (b c) = (ã b) c ; a (b̃ c̃) = (a b̃) c̃ ; ã (b c̃) = (ã b) c̃ ; ã (b̃ c) = (ã b̃) c ; ã (b̃ c̃) = (ã b̃) c̃, and induce
a set of relations between matrices Ga, P

ℓ
a , P r

a and Hã. In order to satisfy them we found a
unique solution for matrices P r

a and Hã. The right action of E9 on M9 encoded by the set of
matrices P r

a is defined via the Z2 operator ρ2:

b̃ · a = ρ2(a) · b̃ (45)
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so that we have P r
a = P ℓ

ρ2(a). The coefficients of the Hã matrices are given by:

(Hã)b̃c = (P ℓ
ρ2(c))ã∗ b̃

= (P r
c )

ã∗ b̃
. (46)

The Ocneanu algebra of quantum symmetries and a realization The matrix
V(1,0),(0,0) is the adjacency matrix of the left chiral part of the Ocneanu graph. The graph is
composed of six subgraphs, three copies of the E9 graph and three copies of the M9 graph,
as showed on figure 6. We label the vertices as follows: x = a ⊗ 0i with a, 0i ∈ E9 and
i = 0, 1, 2 for vertices of E9-type subgraphs and x = ã ⊗ 3̃i with ã, 3̃i ∈ M9 and i = 0, 1, 2
for vertices of M9-type subgraphs. The matrix V(1,0),(0,0) corresponds to the multiplication
by the left chiral generator 01 ⊗ 00. The matrix V(0,0),(1,0) is the adjacency matrix of the right
chiral part of the Ocneanu graph Oc(E9), and corresponds to the multiplication by the right
chiral generator 00 ⊗ 01. The dashed lines in the graph corresponds to the chiral operator C.
We have V(0,0),(1,0) = CV(1,0),(0,0)C

−1. The multiplication by 00 ⊗ 01 is obtained as follows.
We start with x, apply C, multiply the result by 01 ⊗ 00, and apply C−1 = C. From ma-
trices V(1,0),(0,0) and V(0,0),(1,0) all others Vλµ (hence also the double toric matrices Wxy) are
calculated straightforwardly using equations (17–19).

From the multiplication by chiral left and right generators 01 ⊗ 00 and 00 ⊗ 01 (and their
conjugate) we reconstruct the multiplication table of Oc(E9). As for the graph matrices of
E9, the calculation is not straightforward, but imposing non-negative integer coefficients leads
to a unique solution. The result is encoded in the 72 quantum symmetry matrices Ox of
dimension 72 × 72.

Realization of the quantum symmetry algebra In order to have a compact (readable)
description of these matrices and the multiplicative structure of the algebra of quantum
symmetries, we propose the following realization of this algebra:

Oc = “E9 ⊗Z3
E9”

·
= (E9 ⊗ρ E9) ⊕ (M9 ⊗ρ M9) , (47)

where the notation ⊗ρ means that the tensor product is quotiented using the Z3 symmetry
of graphs E9 and M9 in the following way. A basis of the quantum symmetry algebra is given
by elements {a ⊗ 0i , ã ⊗ 3̃i} for i = 0, 1, 2. The other elements of E9 ⊗ E9 and M9 ⊗M9 are
identified with basis elements {a ⊗ 0i , ã ⊗ 3̃i} using the Z3 symmetry operators ρ3 and ρ′3
of graphs E9 and M9 and the induction-restruction rules between the two graph algebras, as
follows:

• a ⊗ 1i = a ⊗ 10 · 0i = 10 · a ⊗ 0i = ρ3(a) ⊗ 0i (48)

• a ⊗ 2i = a ⊗ 20 · 0i = 20 · a ⊗ 0i = (ρ3)
2(a) ⊗ 0i (49)

• a ⊗ 3i =
∑

ã

(E0̃0
)aã ã ⊗ 3̃i (50)

• ã ⊗ 3̃′i = ã ⊗ 10 · 3̃i = 10 · ã ⊗ 3̃i = ρ′3(ã) ⊗ 3̃i (51)

• ã ⊗ 3̃′′i = ã ⊗ 20 · 3̃i = 20 · ã ⊗ 3̃i = (ρ′3)
2(ã) ⊗ 3̃i (52)

• ã ⊗ 0̃i =
∑

a

(Etr
0̃0

)ã,a a ⊗ 0i (53)
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Figure 6: The Ocneanu graph Oc(E9) = Oc(M9). The two left chiral generators are 01 ⊗ 00

and 02 ⊗ 00, the two right chiral generators are 00 ⊗ 01 and 00 ⊗ 02. The tensor product a⊗ b
is denoted with the shorthand notation ab.
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Here the matrix E0̃0
encodes the branching rules E9 →֒ M9 (obtained from matrices P ℓ

implementing the E9 (left) action on M9 as follows: (Eb̃)ac̃ = (P ℓ
a)b̃c̃). Explicitely, we have:

E
0̃0

=




1 . . . . . . . . . . .

1 . . . . . . . . . . .

1 . . . . . . . . . . .

. 1 1 1 . . . . . . . .

. . . . 1 . . . . . . .

. . . . 1 . . . . . . .

. . . . 1 . . . . . . .

. . . . . 1 1 1 . . . .

. . . . . . . . 1 . . .

. . . . . . . . 1 . . .

. . . . . . . . 1 . . .

. . . . . . . . . 1 1 1




00 →֒ 0̃0

10 →֒ 0̃0

20 →֒ 0̃0

30 →֒ 3̃0 + 3̃′
0

+ 3̃′′
0

01 →֒ 0̃1

11 →֒ 0̃1

21 →֒ 0̃1

31 →֒ 3̃1 + 3̃′
1

+ 3̃′′
1

02 →֒ 0̃2

12 →֒ 0̃2

22 →֒ 0̃2

32 →֒ 3̃2 + 3̃′
2

+ 3̃′′
2

(54)

The multiplication of the basis generators {a⊗0i , ã⊗ 3̃i} is then naturally defined using the
multiplication rules (44) and the projections (48–53). We introduce the matrices Rr defined

from the right action of E9 on M9: b̃ a =
∑

c̃(P
r
a )

b̃c̃
c̃ =

∑
c̃(R

r

b̃
)ac̃ c̃. It can be seen that the

algebra Oc(E9) is non commutative and isomorphic with the direct sum of 9 copies of 2 × 2
matrices and 36 copies of the complex numbers. With our parametrisation, the quantum
symmetry matrices read:

Oa⊗00
=




Ga . . . . .

. Ga . . . .

. . Ga . . .

. . . P ℓ
a . .

. . . . P ℓ
a .

. . . . . P ℓ
a




Oa⊗01
=




. Ga . . . .

. . Ga . . Ga E0

Ga . . Ga E0 . .

. P ℓ
a Etr

0
. . P ℓ

a ( l1 + P ℓ
10

) .

. . P ℓ
a Etr

0
. . P ℓ

a

. . . P ℓ
a ( l1 + P ℓ

20
) . .




Oa⊗02
=




. . Ga . . .

Ga . . Ga E0 . .

. Ga . . Ga E0 .

. . P ℓ
a Etr

0
. . P ℓ

a ( l1 + P ℓ
10

)

. . . P ℓ
a ( l1 + P ℓ

20
) . .

. P ℓ
a Etr

0
. . P ℓ

a .




Oã⊗3̃0
=




. . . Rr
ã . .

. Rr
ã Etr

0
. . Rr

ã( l1 + P ℓ
10

) .

. . Rr
ãEtr

0
. . Rr

ã( l1 + P ℓ
10

)

Ha . . 2(HãE0) . .

. Hã( l1 + G10
) . . HãE0 .

. . Hã( l1 + G10
) . . HãE0




Oã⊗3̃1
=




. . . . Rr
ã .

. . Rr
ã Etr

0
. . Rr

ã

. . . Rr
ã( l1 + P ℓ

20
) . .

. Hã( l1 + G20
) . . Hã E0 .

. . Hã . . Hã E0

Hã . . Hã E0 . .




Oã⊗3̃2
=




. . . . . Rr
ã

. . . Rr
ã( l1 + P ℓ

20
) . .

. Rr
ã Etr

0
. . Rr

ã .

. . Hã( l1 + G20
) . . Hã E0

Hã . . Hã E0 . .

. Hã . . Hã E0 .




(55)
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Triality t is well defined on this algebra: t(ai ⊗ 0j) = t(ãi ⊗ 3̃j) = i + j (mod3). The left
chiral subalgebra (by definition the algebra generated by the left chiral generator 01 ⊗ 00) is
L = {a ⊗ 00}. The right chiral subalgebra (generated by 00 ⊗ 01) is R = {00 ⊗ a}. With the
projections (48-53), R correspondonds to the set of elements {00 ⊗ 00, 10 ⊗ 00, 20 ⊗ 00, 0̃0 ⊗
3̃0, 00⊗01, 10⊗01, 20⊗01, 0̃0⊗ 3̃1, 00⊗02, 10⊗02, 20⊗02, 0̃0⊗ 3̃2}. The ambichiral subalgebra
(by definition the intersection of L and R) is A = {00 ⊗ 00, 10 ⊗ 00, 20 ⊗ 00}. The chiral
operation C on the basis elements is defined by C(u ⊗ v) = (v ⊗ u), for u, v ∈ H = E9 ⊕M9

(and using the projections (48-53)). The self-dual elements obey C(u) = u, they are the
ones in figure 6 which are connected to themselves by the dashed line. A-elements are, in
particular, self-dual.

One modular invariant and two graphs Starting from the modular invariant (36), we
obtain the set of toric matrices Wx0, double fusion matrices Vλµ and quantum symmetry
matrices Ox, together with the corresponding Ocneanu graph. By an analysis of the latter,
it clearly appears that there are two graphs that are modules under the quantum symmetry
algebra, the E9 and M9 graphs. Using the realization of the quantum symmetry algebra
described above, the module structure for E9 is defined by:

Oc × E9 → E9






(a ⊗ 0i) · b
.
= a · b · 0i = a · 0i · b

(ã ⊗ 3̃0) · b
.
= ã · b · 3̃0

(ã ⊗ 3̃1,2) · b
.
= ã · ρ(b) · 3̃1,2 = ã · b · ρ′(3̃1,2)

(56)

and the corresponding dual annular matrices are:

SE
x=a⊗0i

= G0i
Ga , SE

x=ã⊗3̃0

= L3̃0
Hã , SE

x=ã⊗3̃1,2
= Lρ′(3̃1,2) Hã , (57)

where the Lb̃ matrices are defined by a · b̃ =
∑

c̃(Lb̃)a c̃ c̃. The module structure for M9 is
defined by:

Oc ×M9 → M9

{
(a ⊗ 0i) · b̃

.
= a · b̃ · 0i = a · 0i · b̃

(ã ⊗ 3̃i) · b̃
.
= ã · b̃ · 3̃i

(58)

and the corresponding dual annular matrices are:

SM
x=a⊗0i

= P ℓ
0i

P ℓ
a , SM

x=ã⊗3̃i
= Hã L3̃i

. (59)

We have therefore two quantum groupöids associated with the initial modular invariant,
constructed from the graphs E9 and M9. Setting dEλ =

∑
a,b(F

E
λ )ab, dEx =

∑
a,b(S

E
x )ab, dMλ =∑

a,b(F
M
λ )ab, dMx =

∑
a,b(S

M
x )ab, we check the dimensional rules:

dim(B(E9) =
∑

λ

(dEλ)2 =
∑

x

(dEx)2 = 518 976 . (60)

dim(B(M9) =
∑

λ

(dMλ )2 =
∑

x

(dMx )2 = 754 272 . (61)
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Figure 7: The rejected Di Francesco-Zuber graph.

The rejected diagram In the first list of SU(3)-type graphs presented by Di Francesco
and Zuber in [11], there were three graphs associated with the exceptional modular invariant
(36): the graphs E9, M9 and the one displayed on figure 7, denoted Z9. This graph was later
rejected by Ocneanu in [20] because some required cohomological property (written in terms
of values for triangular cells) was not fullfilled. In other words, this graph gives rise to a
module over the ring of A9, with the right properties, but the underlying category does not
exist.

In this paper, the higher Coxeter graphs are obtained as subgraphs or module graphs
of their Ocneanu graph, which encodes the quantum symmetry algebra Oc(G) previously
determined. For Type I partition functions (block diagonal with respect to the characters of
the extended chiral algebra) the associated graphs have self-fusion, they appear directly as
subgraphs of their Ocneanu graph (this is the case, for instance, for the E5 and E9 graphs
presented here). For Type II partition functions, the associated graphs are called “module”
graphs. They define a module over Oc, but they are most easily determined as a module
over a self-fusion subgraph of the Ocneanu graph, called its parent graph. For all su(3)
cases studied, module graphs can be obtained from orbifold or conjugation methods from
their parent graph. This is indeed the case for the conjugate A series and the orbifold and
conjugate orbifold series D and D∗. This is also the case for the E5/3 and M9 = E9/3 graphs.
There is also the exceptional twist, but in this case the graph appears directly as a subgraph
of its Ocneanu graph (see [16]). In the particular case of the graph displayed on figure 7, the
graph can not be obtained from E9 by orbifold or conjugation methods, and this fact may
indicate a hint that such graph should be rejected.

Nevertheless, let us present some properties of this graph. The vector space of Z9 is a
module over the left-right action of A9, encoded by the annular matrices FZ

λ computed as
usual from the recursion relation (27) with FZ

(0,0) = l1, FZ
(1,0) = Ad(Z9). The vector space of

Z9 is also a module over the left action of the E9 graph, encoded by the set of matrices Da

E9 ×Z9 → Z9 : a · b̂ =
∑

ĉ

(Da)b̂ĉ ĉ a ∈ E9 , b̂, ĉ ∈ Z9 . (62)

We compute the set of matrices Da using the multiplicative structure of E9 as previously. In
the ordered basis (0̂0, 3̂0, 3̂

′
0, 3̂

′′
0 ; 0̂1, 3̂1, 3̂

′
1, 3̂

′′
1 ; 0̂2, 3̂2, 3̂

′
2, 3̂

′′
2), the matrices D10

and D20
are given
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by the same matricial expression as in (42). The vector space of Z9 is also a Oc-module.
Using the realization of the quantum symmetry algebra, the action is defined by:

Oc ×Z9 → Z9






(a ⊗ 0i) · b̂
.
= a · 0i · b̂

(ã ⊗ 3̃0) · b̂
.
= (ã · 3̃0) · t(b̂)

(ã ⊗ 3̃1,2) · b̂
.
= (ã · ρ′(3̃1,2)) · t(b̂)

(63)

where the operator t is defined on the vertices of Z9 by t(0̂i) = 0̂i, t(3̂i) = 3̂i, t(3̂
′
i) = 3̂′′i , t(3̂

′′
i ) =

3̂′i. We also define the matrices Dt
a by the relations (Dt

a)b̂ĉ = (Da)t(b̂)ĉ . The quantum
symmetry matrices for Z9 are:

SZ
x=a⊗0i

= D0i
Da , SZ

x=ã⊗3̃0

=
∑

c

(Hã)3̃0 c Dt
c , SZ

x=ã⊗3̃1,2
=

∑

c

(Hã)ρ′(3̃1,2) c Dt
c .

(64)
We can also check the dimensional rules:

∑

λ

(dZλ )2 =
∑

x

(dZx )2 = 754 272 .

Therefore, the graph Z9 satisfy all module properties and dimensional rules. Even if it does
not appear directly as a byproduct of the calculations presented in this paper (giving a hint for
its rejection), its formal rejection only seems possible with additional data of cohomological
nature (cells), by CFT arguments or in the subfactor approach.

Final Comment The Ocneanu graphs displayed in this paper (Oc(E5), Oc(E9)) have been
first obtained by Ocneanu himself. For instance those associated with members of the su(3)
family were displayed on posters during the Bariloche conference (2000) but the full list never
appeared in print. Several techniques [6, 26] allow one to recover some of them from the
knowledge of the Di Francesco - Zuber diagrams. The present paper actually emerged from
our wish to obtain the Ocneanu graphs Oc(G) (and the graphs G themselves, of course) from
the only data provided by the modular invariant.
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