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Convergence results for a semilinear problem and

for a Stokes problem in a periodic geometry

Séverine Baillet∗, Antoine Henrot†, Takéo Takahashi‡

September 23, 2006

Abstract

In this paper, we study the asymptotic behavior of the solution of a
semilinear problem and of a Stokes problem, with periodic data, when
the size of the domain increases. In particular, we prove exponential
convergence to the solution of the corresponding problem with periodic
boundary conditions.

1 Introduction

In her Ph.D. thesis at IFP, the first author is interested in the optimiza-
tion of a pump for crude oil. Such a pump is composed of a succession of
identical stages (typically 15-20 stages, but it could go up to 100 stages)
arranged in series. Representing the whole pump numerically is impossible
(for obvious calculation costs), so it is necessary to simplify the model, by
representing only one stage. Therefore, a very natural question which arises
is the following: does the flow in one standard stage of the pump looks like
the one we would obtain by considering periodic boundary conditions at the
entrance and exit of the stage. Of course, one cannot hope that this kind of
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result holds for the first and the last stages which are still influenced by the
boundary conditions at the top and the bottom of the pump.

This kind of situation has already been considered in a series of papers
by M. Chipot and Y. Xie, see [3], [5], [4], where the authors use variational
techniques to prove the desired convergence. See also the book [2] by the
first author. Their work is quite general and it definitely inspired us. Our
own work differs to the following extent:

• we choose to work with the uniform (L∞) norm, which might be more
natural for the engineers,

• we use a simpler approach, just based on the maximum principle,
which allows us to get a stronger convergence result (exponential con-
vergence instead of polynomial convergence),

• in the elliptic case, we consider a semilinear problem instead of a linear
one. Conversely, we are restricted to the Laplacian operator and to
a simpler geometry (periodicity in only one dimension) than the one
used by Chipot and Xie.

• motivated by the initial question, we also consider the Stokes problem
in two dimensions (with particular boundary conditions: the so-called
Navier slip boundary conditions).

Let us now be more precise in the statement of the problems and the
results we get. We consider a domain Ωk ⊂ R

N , composed of 2k copies of a
bounded open set Ω translated in the last (N -th) space direction. For sake
of simplicity, we assume that Ω ⊂ R

N−1 × (0, L) for some positive L and
that

Ωk =
k−1
⋃

i=−k

(iLeN + Ω) .

In all the sequel, we assume that Ωk is a domain of class C1,1 for all k.
Let f ∈ L2

loc(R
N ) be a L-periodic function in the last space direction.

In section 2, we are interested in the following semilinear problem posed
on Ωk:

−∆uk + g(x, uk) = f in Ωk,
uk = 0 on ∂Ωk,

where the function g satisfies usual assumptions (see section 2 for more
details) and let us denote by u∞ the solution of the periodic problem posed
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on Ω:
−∆u∞ + g(x, u∞) = f in Ω,

u∞ = 0 on Γ,
u∞ LeN -periodic.

where Γ is the lateral boundary of Ω. Then, we prove the convergence result:

Theorem 1.1. For all k0 ∈ N
∗, there exist two constants K > 0 and α > 0,

depending only on Ωk0
, such that for all k > k0,

‖uk − u∞‖L∞(Ωk0
) 6 Ke−αk.

In section 3, we work in two dimensions (N = 2) and we consider the
following Stokes problem:

−∆uk + ∇pk = f in Ωk,
∇ · uk = 0 in Ωk,
rot uk = 0 on ∂Ωk,
uk · n = 0 on ∂Ωk.

We are interested in proving the convergence of the solution to the previous
problem, towards the solution of the following periodic Stokes problem:

−∆u∞ + ∇p∞ = f in Ω,
∇ · u∞ = 0 in Ω,
rot u∞ = 0 on Γ,
u∞ · n = 0 on Γ,

u∞ Le2-periodic.

We will prove that:

Theorem 1.2. For all k0 ∈ N
∗, there exist some positive constants K, K ′,

α such that, for all k > k0, we have

‖uk − u∞‖L∞(Ωk0
)2 6 Ke−αk,

‖pk − p∞‖L2(Ωk0
) 6 K ′e−αk.

At last, section 4 is devoted to some concluding remarks and possible
extensions.

Notations:
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x x = (x1, . . . , xN−1, xN ) ∈ R
N

x′ x′ = (x1, . . . , xN−1) where x = (x1, . . . , xN−1, xN ) ∈ R
N

Ω bounded open set of R
N such that Ω ⊂ R

N−1 × [0, L], L ∈ R
+∗

Ωk union of 2k open set Ω, such that Ωk ⊂ R
N−1 × [−kL, kL]

∂Ω boundary of Ω
∂Ωk boundary of Ωk

Σ+ Σ+ = ∂Ω ∩ {xN = L}
Σ− Σ− = ∂Ω ∩ {xN = 0}
Σ Σ = Σ+ ∪ Σ−

Σk+ Σk+ = ∂Ωk ∩ {xN = kL}
Σk− Σk− = ∂Ωk ∩ {xN = −kL}
Σk Σk = Σk+ ∪ Σk−

Γ Γ = ∂Ω\Σ
Γk Γk = ∂Ωk\Σk

Ω
k

Ω

Σ
k+

Σ
k−

Σ
+

Σ
−

Γ

Γ
k

0

L

−kL

kL

Figure 1: Periodic geometry as studied in this paper.
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2 Semilinear problems in N-dimension

In this section, we consider a semilinear problem in a periodic geometry
immersed in R

N where N ∈ N, N > 2. Let f ∈ L2
loc(R

N ) be a L-periodic
function in the N -th space direction and let g be a function such that

x 7→ g(x, ·)

is measurable and is a L-periodic function in the N -th space direction, and

s 7→ g(·, s) is continuous and increasing, g(·, 0) = 0 . (1)

Let us remark that the assumption g(·, 0) = 0 is not a restriction since,
otherwise, we could consider g1 = g− g(·, 0) and transfer g(·, 0) in the right-
hand side with f .

Moreover, let us assume that g satisfies the following property:

• if N = 2, there exist r ∈ (1,∞), a0 ∈ L
r

r−1 (Ω) and b0 > 0, such that

|g(·, s)| 6 a0(.) + b0|s|r−1 in Ω; (2)

• if N > 3, there exist a0 ∈ L
2N

N+2 (Ω) and b0 > 0, such that

|g(·, s)| 6 a0(.) + b0|s|
N+2

N−2 in Ω. (3)

For all k ∈ N
∗, we denote by uk the solution of the problem

−∆uk + g(x, uk) = f in Ωk,
uk = 0 on ∂Ωk,

(4)

and by u∞ the solution of the problem

−∆u∞ + g(x, u∞) = f in Ω,
u∞ = 0 on Γ,
u∞ LeN -periodic.

(5)

We recall that with the above hypotheses on g, the systems (4) and (5)
are well-posed. More precisely, we have that

Proposition 2.1. Assume that Ωk is of class C1,1 and assume that g satifies
the above hypotheses. Then for any f ∈ L2

loc(R
N ) and for any k ∈ N, there

exists a unique solution uk ∈ H1
0 (Ωk) to the problem (4). Moreover uk

belongs to the Sobolev space W 2,q(Ωk) for some q > 1 (depending on the
dimension N).
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The same result holds for problem (5). The proof of this proposition is
very classical. The standard way to prove existence and uniqueness consists
in looking for minimizers of the functional

I(v) =

∫

Ωk

1

2
|∇v(x)|2 + G(x, v(x)) − f(x)v(x) dx,

where

G(x, u) =

∫ u

0
g(x, s) ds.

We easily check that I is strictly convex, coercive and lower semicontinuous
on H1

0 (Ωk) so that I attains its minimum only at uk. Moreover, from as-
sumption (2), (3) together with Lemma 17.1 and Corollary 17.2 of [11, pp.
64,65] we see that I is differentiable with

I ′(v) = −∆v + g(x, v) − f.

Consequently, we have obtained the existence and uniqueness of a function
uk ∈ V such that

−∆uk + g(x, uk) = f.

For the regularity of the solution, in dimension 2, since uk belongs to Lr

space, we have g(x, uk) ∈ L
r

r−1 (Ωk) and then uk ∈ W 2,q(Ωk) with q =

min
(

r
r−1 , 2

)

by using the classical Lq regularity results (see e.g. [9, Theorem

9.15]). In the case N > 3, thanks to assumption (3), we have that g(x, uk) ∈
L2N/(N+2)(Ωk). Therefore, using again the Lq regularity results (see e.g.
[9, Theorem 9.15]), uk belongs to the Sobolev space W 2,q(Ωk) with q =
2N/(N + 2) and then −∆uk + g(x, uk(x)) = f(x) holds a.e.

The main result of this section is the following theorem.

Theorem 2.1. Assume that Ω1 is of class C1,1. Then for all k0 ∈ N
∗, there

exist two constants K > 0 and α > 0, depending only on Ωk0
, such that for

all k > k0,
‖uk − u∞‖L∞(Ωk0

) 6 Ke−αk.

Proof. By periodicity assumption, the function u∞ satisfies

−∆u∞ + g(x, u∞) = f

in the whole domain Ωk. Then, the function vk = uk −u∞ is solution of the
following boundary value problem

−∆vk +

[

g(x, uk) − g(x, u∞)

uk − u∞

]

vk = 0 in Ωk,

vk = 0 on Γk,
vk = −u∞ on Σk.

(6)
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Let BN−1 be a ball of R
N−1 such that Ωk ⊂⊂ BN−1 × (−kL, kL). We

denote by λ1 the first eigenvalue of the Laplacian with Dirichlet boundary
conditions in BN−1 and we consider an associated eigenfunction ϕ1. We can
assume that ϕ1 > 0 in BN−1. We define the function v in BN−1× [−kL, kL]
by

v(x) = Mϕ1(x1, . . . , xN−1)
cosh(

√
λ1xN )

cosh(
√

λ1kL)
,

where M is a positive constant such that

Mϕ1 > |u∞| on Σk.

The function v satisfies the following system

−∆v = 0 in Ωk,
v > 0 on Γk,
v > |u∞| on Σk.

(7)

From the maximum principle, we have that

v > 0 in Ωk. (8)

Using the fact that s 7→ g(·, s) is an increasing function, we also have

g(x, uk) − g(x, u∞)

uk − u∞
> 0 in Ωk. (9)

Therefore, from (6), (7), (8) and (9), we obtain

− ∆(v − vk) +
g(x, uk) − g(x, u∞)

uk − u∞
(v − vk)

=
g(x, uk) − g(x, u∞)

uk − u∞
v > 0 in Ωk.

Consequently, the function v − vk satisfies

−∆(v − vk) +
g(x, uk) − g(x, u∞)

uk − u∞
(v − vk) > 0 in Ωk,

v − vk > 0 on ∂Ωk.
(10)

Likewise, the function −v − vk satisfies

−∆(−v − vk) +
g(x, uk) − g(x, u∞)

uk − u∞
(−v − vk) 6 0 in Ωk,

−v − vk 6 0 on ∂Ωk.
(11)
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Then we apply the maximum principle [9, Theorem 8.1, p. 179] to the
systems (10) and (11) and we get:

−v 6 vk 6 v in Ωk.

As a consequence, there exist two constants M ′ and K such that for all
k > k0,

‖uk − u∞‖L∞(Ωk0
) 6 M ′ cosh(

√
λ1k0L)

cosh(
√

λ1kL)
6 K exp(−

√

λ1kL). (12)

Remark 2.1. According to (12), the rate of decay (measuring the speed of
convergence of uk to u∞) is given by α =

√
λ1L. If we want to get the best

rate of decay, we have to choose a ball BN−1 as small as possible. Of course,
the greater λ1, the greater the constant K appearing in (12). Besides, the
optimal ball BN−1, which would make the cylinder BN−1×(−kL, kL) tangent
to Ωk, would let K going to +∞.

3 The Stokes problem with Navier slip boundary

conditions

In this section, we consider the Stokes problem in dimension 2 in space (i.e.
N = 2). Let f ∈ L2

loc(R
2)2 be a L-periodic function in the second space

direction. For any k ∈ N, we consider the solution (uk, pk) of the following
Stokes problem in Ωk (uk is of course a vector-valued function):

−∆uk + ∇pk = f in Ωk,
∇ · uk = 0 in Ωk,
rot uk = 0 on ∂Ωk,
uk · n = 0 on ∂Ωk.

(13)

We also consider the solution (u∞, p∞) of the following periodic Stokes prob-
lem in Ω:

−∆u∞ + ∇p∞ = f in Ω,
∇ · u∞ = 0 in Ω,
rot u∞ = 0 on Γ,
u∞ · n = 0 on Γ,

u∞ Le2-periodic.

(14)
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Note that in the above systems, we have not considered the classical no-
slip condition but instead we have chosen the Navier slip boundary condition
introduced by Navier in [12]

u · n = 0 and rot u = 0 on Γ.

The above condition can also be written under the form

u · n = 0 and D(u)n · τ = 0 on Γ,

where τ is the unit tangent vector field on Γ. This boundary condition corre-
sponds to the physical hypothesis that the fluid slips at the border without
friction. This slip boundary condition was derived from the Boltzmann
equation in [6] and was already used by [8] and [7].

In the systems (13) and (14), the pressions pk and p∞ are unique up to
a constant. In the sequel, we impose that

∫

Ωk

pk dx = 0,

∫

Ω
p∞ dx = 0.

We are now in position to state the main result of the paper.

Theorem 3.1. For all k0 ∈ N
∗, there exist three constants K > 0, K ′ > 0

and α > 0, depending only on Ωk0
, such that for all k > k0,

‖uk − u∞‖L∞(Ωk0
)2 6 Ke−αk and ‖uk − u∞‖H1

0
(Ωk0

)2 6 Ke−αk,

‖pk − p∞‖L2(Ωk0
) 6 K ′e−αk.

Proof. According to [10], there exist two functions ψk and ψ∞ such that

rot ψk =

(

∂ψk

∂x2

−∂ψk

∂x1

)

= uk in Ωk,

ψk = 0 on ∂Ωk,

and
rot ψ∞ = u∞ in Ω,

ψ∞ = 0 on Γ.

Moreover, if we define

ωk = rot uk and ω∞ = rot u∞,
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then we have
−∆ψk = ωk in Ωk,

ψk = 0 on ∂Ωk,

and
−∆ψ∞ = ω∞ in Ωk,

ψ∞ = 0 on Γk,
ψ∞ Le2-periodic.

Besides, the function ωk, respectively ω∞, satisfies the following boundary
value problem:

−∆ωk = rot f in Ωk,
ωk = 0 on ∂Ωk,

respectively,
−∆ω∞ = rot f in Ω,

ω∞ = 0 on Γ,
ω∞ Le2-periodic.

The results of the previous section (with g = 0) apply here for these two
systems. Nevertheless, we need to be more precise since we want to apply
it to a right-hand side which is not periodic (but almost).
Let Ra = (−a, a) × [−kL, kL] be a rectangle which strictly contains Ωk. In
this rectangle, we consider the function

φ : (x1, x2) 7→ K1 cos(πx1/2a)
cosh(πx2/2a)

cosh(πkL/2a)
.

As we did in the previous section, it is possible to choose K1 large enough
so that, using the maximum principle, we get

|ωk − ω∞| 6 φ in Ωk, (15)

and then

∀k0 ∈ N
∗, ∀k > k0, ‖ωk − ω∞‖L∞(Ωk0

) 6 K1
cosh(πk0L/2a)

cosh(πkL/2a)
.

We now want the same kind of inequality for ψk. We define φk = ψk − ψ∞.
Then

−∆φk = (ωk − ω∞) in Ωk,
φk = 0 on Γk,
φk = −ψ∞ on Σk.

(16)

We consider ε > 0 such that

Ωk ⊂⊂ (−a + ε, a − ε) × [−kL, kL], (17)
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and we define the function

φε : (x1, x2) 7→ K2 cos

(

πx1

2(a − ε)

)

cosh(πx2/2a)

cosh(πkL/2a)
, (18)

with a positive K2 ∈ R to be precised further. We have

−∆φε =

(

π

2(a − ε)

)2

φε −
( π

2a

)2
φε =

π2ε(2a − ε)

4a2(a − ε)2
φε.

From (17) and (18), we can choose K2 so that

−∆φε > φ in Ωk,
φε > |ψ∞| on ∂Ωk.

Combining (15) and (16) in the above system yields that

−∆(φε − φk) > 0 in Ωk,
φε − φk > 0 on ∂Ωk.

In the same way, we also have that

−∆(−φε − φk) 6 0 in Ωk,
−φε − φk 6 0 on ∂Ωk.

Using the maximum principle, it finally comes that |φk| 6 φε i.e.

∀k0 ∈ N
∗, ∀k > k0, ‖ψk − ψ∞‖L∞(Ωk0

) 6 K ′
2

cosh(πk0L/2a)

cosh(πkL/2a)
, (19)

for some positive constant K ′
2.

For 1 6 β 6 ∞, by applying a classical regularity result on elliptic
equations (see [9, Theorem 9.14] for instance), we have that

‖ψk − ψ∞‖W 2,β(Ωk0
) 6 c(‖ψk − ψ∞‖Lβ(Ωk0

) + ‖ωk − ω∞‖Lβ(Ωk0
))

6 C
cosh(πk0L/2a)

cosh(πkL/2a)
.

Since uk = rot ψk and u∞ = rot ψ∞, the above inequality implies that

‖uk − u∞‖W 1,β(Ωk0
)2 6 C

cosh(πk0L/2a)

cosh(πkL/2a)
6 Ke−( π

2a
L)k. (20)

For β > 2, we can use the Sobolev embedding

W 1,β(Ωk0
) ⊂ L∞(Ωk0

),
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to get the L∞ estimate for the velocity uk.
We have now to estimate the difference pk − p∞. To achieve this, we

write the variational formulation corresponding to (13):

∀v ∈ H1
0 (Ωk0

)2, µ

∫

Ωk0

∇uk : ∇v dx−
∫

Ωk0

pk(∇·v) dx =

∫

Ωk0

f ·v dx (21)

In the above equation, for any smooth v : Ωk → R
2, we have denoted by ∇v

the matrix

(∇v)i,j =
∂vi

∂xj
, (i, j ∈ {1, 2})

and, for two matrices A = (ai,j)i,j∈{1,2} and B = (ai,j)i,j∈{1,2}, we have
denoted by A : B the scalar product

A : B =
∑

i,j∈{1,2}

ai,jbi,j .

Now, the periodic solution (u∞, p∞) defined on Ω can be naturally extended
to Ωk (see also [5, Lemma 2.4]) in such a way that it satisfies on Ωk:

∀v ∈ H1
0 (Ωk0

)2, µ

∫

Ωk0

∇u∞ : ∇v dx −
∫

Ωk0

p∞(∇ · v) dx =

∫

Ωk0

f · v dx.

(22)
Combining (21) and (22) yields that

µ

∫

Ωk0

(∇uk −∇u∞) : ∇v dx =

∫

Ωk0

(pk − p∞)∇ · v dx.

From (20) and the above equation, we get that

∫

Ωk0

(pk − p∞)∇ · v dx 6 Ce−(π
a

L)k‖v‖H1
0
(Ωk)

for any v ∈ H1
0 (Ωk)

2. This inequality and the inf-sup property (or LBB
condition, see [10] or [1] for instance) imply that

∀k0 ∈ N
∗, ∀k > k0, ‖pk − p∞‖L2(Ωk0

) 6 C ′e−(π
a

L)k

with C ′ only depending on Ωk0
.
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4 Conclusion

This paper does not completely answer to the question raised in the intro-
duction. Indeed, the physical situation considered in the Ph.D. thesis of S.
Baillet would necessitate to extend the present work in three directions:

• consider the three-dimensional case,

• consider more general boundary conditions,

• consider the Navier-Stokes model instead of the Stokes problem.

It seems to us that each of these extensions is really challenging.
However, numerical simulations tend to confirm, in the Navier-Stokes

case, the results proved for the Stokes equations. We use Fluent c© to solve
the Navier-Stokes equations in three dimensions for a gasoil flow in a pump.
We study two cases: the first one is a six stages pump with velocity inlet and
pressure outlet; the second one is a one stage pump with periodic conditions
at the entrance and exit. We plot the velocity magnitude of the fluid in the
pump, at a given radius. On Figure 2 the velocity profile appears to be the
same in the fourth and fifth stages of the six stages pump. It indicates that
the velocity profile in a stage seems also to converge in the 3D Navier-Stokes
model.

Figure 2: Velocity magnitude profil in the fourth (left) and fifth (right) stage
of a six stages pump.

Figure 3 shows that the velocity profile in the fifth stage of a six stages
pump and in a single stage with periodic conditions are very alike. It is
a strong indication that our convergence result should also hold for the

13



Navier-Stokes problem (maybe with another rate of convergence). Though
our simulation is limited to six stages, because of calculation costs, we could
expect even better results with a bigger geometry.

Figure 3: Velocity magnitude profile in the fifth stage of a six stages pump
(left) and in a single stage with periodic conditions (right, the stage is dis-
played periodically).
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