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On Galois overings and tilting modulesPatrik Le Meur ∗†17th November 2006AbstratLet A be a basi onneted �nite dimensional algebra over an algebraially losed �eld k. Let T bea basi tilting A-module with arbitrary �nite projetive dimension. For a �xed group G we ompare theset of isolasses of onneted Galois overings of A with group G and the set of isolasses of onnetedGalois overings of EndA(T ) with group G. Using the Hasse diagram −→
KA (see [15℄ and [21℄) of basitilting A-modules, we give su�ient onditions on T under whih there is a bijetion between these twosets (these onditions are always veri�ed when A is of �nite representation type). Then we apply theseresults to study when the simple onnetedness of A implies the one of EndA(T ) (see [5℄).IntrodutionLet k be an algebraially losed �eld and let A be a �nite dimensional k-algebra. In order to study theategory mod(A) of �nite dimensional (left) A-modules we may assume that A is basi and onneted.In the study of mod(A), tilting theory has proved to be a powerful tool. Indeed, if T is a basi tilting

A-module and if we set B = EndA(T ), then A and B have many ommon properties: Brenner-ButlerTheorem establishes an equivalene between ertain subategories of mod(A) and mod(B) (see [10℄, [14℄and [19℄), A and B have equivalent derived ategories (see [13℄) and (in partiular) they have isomorphiGrothendiek groups and isomorphi Hohshild ohomologies. In this text we will study the followingproblem relating A and B:is it possible to ompare the Galois overings of A and those of B? (P1)As an example, if A = kQ with Q a �nite quiver without oriented yle and if T is an APR-tilting moduleassoiated to a sink x of Q (see [6℄) then B = kQ′ where Q′ is obtained from Q by reversing all the arrowsendings at x. In partiular Q and Q′ have the same underlying graph and therefore A has a onnetedGalois overing with group G if and only if the same holds for B.Reall that in order to onsider Galois overings of A we always onsider A as a k-ategory. When
C → A is a Galois overing, it is possible to desribe part ofmod(A) in terms of C-modules (see for example[9℄ and [12℄). This desription is useful beause mod(C) is easier to study than mod(A), espeially when Cis simply onneted (this last situation may our when A is of �nite representation type, see [12℄). Notiethat simple onnetedness and tilting theory have already been studied together through the followingonjeture formulated in [5℄:

A is simply onneted =⇒ B is simply onneted (P2)More preisely, the above impliation is true if: A is of �nite representation type and T is of projetivedimension at most one (see [2℄), or if: A = kQ (with Q a quiver) and B is tame (see [5℄, see also [3℄ for ageneralisation to the ase of quasi-tilted algebras). The two problems (P1) and (P2) are related beause Ais simply onneted if and only if there is no proper Galois overing C → A with C onneted and loallybounded (see [17℄).In order to study the question (P1) we will exhibit su�ient onditions for T to be of the �rst kindw.r.t. a �xed Galois overing C
F
−→ A. Indeed, if T is of the �rst kind w.r.t. F , then it is possible toonstrut a Galois overing of B. Under additional hypotheses on T , the equivalene lass of this Galoisovering is uniquely determined by the equivalene lass of F . Here we say that two Galois overings
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F : C → A and F ′ : C′ → A are equivalent if and only if there exists a ommutative square of k-ategoriesand k-linear funtors:
C

F

��

∼ // C′

F ′

��
A

∼ // Awhere horizontal arrows are isomorphisms and where the bottom horizontal arrow restrits to the identitymap on the set of objets of A. For simpliity, let us say that A and B have the same onneted Galoisoverings with group G if there exists a bijetion between the sets GalA(G) and GalB(G) where GalA(G)(resp. GalB(G)) stands for the set of equivalene lasses of Galois overings C → A (resp. C → B) withgroup G and with C onneted and loally bounded. With this de�nition, we prove the following theoremwhih is the main result of this text and whih partially answers (P1):Theorem 1. Let T be a basi tilting A-module, let B = EndA(T ) and let G be group.1. If T ′ ∈
−→
KA lies in the onneted omponent of −→

KA ontaining T , then EndA(T ) and EndA(T ′)have the same onneted Galois overings with group G.2. If T lies in the onneted omponent of −→
KA ontaining A or DA, then A and B have the sameonneted Galois overings with group G.In partiular, if −→KA is onneted (whih happens when A is of �nite representation type) then A and Bhave the same onneted Galois overings with group G, for any group G.Here −→

KA is the Hasse diagram assoiated with the poset TA of basi tilting A-modules (see [15℄ and[21℄). Reall (see [12℄) that when A is of �nite representation type, A admits a onneted Galois overingwith group G if and only if G is a fator group of the fundamental group π1(A) of the Auslander-Reitenquiver of A with its mesh relations. Theorem 1 allows us to get the following orollary when A and Bare of �nite representation type. We thank Ibrahim Assem for having pointed out this orollary.Corollary 1. Let T be a basi tilting A-module and let B = EndA(T ). If both A and B are of �niterepresentation type, then A and B have isomorphi fundamental groups.Theorem 1 also allows us to prove the following orollary related to (P2).Corollary 2. (see [2℄ and [3℄) Let T be a basi tilting A-module and let B = EndA(T ).1. If T ′ ∈
−→
KA lies in the onneted omponent of −→KA ontaining T , then: EndA(T ) is simply onnetedif and only if EndA(T ′) is simply onneted.2. If T lies in the onneted omponent of −→KA ontaining A or DA then: A is simply onneted if andonly if B is simply onneted.In partiular, f −→

KA is onneted (e.g. A is of �nite representation type, see [15℄), then: A is simplyonneted if and only if B is simply onneted.The text is organised as follows. In Setion 1 we will give the de�nition of all the notions mentionedabove and whih will be used for the proof of Theorem 1. In Setion 2 we will detail the onstrution andgive some properties of the Galois overing F ′ of B starting from a Galois overing F : C → A of A anda basi tilting A-module T . In this study, we will introdue the following hypotheses on the A-module
T : 1) T is of the �rst kind w.r.t. F (this ensures that F ′ exists), 2) the C-module F.T obtained from
T by restriting the salars is basi (this ensures that F ′ is onneted if F is onneted) 3) ψ.N ≃ Nfor any diret summand N of T and for any automorphism ψ : A

∼
−→ A whih restrits to the identitymap on objets (this ensures that the equivalene lass of F ′ does depend only on the equivalene lassof F ). These three hypotheses lak of simpliity, therefore, Setion 3 is devoted to �nd simple su�ientonditions for the basi tilting A-module T to verify these. In partiular, we will prove that the ondition�T lies in the onneted omponent of −→KA ontaining A� �ts our requirements. Sine our main objetiveis to establish a orrespondene between the equivalene lasses of the onneted Galois overings of Aand those of B, we will need to �nd onditions for T to lie in both onneted omponents of −→KA and

−→
KB ontaining A and B respetively (reall that T is also a basi tilting B-module). This will be donein Setion 4 where we ompare the Hasse diagrams −→KA and −→

KB . In partiular, we will prove that thereis an oriented path in −→
KA starting at A and ending at T if and only if there is an oriented path in −→

KBstarting at B and ending at T . This equivalene will be used in Setion 5 in order to prove Theorem 1,Corollary 1 and Corollary 2. 2



I would like to aknowledge Eduardo N. Maros for his stimulating remarks onerning the impliation
(P2) during the CIMPA shool Homologial methods and representations of non-ommutative algebras inMar del Plata, Argentina (February 2006).1 Basi de�nitions and preparatory lemmataReminder on k-ategories (see [9℄ for more details). A k-ategory is small ategory C suh that forany x, y ∈ Ob(C) the set yCx of morphisms from x to y is a k-vetor spae and suh that the ompositionof morphisms in C is k-bilinear. A k-ategory C is alled onneted if and only if there is no non trivialpartition Ob(C) = E ⊔ F suh that yCx = xCy = 0 for any x ∈ E, y ∈ F .All funtors between k-ategories are supposed to be k-linear. If F : E → B and F ′ : E ′ → B arefuntors between k-ategories, then F and F ′ are alled equivalent if there exists a ommutative diagram:

E
∼ //

F

��

E ′

F ′

��
B

∼ // Bwhere horizontal arrows are isomorphisms and where the bottom horizontal arrow restrits to the identitymap on Ob(B). A loally bounded k-ategory is a k-ategory C verifying the following onditions:. distint objets in C are not isomorphi,. for any x ∈ Ob(C), the k-vetor spaes ⊕
y∈Ob(C) yCx and ⊕

y∈Ob(C) xCy are �nite dimensional,. for any x ∈ Ob(C), the k-algebra xCx is loal.For example, let A be a basi �nite dimensional k-algebra (basi means that A is the diret sum ofpairwise non-isomorphi indeomposable projetive A-modules) and let {e1, . . . , en} be a omplete set ofpairwise orthogonal primitive idempotents. Then A an be viewed as a loally bounded k-ategory asfollows: e1, . . . , en are the objets of A, the spae of morphisms from ei to ej is equal to ejAei for any i, jand the omposition of morphisms is indued by the produt in A. Notie that di�erent hoies for theprimitive idempotents e1, . . . , en give rise to isomorphi k-ategories. In this text we shall always onsidersuh an algebra A as a loally bounded k-ategory.Modules over k-ategories. If C is a k-ategory, a (left) C-module is a k-linear funtor M : C →
MOD(k) where MOD(k) is the ategory of k-vetor spaes. A morphism of C-modules M → N is a
k-linear natural transformation of funtors. The ategory of C-modules is denoted by MOD(C).A C-module M is alled loally �nite dimensional (resp. �nite dimensional) if and only if M(x) is�nite dimensional for any x ∈ Ob(C) (resp. ⊕

x∈Ob(C)M(x) is �nite dimensional). The ategory of loally�nite dimensional (resp. �nite dimensional) C-modules is denoted by Mod(C) (resp. mod(C)). Notiethat if C = A as above, then Mod(C) = mod(C).We shall write IND(C) (resp. Ind(C), resp. ind(C)) for the full subategory of MOD(C) (resp. of
Mod(C), resp. ofmod(C)) of indeomposable C-modules. Finally, ifM = N1

⊕
. . .

⊕
Nt with Ni ∈ ind(C)for any i, then M is alled basi if and only if N1, . . . , Nt are pairwise non isomorphi.Tilting modules. Let A be a basi �nite dimensional k-algebra. A tilting A-module (see [10℄, [14℄and [19℄) is a module T ∈ mod(A) verifying the following onditions:

(T1) T has �nite projetive dimension (i.e. pdA(T ) <∞),
(T2) ExtiA(T, T ) = 0 for any i > 0 (i.e. T is selforthogonal),
(T3) there is an exat sequene in mod(A): 0 → A→ T1 → . . .→ Tr → 0 with T1, . . . , Tr ∈ add(T ) (thislast property means that T1, . . . , Tr are diret sums of diret summands of T ).A module whih satis�es onditions (T1) and (T2) above is alled an exeptional module. Assume that
T is a tilting A-module. Then, T is also a tilting EndA(T )-module for the following ation: f.t = f(t)for f ∈ EndA(T ) and t ∈ T . Assume moreover that T is basi as an A-module and �x a deomposition
T = T1 ⊕ . . .⊕ Tn with T1, . . . , Tn ∈ ind(A). This de�nes a deomposition of the unit of EndA(T ) into asum of primitive pairwise orthogonal idempotents so that B := EndA(T ) is a loally bounded k-ategory
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as follows: the set of objets is {T1, . . . , Tn} and for any i, j the spae of morphisms TjBTi is equal to
HomA(Ti, Tj). For any x ∈ Ob(A), T (x) is an indeomposable B-module:

B → MOD(k)
Ti ∈ Ob(B) 7→ Ti(x)

u ∈ TjBTi 7→ Ti(x)
ux−−→ Tj(x)and T =

⊕
x∈Ob(A) T (x). Finally, the following funtor is an isomorphism of k-ategories:

ρA : A −→ EndB(T )
x ∈ Ob(A) 7−→ T (x) ∈ Ob(EndB(T ))

u ∈ yAx 7−→ T (x)
T (u)
−−−→ T (y)For more details on the above properties and for a more general study of EndA(T ), we refer the readerto [10℄, [13℄, [14℄ and [19℄.Let TA be the set of basi tilting A-modules up to isomorphism. Then TA is endowed with a partial orderintrodued in [21℄ and de�ned as follows. If T ∈ TA, the right perpendiular ategory T⊥ of T is de�nedby (see [7℄):

T⊥ = {X ∈ mod(A) | (∀i > 1) ExtiA(T,X) = 0}If T ′ ∈ TA is another basi tilting module, we write T 6 T ′ provided that T⊥ ⊆ T
′⊥. In partiular, wehave T 6 A for any T ∈ TA. In [15℄, D. Happel and L. Unger have proved that the Hasse diagram −→

KA of
TA is as follows. The verties in −→

KA are the elements in TA and there is an arrow T → T ′ in −→
KA if and onlyif: T = X

⊕
T withX ∈ ind(A), T ′ = Y

⊕
T with Y ∈ ind(A) and there exists a non split exat sequene

0 → X
u
−→ M

v
−→ Y → 0 in mod(A) with M ∈ add(T ). In suh a situation, u (resp. v) is the left (resp.right) add(T )-approximation of X (resp. Y ). For more details on −→

KA, we refer the reader to [15℄ and [16℄.Galois overings of k-ategories. Let G be a group. A free G-ategory is a k-ategory E endowedwith a morphism of groups G→ Aut(E) suh that the indued ation of G on Ob(E) is free. In this ase,there exists a (unique) quotient E → E/G of E by G in the ategory of k-ategories. With this property,a Galois overing of B with group G is by de�nition a funtor F : E → B endowed with a group morphism
G→ Aut(F ) = {g ∈ Aut(E) | F ◦ g = F} and verifying the following fats:. the group morphism G→ Aut(F ) →֒ Aut(E) endows E with a struture of free G-ategory,. the funtor E/G F

−→ B indued by F is an isomorphism.This de�nition implies that the group morphism G→ Aut(F ) is one-to-one (atually one an show thatthis is an isomorphism when E is onneted). Moreover for any x ∈ Ob(B) the set F−1(x) is non emptyand alled the �ber of F at x. It veri�es F−1(F (x)) = G.x for any x ∈ Ob(E).We reall that Galois overings are partiular ases of overing funtors (see [9℄). A overing funtoris a k-linear funtor F : E → B suh that for any x, y ∈ E0, the following mappings indued by F arebijetive: ⊕

y′∈F−1(F (y))

y′Ex → F (y)BF (x) and ⊕

x′∈F−1(F (x))

yEx′ → F (y)BF (x)Remark that a overing funtor is not supposed to restrit to a surjetive mapping on objets. However,a overing funtor is an isomorphism of k-ategories if and only if it restrits to a bijetive mapping onobjets. Using basi linear algebra arguments it is easy to prove the following useful lemma:Lemma 1.1. Let p, q be k-linear funtors suh that the omposition q ◦ p is de�ned. Then p, q and q ◦ pare overing funtors as soon as two of them are so.If F : E → B is a Galois overing with group G and with B onneted then E need not be onneted. Insuh a ase, if E =
∐
i∈I

Ei where the Ei's are the onneted omponents of E , then for eah i, the followingfuntor:
Fi : Ei →֒ E → Bis a Galois overing with group:

Gi := {g ∈ G | g(Ob(Ei)) ∩Ob(Ei) 6= ∅} = {g ∈ G | g(Ob(Ei)) = Ob(Ei)}4



Moreover, if i, j ∈ I then the groups Gi and Gj are onjugated in G and there exists a ommutativediagram:
Ei

∼ //

Fi ��?
??

??
??

Ej

Fj����
��

��
�

Bwhere the horizontal arrow is an isomorphism. This implies that G ats transitively on the set {Ei | i ∈ I}of the onneted omponents of E . Notie that all these fats may be false if B is not onneted.Two Galois overings of B are alled equivalent if and only if they are isomorphi as funtors between
k-ategories (see above, this implies that the groups of the Galois overings are isomorphi). The equiv-alene lass of a Galois overing F will be denoted by [F ]. Finally, we shall say for short that a Galoisovering E → B is onneted if and only if E is onneted and loally bounded (this implies that B isonneted and loally bounded, see [12, 1.2℄).Simply onneted loally bounded k-ategories. Let B be a loally bounded k-ategory. Then
B is alled simply onneted if and only if there is no proper onneted Galois overing of B (propermeans with non trivial group). This de�nition is equivalent to the original one (see [18℄ for the triangularase and [17, Prop. 4.1℄ for the non-triangular ase) whih was introdued in [1℄: B is simply onnetedif and only if π1(QB, I) = 1 for any admissible presentation kQB/I ≃ B of B (see [18℄ for the de�nition of
π1(QB, I)).Basi notions on overing tehniques (see [9℄ and [20℄). Let F : E → B be a Galois overing withgroup G. The G-ation on E gives rise to an ation of G on MOD(E): if M ∈MOD(E) and g ∈ G, then
gM := F ◦ g−1 ∈ MOD(E). Moreover, F de�nes two additive funtors Fλ : MOD(E) → MOD(B) (thepush-down funtor) and F. : MOD(B) → MOD(E) (the pull-up funtor) with the following properties(for more details we refer the reader to [9℄):. F.M = M ◦ F for any M ∈MOD(B),. if M ∈ MOD(E), then (FλM) (x) =

⊕
x′∈F−1(x)M(x′) for any x ∈ Ob(B). If u ∈ yEx, then therestrition of (FλM) (F (u)) to M(g.x) (for g.x ∈ F−1(F (x)) = G.x) is equal to M(g.u) : M(g.x) →

M(g.y),. Fλ and F. are exat and send projetive modules to projetive modules,. FλE ≃
⊕

g∈G B and F.B ≃ E , where E (resp. B) is the E-module x 7→
⊕

y∈Ob(E) yEx (resp. the
B-module x 7→

⊕
y∈Ob(B) yBx),. F.Fλ =

⊕
g∈G

gIdMOD(E). if X ∈MOD(B) veri�es X ≃ FλY for some Y ∈MOD(E), then FλF.X ≃
⊕

g∈GX,. Fλ(mod(E)) ⊆ mod(B), Fλ(Mod(E)) ⊆Mod(B), F.(Mod(B)) ⊆Mod(E),. D ◦ F. = F. ◦D and D ◦ Fλ|mod(E) ≃ Fλ ◦D|mod(E) where D = Homk(?, k) is the usual duality,. Fλ is left adjoint to F.,. D ◦Fλ ◦D is right adjoint to F. (in partiular, there is a funtorial isomorphism HomE(F.M,N) ≃
HomB(M,FλN) for any M ∈MOD(B) and any N ∈ mod(E)).. for any M,N ∈MOD(E), the following mappings indued by Fλ are bijetive:

⊕

g∈G

HomE( gM,N) → HomB(FλM,FλN) and ⊕

g∈G

HomE(M, gN) → HomB(FλM,FλN)These properties give the following result whih will be used many times in this text:Lemma 1.2. IfM ∈MOD(E) (resp. M ∈MOD(B)) has �nite projetive dimension, then so does FλM(resp. F.(M)).Let M ∈MOD(E), N ∈MOD(B) and j > 1. There is an isomorphism of vetor spaes:
ExtjB(FλM,N) ≃ ExtjE(M,F.N)Moreover, if M ∈ mod(E) then there is an isomorphism of vetor spaes:
ExtjE(F.N,M) ≃ ExtjB(N,FλN)5



Proof: The �rst assertion is due to the fat that F. and Fλ are exat and send projetive modulesto projetive modules. For the same reasons, F. and Fλ indue F. : D(MOD(B)) → D(MOD(E)) and
Fλ : D(MOD(E)) → D(MOD(B)) respetively and the adjuntions (Fλ, F.) and (F., Fλ) at the levelof module ategories give rise to adjuntions at the level of derived ategories. Sine ExtjE(X,Y ) =
HomD(MOD(E))(Y,X[j]) we get the announed isomorphisms. �Remark that an isomorphism of k-ategories is a partiular ase of Galois overing. When F is anisomorphism, F. and Fλ have additional properties as shows the following lemma whose proof is a diretonsequene of the de�nition of the push-down and pull-up funtors.Lemma 1.3. Assume that F : E → B is an isomorphism of k-ategories. Then F.Fλ = IdMOD(E) and
FλF. = IdMOD(B).Modules of the �rst kind. Let F : E → B be a Galois overing with group G. A B-module M isalled of the �rst kind w.r.t. F if and only if for any indeomposable diret summand N ofM there exists
N̂ ∈ MOD(E) suh that N ≃ FλN̂ . We will denote by ind1(B) (resp. mod1(B)) the full subategory of
ind(B) (resp. of mod(B)) of modules of the �rst kind w.r.t. F . Notie the following properties of ind1(B):. if M ∈ ind1(B) and N ∈MOD(E) verify M ≃ FλN , then N ∈ ind(E),. if M ∈ ind1(B) and N,N ′ ∈MOD(E) verify M ≃ FλN ≃ FλN

′, then there exists g ∈ G suh that
N ′ ≃ gN .If B is onneted and if E =

∐
i∈I Ei, where the Ei's are the onneted omponents of E , then anindeomposable B-module M is of the �rst kind w.r.t. F if and only if it is of the �rst kind w.r.t.

Fi : Ei →֒ E → B for any i ∈ I . More preisely, we have the following well know lemma where we keepthe established notations.Lemma 1.4. Let M ∈ ind(B). If M̂ ∈ ind(E) is suh that FλM̂ ≃M , then there is a unique i ∈ I suhthat M̂ ∈ ind(Ei). In suh a ase, we have M ≃ (Fi)λM̂ . Moreover, if j ∈ I then there exists g ∈ G suhthat g(Ei) = Ej, and for any suh g we have: gM̂ ∈ ind(Ej) and (Fj)λ
gM̂ ≃M .Throughout this text A will denote a basi and onneted �nite dimensional k-algebra and n willdenote the rank of its Grothendiek group K0(A).2 Galois overings assoiated with modules of the �rst kindThroughout this setion we will use the following data:- F : C → A a Galois overing with group G- T = T1

⊕
. . .

⊕
Tn ∈ mod(A) (with Ti ∈ ind(A)) a basi tilting A-module of the �rst kind w.r.t.

F ,- λi : Fλ(T̂i) → Ti an isomorphism with T̂i ∈ ind(C), for every i ∈ {1, . . . , n}.Let B = EndA(T ). With these data, we wish to:1. onstrut a Galois overing FT̂i,λi
with group G of B,2. study the dependene of the equivalene lass of FT̂i,λi

on the data T̂i, λi and on the hoie of F inits equivalene lass [F ],3. repeat the onstrution made at the �rst step starting from T (viewed as a basi tilting B-module)and the Galois overing FT̂i,λi
. This will give a Galois overing of EndB(T ) whih will be omparedwith F using the isomorphism ρA : A

∼
−→ EndB(T ).2.1 Constrution of the Galois overing F

T̂i,λiLet EndC(
⊕

g,i
gT̂i) be the following k-ategory:. the set of objets is { gT̂i | g ∈ G, i ∈ {1, . . . , n}} (gT̂i and g′ T̂j are onsidered as di�erent objetsif (i, g) 6= (j, g′)),. the spae of morphisms from gT̂i to hT̂j is equal to HomC( gT̂i,

hT̂j),. the omposition is indued by the omposition of morphisms in mod(C).6



Remark 2.1. 1. The C-modules ⊕
g,i

gT̂i and F.T are isomorphi.2. If G is a �nite group, then C is a �nite dimensional k-algebra. In partiular, EndC(
⊕

g,i
gT̂i) and

EndC(F.T ) are isomorphi k-algebras.3. The G-ation on mod(C) naturally endows EndC(
⊕

g,i
gT̂i) with a struture of free G-ategory.4. EndC(

⊕
i,g

gT̂i) is loally bounded if and only if GT̂i
= 1 for any i. This is equivalent to say that

F.T is a basi C-module.The isomorphisms λ1, . . . , λn de�ne the following funtor:
FT̂i,λi

: EndC(
⊕

g,i
gT̂i) −→ B

gT̂i 7−→ Ti

gT̂i
u
−→ hT̂j 7−→ Ti

λj Fλu λ
−1
i−−−−−−−−−→ TjLemma 2.2. The funtor FT̂i,λi

: EndC(
⊕

i,g
gT̂i) → B is a Galois overing with group G.Proof: For simpliity, we shall write C′ for EndC(

⊕
i,g

gT̂i) and F ′ : C′ → B for FT̂i,λi
. Reall (seeRemark 2.1) that G ats freely on C′. Moreover, we have F ′ ◦g = F ′ by onstrution of F ′. So, F ′ de�nesa ommutative diagram of k-ategories and k-linear funtors:

C′

��

F ′

!!C
CC

CC
CC

C

C′/G
F ′

// B

(⋆)
Where C′ → C′/G is the quotient funtor. From the properties veri�ed by Fλ (see Setion 1) we inferthat F ′ is a overing funtor. Sine C′ → C′/G is a also overing funtor we dedue that so is F ′ (seeLemma 1.1). Finally, F ′ restrits to a bijetive mapping Ob(C′)/G = { gT̂i | g ∈ G, i ∈ {1, . . . , n}}/G →
Ob(B) = {T1, . . . , Tn} so F ′ is an isomorphism. Thus, F ′ is a Galois overing with group G. �Sine FT̂i,λi

is a Galois overing, it is natural to ask whether EndC(
⊕

i,g
gT̂i) is onneted or not. Thefollowing lemma partially answers this question.Lemma 2.3. If C is not onneted, then EndC(

⊕
i,g

gT̂i) is not onneted.Proof : For simpliity let us write C′ for EndC(
⊕

i,g
gT̂i). Assume that C is not onneted and let

C =
∐
x∈I Cx where the Cx's are the onneted omponents of C. For i ∈ {1, . . . , n}, we have T̂i ∈ ind(C),so there exists a unique xi ∈ I suh that T̂i ∈ ind(Cxi). Let us set:

Gx1 = {g ∈ G | g(Cx1) = Cx1}Let i ∈ {1, . . . , n}, sine G ats transitively on {Cx | x ∈ I}, there exists gi ∈ G suh that gi(Cx1) = Cxi(in partiular g1 ∈ Gx1). Therefore:
(∀i ∈ {1, . . . , n}) g

−1
i T̂i ∈ mod(Cx1)Let us set O to be the following set of objets of C′:

O := { gT̂i | i ∈ {1, . . . , n} and ggi ∈ Gx1} ⊆ Ob(C′)Remark that O satis�es the following:. O 6= ∅ beause T̂1 ∈ O.. Sine C is not onneted and sine G ats transitively on {Cx | x ∈ I} we have Gx1 ( G. Let
g ∈ G\Gx1 , then gg1 6∈ Gx1 and gT̂1 6∈ O. Hene O ( Ob(C).. For any gT̂i ∈ Ob(C′), we have gT̂i ∈ O if and only if gT̂i ∈ ind(Cx1). As a onsequene, there is nonon zero morphism in C′ between an objet in O and an objet in Ob(C′)\O.As a onsequene, C′ is not onneted. �7



2.2 Independene of the equivalene lass of FT̂i,λi
on the data F, T̂i, λiIn the two following lemmas, we examine the dependene of the equivalene lass [FT̂i,λi

] of FT̂i,λi
on thehoie of T̂1, . . . , T̂n, λ1, . . . , λn and on the hoie of F in its equivalene lass [F ].Lemma 2.4. For eah i ∈ {1, . . . , n}, let µi : FλT i → Ti be an isomorphism with T i ∈ ind(C). Then

FT̂i,λi
and FT i,µi

are equivalent.Proof: We need to exhibit a ommutative square:
EndC(

⊕
i,g

gT i)
ϕ //

F
Ti,µi

��

EndC(
⊕

i,g
gT̂i)

F
T̂i,λi

��
B

ψ // B

(⋆)where ϕ,ψ are isomorphisms and where ψ(x) = x for any x ∈ Ob(B) = {T1, . . . , Tn}. Let i ∈ {1, . . . , n}.We have FλT i ≃ Ti ≃ FλT̂i, so there exists an isomorphism θi : T i
∼
−→ gi T̂i with gi ∈ G. Let us de�ne ϕby:

ϕ : EndC(
⊕

i,g
gT i) −→ EndC(

⊕
i,g

gT̂i)
gT i 7−→ ggi T̂i

gT i
u
−→ hT j 7−→ ggi T̂i

hθj u gθ
−1
i−−−−−−−−−→ hgj T̂jThen ϕ is an isomorphism of k-ategories. Notie that θi de�nes an isomorphism Fλθi : FλT i → FλT̂i.So we an de�ne ψ by:

ψ : B −→ B
Ti 7−→ Ti

Ti
u
−→ Tj 7−→ ψ(u)where ψ(u) is the omposition:

Ti
λ
−1
i−−−→ FλT̂i

Fλθ
−1
i−−−−→ FλT i

µi−→ Ti
u
−→ Tj

µ
−1
j

−−−→ FλT j
Fλθj
−−−→ FλT̂j

λj
−→ TjSo ψ is an isomorphism of k-ategories whih restrits to the identity map on Ob(B). Moreover ϕ and ψmake (⋆) ommutative. �In the following lemma, we show that, under additional hypotheses on T , the equivalene lass of

FT̂i,λi
does not depend on the hoie of F in [F ].Lemma 2.5. Assume that F ′ : C′ → A is a Galois overing (with group G) equivalent to F and assumethat T veri�es the following ondition:(HA,T ):�ψ.Ti ≃ Ti for any i and for any isomorphism ψ : A

∼
−→ A whih restrits to the identity map on

Ob(A).�Then T is of the �rst kind w.r.t. F ′. For eah i ∈ {1, . . . , n} let µi : F ′
λT i → Ti be an isomorphism with

T i ∈ ind(C′). Then F ′
T i,µi

and FT̂i,λi
are equivalent.Proof: Let us �x an isomorphism between F and F ′:

C′
ϕ //

F ′

��

C

F

��
A

ψ // ALet us set ν : Aut(C′) → Aut(C) to be the isomorphism of groups (reall that Aut(C′) = G and Aut(C) =
G):

ν : Aut(C′) → Aut(C)
g 7→ ϕ ◦ g ◦ ϕ−1Reall that any g ∈ Aut(C) = G (resp. g ∈ Aut(C′) = G) de�nes an automorphism g of MOD(C) (resp.of MOD(C′)). Therefore we have an equality of funtors MOD(C′) →MOD(A):

(∀g ∈ Aut(C′)) ϕλ ◦ g = ν(g) ◦ ϕλ8



Let us �x an isomorphism θi : ψ.Ti → Ti, for eah i, and let us set T i = ϕ.T̂i. In partiular: ϕλT i = T̂i(see Lemma 1.3). Sine ψ.ψλ = IdMOD(A) (lo. it.) and ψF ′ = Fϕ, we infer that:
F ′
λT i = ψ.ψλF

′
λTi = ψ.FλϕλT i = ψ.FλT̂iTherefore, we get for eah i an isomorphism µi : F

′
λT i → Ti equal to the omposition:

µi : F
′
λT i = ψ.FλT̂i

ψ.λi−−−→ ψ.Ti
θi−→ TiThis proves that T is of the �rst kind w.r.t. F ′. Aording to the preeding subsetion, this de�nes theGalois overing with group G:

F ′
T i,µi

: EndC′(
⊕

g,i

gT i) → BThanks to Lemma 2.4 we only need to prove that F ′
T i,µi

and FT̂i,λi
are equivalent.First, we have the following funtor indued by ϕλ:

ϕ : EndC′(
⊕

i,g
gT i) −→ EndC(

⊕
i,g

gT̂i)
gT i 7−→ ν(g)T̂i = ϕλ

gT i
gT i

u
−→ hT j 7−→ ν(g)T̂i

ϕλu−−−→ ν(h)T̂jSine ν : G→ G is an isomorphism and beause of the equalities ϕλϕ. = IdMOD(C) and ϕ.ϕλ = IdMOD(C)(see Lemma 1.3), the funtor ϕ is an isomorphism.Seondly, we have the following funtor indued by ψλ:
ψ : B −→ B

Ti 7−→ Ti

Ti
u
−→ Tj 7−→ Ti

ψλ(θ−1
j
uθi)

−−−−−−−−→ TjSine ψλψ. = ψ.ψλ = IdMOD(A), the funtor ψ is a well de�ned isomorphism and restrits to the identitymap on Ob(B). Therefore, we have a diagram whose horizontal arrows are isomorphisms and whosebottom horizontal arrow restrits to the identity map on the set of objets:
EndC′(

⊕
i,g

gT i)
ϕ //

F ′

Ti,µi

��

EndC(
⊕

i,g
gT̂i)

F
T̂i,λi

��
B

ψ // BThis diagram is ommutative, indeed, for any gT i
u
−→ hT j we have:

ψF ′
T i,µi

(u) = ψ(µjF
′
λ(u)µ

−1
i ) = ψλ(θ

−1
j µjF

′
λ(u)µ

−1
i θi)

= ψλ(θ
−1
j θjψ.(λj)F

′
λ(u)ψ.(λi)

−1θ−1
i θi)

= λj (ψλF
′
λ)(u) λ

−1
i beause ψλψ. = IdMOD(C)

= λj (Fλϕλ)(u) λ
−1
i beause Fϕ = ψF ′

= FT̂i,λi
(ϕλ(u)) = FT̂i,λi

ϕ(u)This proves that F ′
T i,µi

and FT̂i,λi
are equivalent. �Later, we shall prove that if T is a basi tilting A-module lying in the onneted omponent of

−→
KA ontaining A, then the hypothesis (HA,T ) in the preeding lemma is automatially veri�ed. As aonsequene, for these tilting A-modules, the property �to be of the �rst kind w.r.t. an equivalene lass ofGalois overings of A� does make sense. However, the hypothesis (HA,T ) is not veri�ed for any A-module
T as the following example shows.Example 2.6. Let A be the path algebra of the following quiver:

2

c

��>
>>

>>
>>

1

b

@@�������
a

// 39



Here n = 3 and we have an isomorphism of k-ategories: ψ : A
∼
−→ A suh that ψ(x) = x for any

x ∈ Ob(A), ψ(a) = a+ cb, ψ(b) = b and ψ(c) = c. For any integer i, let Ti be the following A-module:
k

1

��>
>>

>>
>>

k

1

@@�������

i

// kThen:- Ti and Ti+1 are not isomorphi, for any i,- if car(k) 6= 2, then T1, T2, T3 are pairwise non isomorphi,- ψ.Ti = Ti+1 for any i.In partiular, if car(k) 6= 2, then hypothesis (HA,T ) is not satis�ed for T = T1 ⊕ T2 ⊕ T3. Remark that Tis not tilting. Indeed, for any i, we have Ext1A(Ti, Ti) ≃ k beause τA(Ti) ≃ Ti.Remark 2.1, Lemma 2.4 and Lemma 2.5 justify the following de�nition:De�nition 2.7. Assume that the hypothesis (HA,T ) is satis�ed (see Lemma 2.5). The equivalene lass
[F ] of F and the basi tilting A-module T = T1

⊕
. . .

⊕
Tn of the �rst kind w.r.t. [F ] (with Ti ∈ ind(A))uniquely de�ne an equivalene lass of Galois overing of B with group G and whih admits FT̂i,λi

as arepresentative. This equivalene lass will be denoted by [F ]T : EndC(F.T ) → B.2.3 Comparison of [F ] and ([F ]T )TFor short, let us write C′ for EndC(
⊕

g,i
gT̂i) and F ′ for FT̂i,λi

. In this subsetion we shall not assumethat the hypothesis (HA,T ) of Lemma 2.5 is satis�ed, exept for the last proposition. Starting from Fand from the isomorphisms λi : FλT̂i ∼
−→ Ti, i ∈ {1, . . . , n}, we have onstruted the Galois overing F ′ of

B. One may try to perform the same onstrution starting from F ′ in order to get a Galois overing F ′′of EndB(T ) ≃ A and eventually ompare F ′′ with F . In this purpose, we need to prove that T is of the�rst kind w.r.t. F ′. Let us �x a lifting L : Ob(A) → Ob(C) of the surjetive mapping F : Ob(C) → Ob(A).For x ∈ Ob(A), let T̂ (x) be the C′-module suh that:- T̂ (x)( gT̂i) = T̂i(g
−1L(x)) for any gT̂i ∈ Ob(C′),- T̂ (x)

(
gT̂i

u
−→ hT̂j

) is equal to T̂i(g−1L(x))
uL(x)
−−−−→ T̂j(h

−1L(x)) for any u ∈ hT̂j
C′

gT̂i
.Therefore, for any i ∈ {1, . . . , n}, we have:

(
F ′
λT̂ (x)

)
(Ti) =

⊕

g∈G

T̂ (x)( gT̂i) =
⊕

g∈G

T̂i(g
−1L(x)) =

(
FλT̂i

)
(x)So we may set (µx)Ti :

(
F ′
λT̂ (x)

)
(Ti) → (T (x)) (Ti) to be equal to (FλT̂i)(x)

(λi)x
−−−→ Ti(x).Lemma 2.8. The linear isomorphisms (µx)Ti (i ∈ {1, . . . , n}) de�ne an isomorphism of B-modules:

µx : F ′
λT̂ (x)

∼
−→ T (x)Proof: We only need to prove that µx is a morphism of B-modules. Let u ∈ tT̂j

C′
sT̂i

so that F ′(u) ∈

TjBTi , and let us prove that the following diagram ommutes:
(
F ′
λT̂ (x)

)
(Ti)

(µx)Ti
=(λi)x

//

(
F ′

λT̂ (x)
)
(F ′(u))

��

Ti(x)

(T (x))(F ′(u))=F ′(u)x

��(
F ′
λT̂ (x)

)
(Tj)

(µx)Tj
=(λj)x

// Tj(x)

(⋆)
Let g ∈ G and let us ompute the restrition of F ′(u)x ◦ (λi)x to T̂ (x)( gT̂i). Reall that F ′(u)x is equalto the omposition:

Ti(x)
(λ−1

i
)x

−−−−−→
(
Fλ

sT̂i
)

(x)
(Fλu)x−−−−−→

(
Fλ

tT̂j
)

(x)
(λj)x
−−−→ Tj(x)10



Moreover, the restrition of (Fλu)x to T̂ (x)( gT̂i) = T̂i(g
−1L((x)) is (by onstrution of the push-downfuntor) equal to T̂i(g

−1L(x))
u

sg−1L(x)
−−−−−−−→ T̂j(t

−1sg−1L(x)). Thus, the restrition of F ′(u)x ◦ (λi)x to
T̂ (x)( gT̂i) is equal to the omposition:

T̂i(g
−1L(x))

u
sg−1L(x)

−−−−−−−→ T̂j(t
−1sg−1L(x))

(λj)x
−−−→ Tj(x) (i)On the other hand, the restrition of (

F ′
λT̂ (x)

)
(F ′(u)) to T̂ (x)( gT̂i) = T̂ (x)( gs

−1sT̂i) is (by onstrutionof the push-down funtor) equal to:̂
T (x)( gT̂i)

T̂ (x)( gs−1
u)

−−−−−−−−→ T̂ (x)( gs
−1tT̂j) (ii)and T̂ (x)( gs

−1

u) =
(
gs−1

u
)

L(x)
= usg−1L(x). This last equality, together with (i) and (ii), proves thatthe diagram (⋆) ommutes. �Thanks to Lemma 2.8, we have a Galois overing F ′

T̂ (x),µx
: EndC′(

⊕
g,x

gT̂ (x)) → EndB(T ) withgroup G. For short, we shall write C′′ for EndC′(
⊕

g,x
gT̂ (x)) and F ′′ for F ′

T̂ (x),µx
. The following lemmarelates F ′′ and F .Lemma 2.9. There exists an isomorphism of k-ategories ψ : C

∼
−→ C′′ suh that the following diagram isommutative:

C

F

��

ψ // C′′

F ′′

��
A

ρA// EndB(T )In partiular, F and ρ−1
A F ′′ are equivalent as Galois overings of A.Proof: Sine G ats freely on Ob(C) and sine L : Ob(A) → Ob(C) lifts F : Ob(C) → Ob(A), any x ∈ Ob(C)is equal to gL(x′) with g ∈ G, x′ ∈ Ob(A) uniquely determined by x. Let ψ : C → C′′ be as follows:- ψ(gL(x)) = gT̂ (x) for any gL(x) ∈ Ob(C),- for u ∈ hL(y)CgL(x), we let ψ(u) : gT̂ (x) → hT̂ (y) be the morphism of C′-modules suh that for any

sT̂i ∈ Ob(C′), ψ(u) sT̂i
is equal to:

T̂i(s
−1u) : T̂i(s

−1gL(x)) → T̂i(s
−1hL(y))Let us prove the following fats:1. ψ(u) is a morphism of C′-modules for any u ∈ hL(y)CgL(x),2. ψ is a funtor,3. F ′′ ◦ ψ = ρA ◦ F ,4. ψ is an isomorphism.

1) Let u ∈ hL(y)CgL(x). We need to prove that for any f ∈ tT̂j
C′

sT̂i
, the following diagram ommutes:

gT̂ (x)( sT̂i)
ψ(u)sT̂i //

g T̂ (x)(f)

��

hT̂ (y)( sT̂i)

hT̂ (y)(f)

��
gT̂ (x)( tT̂j)

ψ(u)tT̂j // hT̂ (y)( tT̂j)By onstrution, this diagram is equal to:
T̂i(s

−1gL(x))
T̂i(s

−1u)
//

fgL(x)

��

T̂i(s
−1hL(y))

fhL(y)

��
T̂j(t

−1gL(x))
T̂j(t−1u)

// T̂j(t−1hL(y))11



and the latter is ommutative beause f : sT̂i →
tT̂j is a morphism of C-modules. This proves that ψ(u)is a morphism of C′-modules for any morphism u in C.

2) One easily heks that ψ(1gL(x)) = IdgT̂ (x)
for any gL(x) ∈ Ob(C). Let u, v be morphisms in Csuh that the omposition vu exists. Then, for any sT̂j ∈ Ob(C′):

(ψ(v) ◦ ψ(u))sT̂j
= ψ(v)sT̂j

◦ ψ(u)sT̂j
= T̂j(s

−1v) ◦ T̂j(s
−1u) = T̂j(s

−1(v ◦ u)) = ψ(v ◦ u)sT̂jSo ψ : C → C′′ is a funtor.
3) Let gL(x) ∈ Ob(C). Then:

F ′′ ◦ ψ(gL(x)) = F ′′( gT̂ (x)) = T (x) = ρA(x) = ρA ◦ F (gL(x))Let u ∈ hL(y)CgL(x) and let us prove that F ′′ψ(u) = ρAF (u). Let Ti ∈ Ob(B). Then:




(F ′′ψ(u))Ti

= Ti(x)
(λ−1

i
)x

−−−−−→
(
F ′
λ
gT̂ (x)

)
(Ti)

(F ′

λ(ψ(u)))
Ti−−−−−−−−−→

(
F ′
λ
hT̂ (y)

)
(Ti)

(λi)y
−−−→ Ti(y)

(ρAF (u))Ti
= Ti(x)

Ti(F (u))
−−−−−−→ Ti(y)Reall that (

F ′
λ
gT̂ (x)

)
(Ti) =

⊕
s∈G

gT̂ (x)( sT̂i) and that gT̂ (x)( sT̂i) = T̂i(s
−1gL(x)), for any s ∈ G.Let s ∈ G. Then, the restrition of (F ′

λ(ψ(u)))Ti
to gT̂ (x)( sT̂i) is equal to:

T̂i(s
−1gL(x))

ψ(u)sT̂i
=T̂i(s

−1u)

−−−−−−−−−−−−→ T̂i(s
−1hL(y))Therefore, for any s ∈ G, the restrition of (λ−1

i )y ◦ (F ′′ψ(u))Ti
◦ (λi)x (resp. (λ−1

i )y ◦ (ρAF (u))Ti
◦ (λi)x)to gT̂ (x)( sT̂i) = T̂i(s

−1gL(x)) is equal to:
T̂i(s

−1gL(x))
T̂i(s

−1u)
−−−−−−−−→ T̂i(s

−1hL(y))resp. T̂i(s
−1gL(x))

(λ−1
i

)y Ti(F (u)) (λi)x
−−−−−−−−−−−−−−−−−→ T̂i(s

−1hL(y))Sine λi : Fλ (
sT̂i

)
→ Ti is an isomorphism of A-modules, (λ−1

i )y ◦ Ti(F (u)) ◦ (λi)x equals T̂i(s−1u).We infer that (λ−1
i )y ◦ (F ′′ψ(u))Ti

◦ (λi)x and (λ−1
i )y ◦ (ρAF (u))Ti

◦ (λi)x oinide on T̂ (s−1gL(x)),for any s ∈ G. As a onsequene, (F ′′ψ(u))Ti
= (ρAF (u))Ti

, for any Ti ∈ Ob(B). This proves that
F ′′ ◦ ψ(u) = ρA ◦ F (u) for any morphism u in C. In other words: F ′′ ◦ ψ = ρA ◦ F .

4) Let us prove that ψ is an isomorphism. Sine F ′′ and ρA◦F are overing funtors, Lemma 1.1 impliesthat so does ψ. Sine ψ restrits to a bijetive mapping on objets, we dedue that ψ is an isomorphism. �Thanks to Lemma 2.9 we an omplete Lemma 2.3 onerning the onnetedness of C′. The followingproposition will be useful in the sequel, it is a diret onsequene of Lemma 2.3 and Lemma 2.9.Proposition 2.10. C is onneted if and only if C′ = EndC(
⊕

g,i T̂i) is onneted.We �nish this subsetion with the following proposition whih ompares the equivalene lass of Fand ([F ]T )T when the latter is well de�ned (see De�nition 2.7). It is a diret onsequene of Lemma 2.9.Notie that ρ−1
A ◦ ([F ]T )T is an equivalene lass of Galois overings of A.Proposition 2.11. Assume that both onditions (HA,T ) and (HB,T ) are satis�ed. Then, the equivalenelass [F ] of F oinides with ρ−1

A ◦ ([F ]T )T .3 Tilting modules of the �rst kindLet F : C → A be a Galois overing with group G and with C loally bounded. The aim of this setion isto give �simple� su�ient onditions whih guarantee the following fats:- T is of the �rst kind w.r.t. F ,- F.T is a basi C-module,- the hypothesis (HA,T ) is satis�ed (see Lemma 2.5), i.e. ψ.N ≃ N for any diret summand N of Tand for any automorphism ψ : A
∼
−→ A whih restrits to the identity map on objets.We begin with the following proposition. 12



Proposition 3.1. Assume that T and T ′ lie in a same onneted omponent of −→KA. Then:
T ∈ mod1(A) ⇔ T ′ ∈ mod1(A)In partiular, if T ′ = A or T ′ = DA, then T ∈ mod1(A).Proof: Sine A,DA ∈ mod1(A), we only need to prove the equivalene of the proposition under theassumption: there is an arrow T → T ′ in −→

KA. Let us assume that T ∈ mod1(A). Sine T → T ′ is anarrow in −→
KA, we have the following data:. T = X

⊕
T with X ∈ ind(A),. T ′ = Y

⊕
T with Y ∈ ind(A),. ε : 0 → X →M → Y → 0 a non split exat sequene in mod(A) with M ∈ add(T ).Thus, we only need to prove that Y ∈ mod1(A) in order to get T ′ ∈ mod1(A). In this purpose, we willneed the following lemma.Lemma 3.2. Let ε : 0 → X

u
−→ M → Y → 0 be an exat sequene in mod(A) verifying the followinghypotheses:. X,Y ∈ ind(A) and X = FλX̂ (with X̂ ∈ ind(C)),. M = M1

⊕
. . .

⊕
Mt where Mi = FλM̂i ∈ ind(A) (with M̂i ∈ ind(C)), for every i,. Ext1A(Y,M) = 0.Then (ε) is isomorphi to an exat sequene in mod(A):

0 → X




Fλu
′
1...

Fλu
′
t




−−−−−−→ M1

⊕
. . .

⊕
MT → Y → 0where u′

i ∈ HomC(X̂, giM̂i) for some gi ∈ G, for every i.Proof of Lemma 3.2: For short, we shall say that u ∈ HomA(X,Mi) is homogeneous of degree g ∈ Gif and only if u = Fλu
′ with u′ ∈ HomC(X̂, gM̂i). Reall from Setion 1 that any u ∈ HomA(X,Mi)is (uniquely) the sum of d homogeneous morphisms with pairwise di�erent degrees (with d > 0). Let uswrite u =



u1...
ut


 with ui : X → Mi for eah i. We may assume that u1 : X → M1 is not homogeneous.Thus:

u1 = h1 + . . .+ hdwhere d > 2 and h1, . . . , hd : X →M1 are non zero homogeneous morphisms of pairwise di�erent degree.In order to prove the lemma, it su�es to prove the following property whih we denote by (P):� (ε) is isomorphi to an exat sequene of the form:
0 → X




u′
1

u2...
ut




−−−−→M1

⊕
. . .

⊕
Mt → Y → 0 (ε′)where u′

1 is the sum of at most d− 1 non zero homogeneous morphisms of pairwise di�erent degree. �For simpliity we adopt the following notations:. M = M2

⊕
· · ·

⊕
Mt (so M = M1

⊕
M),. u =



u2...
ut


 : X → M (so u =

[
u1

u

]
: X →M1

⊕
M),. h = h2 + . . .+ hd : X →M1 (so u1 = h1 + h).13



From HomA(ε,M1) we get the exat sequene:
HomA(M1

⊕
M,M1)

u∗

−−→ HomA(X,M1) → Ext1A(Y,M1) = 0So there exists [λ, µ] : M1

⊕
M →M1 suh that h1 = [λ, µ]u. Hene:

h1 = λu1 + µu = λh1 + λh+ µu (i)Let us distinguish two ases whether λ ∈ EndA(M1) is invertible or nilpotent (reall that M1 ∈ ind(A)):
• If λ is invertible then:

θ :=

[
λ µ
0 IdM

]
: M1

⊕
M → M1

⊕
Mis invertible. Using (i) we dedue an isomorphism of exat sequenes:

0 // X



u1

u





// M1

⊕
M //

θ

��

Y //

∼

��

0 (ε)

0 // X



h1

u





// M1

⊕
M // Y // 0 (ε′)Sine h1 : X →M1 is homogeneous, (ε′) �ts property (P). So (P) is satis�ed in this ase.

• If λ ∈ EndA(M1) is nilpotent, let p > 0 be suh that λp = 0. Using (i) we get the following equalities:
h1 = λ2h1 + (λ2 + λ)h+ (λ+ IdM1)µu... ... ...
h1 = λth1 + (λt + λt−1 + . . .+ λ)h+ (λt−1 + . . .+ λ+ IdM1)µu... ... ...
h1 = λph1 + (λp + λp−1 + . . .+ λ)h+ (λp−1 + . . .+ λ+ IdM1)µuSine λp = 0 and u1 = h1 + h we infer that:

u1 = λ′h+ λ′µuwhere λ′ := IdM1 + λ+ . . .+ λp−1 ∈ EndA(M1) is invertible. So we have an isomorphism:
θ :=

[
λ′ λ′µ
0 IdM

]
: M1

⊕
M →M1

⊕
Mand onsequently we have an isomorphism of exat sequenes:

0 // X



h
u





// M1

⊕
M

θ

��

// Y //

∼

��

0 (ε′)

0 // X



u1

u





// M1

⊕
M // Y // 0 (ε)where h = h2 + . . .+hp is the sum of p−1 non zero homogeneous morphisms of pairwise di�erent degrees.So (P) is satis�ed in this ase. This �nishes the proof of the lemma. �Now we an prove that Y ∈ mod1(A). Thanks to the preeding lemma, and with the same notations,we know that (ε) is isomorphi to an exat sequene in mod(A):

0 → X




Fλu
′
1...

Fλu
′
t




−−−−−−→M1

⊕
. . .Mt → Y → 0 (ε′)14



where u′
i ∈ HomC(X̂, giM̂i) for some gi ∈ G, for every i. Therefore (reall that Fλ is exat):

Y ≃ Coker



Fλ(u

′
1)...

Fλ(u
′
t)


 ≃ Fλ


Coker



u′

1...
u′
t





This proves that Y ∈ mod1(A). Therefore T ′ = Y

⊕
T ∈ mod1(A).The proof of the impliation T ′ ∈ mod1(A) ⇒ T ∈ mod1(A) is similar, exepted that instead of usingLemma 3.2 we use a dual version:Lemma 3.3. Let ε : 0 → X → M

v
−→ Y → 0 be an exat sequene in mod(A) verifying the followinghypotheses:. X,Y ∈ ind(A) and Y = FλŶ (with Ŷ ∈ ind(C)),. M = M1

⊕
. . .

⊕
Mt where Mi = FλM̂i ∈ ind(A) (with M̂i ∈ ind(C)), for every i,. Ext1A(M,X) = 0.Then (ε) is isomorphi to an exat sequene in mod(A):

0 → X →M1

⊕
. . .

⊕
MT




Fλv
′
1...

Fλv
′
t




−−−−−→ Y → 0where v′i ∈ HomC( giM̂i, Ŷ ) for some gi ∈ G, for every i.This �nishes the proof of Proposition 3.1. �Remark 3.4. Proposition 3.1 is similar to part of [12, Thm 3.6℄ where P. Gabriel proves the following: if
F : C → A is a Galois overing with group G, with C loally bounded and suh that G ats freely on ind(C),then for any onneted omponent C of the Auslander-Reiten quiver of A, all indeomposable modules of
C lie in ind1(A) as soon as any one of them does.Remark 3.5. The proof of Proposition 3.1 shows that for an arrow T → T ′ in −→

KA suh that T, T ′ ∈
mod1(A) there exists an exat sequene in mod(C):

0 → X
ι
−→M

π
−→ Y → 0with the following properties:. T = FλX

⊕
T and FλX ∈ ind(A),. T ′ = FλY

⊕
T and FλY ∈ ind(A),. FλM ∈ add(T ).Reall that −→KA has a Brauer-Thrall type property (see [15, Cor. 2.2℄): −→KA is �nite and onneted if ithas a �nite onneted omponent. In partiular, −→KA is �nite and onneted if A is of �nite representationtype. Using Proposition 3.1, we get the following orollary.Corollary 3.6. If −→KA is �nite (e.g. A is of �nite representation type), then any T ∈

−→
KA is of the �rstkind w.r.t. F .Now we turn to the seond goal of this setion: for T ∈ mod1(A) a basi tilting A-module, givesu�ient onditions for F.T to be a basi C-module.Proposition 3.7. Let T, T ′ ∈

−→
KA ∩mod1(A) lie in a same onneted omponent of −→KA, then:

F.T is a basi C-module ⇔ F.T ′ is a basi C-module.In partiular, if T ′ = A or T ′ = DA, then T ∈ mod1(A) and F.T is a basi C-module.Proof : The k-ategory C is loally bounded so F.A ≃ C and F.(DA) ≃ DC are basi C-modules.Therefore,we only need to prove the equivalene of the proposition.Without loss of generality, we may assumethat there is an arrow T → T ′ in −→
KA. Let us assume that F.T is basi and let us prove that so is

F.T ′. We will use Remark 3.5 from whih the adopt the notations, in partiular, the exat sequene
0 → X

ι
−→ M

π
−→ Y → 0 in mod(C) will be denoted by (ε). Beause F.T is basi and beause of the15



properties veri�ed by (ε), we only need to prove that GY = 1. Let ϕ : Y → gY be an isomorphism in
mod(C) (with g ∈ G), and let us prove that g = 1. To do this we will exhibit an isomorphism θ : X → gX.Notie that:

(∀h ∈ G)

{
hX, hM ∈ add(F.T )
hY, hM ∈ add(F.T ′)

(1)Moreover, thanks to T ∈
−→
KA and to FλF.T =

⊕
h∈G T (whih is true beause T is of the �rst kind w.r.t.

F , see Setion 1), we have:
(∀i > 1) ExtiC(F.T, F.T ) ≃ ExtiA(FλF.(T ), T ) ≃

∏

h∈G

ExtiA(T, T ) = 0In partiular:
Ext1C( gM,X) = Ext1C(M, gX) = 0 (i)With HomC(M, gε), this last equality gives the exat sequene:

HomC(M, gM)
( gπ)∗
−−−−→ HomC(M, gY ) → Ext1C(M, gX) = 0From this exat sequene, we dedue the existene of ψ ∈ HomC(M, gM) suh that the following diagramommutes:

M
π //

ψ

��

Y

ϕ

��
gM

gπ // gYThis implies the existene of θ ∈ HomC(X, gX) making ommutative the following diagram with exatrows:
0 // X

ι //

θ

��

M
π //

ψ

��

Y

ϕ

��

// 0

0 // gX
gι // gM

gπ // gY // 0

(ii)We laim that θ : X → gX is an isomorphism. The arguments that have been used to get (ii) may beadapted (just replae the use of HomC(M, gε) and of ϕ : Y → gY by HomC( gM, ε) and ϕ−1 : gY → Y )to get the following ommutative diagram with exat rows:
0 // gX

gι //

θ′

��

gM
gπ //

ψ′

��

gY

ϕ−1

��

// 0

0 // X
ι // M

π // Y // 0

(iii)In order to show that θ : X → gX is an isomorphism, let us show that θ′θ ∈ EndC(X) is an isomorphism.Notie (ii) and (iii) give the following ommutative diagram:
0 // X

ι //

θ′θ−idX

��

M
π //

ψ′ψ−IdM

��

Y

0

��

// 0

0 // X
ι // M

π // Y // 0

(iv)In partiular we have π(ψ′ψ − IdM) = 0, so there exists λ ∈ HomC(M,X) suh that:
ψ′ψ − IdM = ιλTherefore:
ι(θ′θ − IdX) = ιλιSine ι is one-to-one, we get θ′θ − idX = λι, i.e.:
θ′θ = IdX + λιIf λι ∈ EndC(X) was an isomorphism, then ι : X →M would be a setion. This would imply that FλX is adiret summand of FλM . This last property is impossible beause: T = FλX

⊕
T , FλM ∈ add(T ) and Tis basi. This ontradition proves that λι ∈ EndC(X) is nilpotent. Therefore θ′θ = IdX +λι ∈ EndC(X)is invertible. As a onsequene, θ : X → gX is a setion. Sine X, gX ∈ ind(C), we dedue that

θ : X → gX is an isomorphism. But we assumed that F.T is basi, so g = 1. This �nishes the proof ofthe impliation: 16



F.T is basi ⇒ F.T ′ is basi.After exhanging the roles of T and T ′ in the above arguments, we also prove that:
F.T is basi ⇐ F.T ′ is basi.under the assumption that T → T ′ is an arrow in −→

KA. This ahieves the proof of the proposition. �Proposition 3.7 has the following orollary whih will be useful to prove Theorem 1.Corollary 3.8. Let F : C → A be a onneted Galois overing with group G. Let T = T1 ⊕ . . . ⊕ Tn(Ti ∈ ind(A)) and T ′ = T ′
1 ⊕ . . .⊕ T ′

n (T ′
i ∈ ind(A)) be basi tilting A-modules lying in a same onnetedomponent of −→KA. Assume that T, T ′ ∈ mod1(A) and �x isomorphisms λi : FλT̂i ∼

−→ Ti and λi : FλT̂ ′
i

∼
−→

T ′
i with T̂i, T̂ ′

i ∈ ind(C) for every i. Then:
FT̂i,λi

is onneted ⇔ F
T̂ ′

i,λ
′

i
is onneted.In partiular, if T ′ = A or T ′ = DA, then FT̂i,λi

is onneted.Proof : Reall that �the Galois overing E → B is onneted� means E is onneted and loally bounded.Thanks to Remark 2.1 and to Proposition 2.10, we know that FT̂i,λi
(resp. F

T̂ ′
i,λ

′

i
) is onneted if andonly if F.T (resp. F.T ′) is a basi C-module. The orollary is therefore a onsequene of Proposition 3.7.�We �nish with the last objetive of the setion: give �simple� onditions on T ∈

−→
KA under whihondition (HA,T ) is satis�ed (see Lemma 2.5).Proposition 3.9. Let T, T ′ lie in a same onneted omponent of −→KA. Then:(HA,T ) is satis�ed ⇔ (HA,T ′) is satis�edIn partiular, if T ′ = A or T ′ = DA, then (HA,T ) is satis�ed.Proof: Let ψ : A

∼
−→ A be an automorphism restriting to the identity map on objets. Let x ∈ Ob(A)and let ?Ax : y ∈ Ob(A) 7→ yAx be the indeomposable projetive A-module assoiated to x. Then, wehave an isomorphism of A-modules:

?Ax −→ ψ. ?Ax
u ∈ yAx 7−→ F (u) ∈ (ψ. ?Ax) (y) = yAxSo (HA,A) is satis�ed, and similarly (HA,DA) is satis�ed. Therefore, in order to prove the proposition, itsu�es to prove that (HA,T ) is satis�ed if and only if (HA,T ′) is satis�ed, for any arrow T → T ′ in −→

KA.Assume that T → T ′ is an arrow in −→
KA and that (HA,T ) is satis�ed. So we have the data:- T = X ⊕ T with X ∈ ind(A),- T ′ = Y ⊕ T with Y ∈ ind(A),- a non split exat sequene 0 → X

u
−→M → Y → 0 where M ∈ add(T ) and where u : X →M is theleft add(T )-approximation of X.Notie that in order to prove that (HA,T ′) is satis�ed, we only need to prove that ψ.Y ≃ Y . Sine ψ is anautomorphism, ψ. : mod(A) → mod(A) is an equivalene of abelian ategories. Therefore, the sequene

0 → ψ.X
ψ.u
−−→ ψ.M → ψ.Y → 0 is non split exat and veri�es: ψ.M ∈ add(ψ.T ) and ψ.u : ψ.X → ψ.M isthe left add(ψ.T )-approximation of ψ.Y . Moreover ψ.X ≃ X, ψ.M ≃M and ψ.T ≃ T beause (HA,T ) issatis�ed. So, ψ.Y is isomorphi to the okernel of the left add(T )-approximation of X. This implies that

Y ≃ ψ.Y . So (HA,T ′) is satis�ed. The onverse is dealt with using dual arguments. �4 Comparison of −→KA and −→
KEndA(T ) for a tilting A-module TLet T be a basi tilting A-module. Let B = EndA(T ). In the preeding setion, we have pointed outonditions of the form: �T lies in the onneted omponent of −→KA ontaining A�. Sine our �nal objetive(i.e. to ompare the Galois overings of A and of B) is symmetrial between A and B, we ought to �ndsu�ient onditions for T to lie in both onneted omponents of −→

KA and −→
KB ontaining A and Brespetively. Thus, this setion is devoted to ompare −→

KA and −→
KB . For simpliity, if X ∈ mod(A) (resp.

u ∈ HomA(X,Y )) we shall write XT (resp. uT ) for the B-module (resp. the morphism of B-modules)
HomA(X,T ) (resp. HomA(u, T ) : HomA(Y, T ) → HomA(X,T )). Also, whenever f is a morphism ofmodules, we shall write f∗ (resp. f∗) for the mapping g 7→ fg (resp. g 7→ gf). We begin with a usefullemma. 17



Lemma 4.1. Let X ∈ mod(A) and let T ′ ∈
−→
KA be a predeessor of T (i.e. there is an oriented path in

−→
KA starting at T ′ and ending at T ). Then, the is an isomorphism, for any Y ∈ add(T ′):

θX,Y : HomA(X,Y ) −→ HomB(YT ,XT )
u 7−→ uTIn partiular: Y ∈ ind(A) ⇔ YT ∈ ind(B), for any Y ∈ add(T ′).Proof: Remark that θX,T ′ is an isomorphism if and only if θX,Y is an isomorphism for any Y ∈ add(T ′).By assumption on T ′, there exists a path in −→

KA starting at T ′ and ending at T . Let us prove by indutionon the length l of this path that θX,T ′ is an isomorphism.If l = 0 then T = T ′. So θX,T ′ = θX,T is equal to:
HomA(X,T ) = XT −→ HomB(TT ,XT ) = HomB(B,XT )

u 7−→ (f 7→ fu)So θX,T ′ is an isomorphism (with inverse ϕ 7→ ϕ(1B)). This proves the lemma when l = 0.Now, assume that l > 0 and assume that θX,T ′′ is an isomorphism whenever T ′′ is the soure of apath in −→
KA ending at T and with length equal to l− 1. We have a path T ′ → T ′′ → . . .→ T of length lin −→

KA. Therefore:
θX,Y is an isomorphism for any Y ∈ add(T ′′) (i)Moreover, thanks to the arrow T ′ → T ′′ in −→

KA, we have:
(ii) T ′ = T

⊕
Y ′ with Y ′ ∈ ind(A),

(iii) T ′′ = T
⊕
Y ′′ with Y ′′ ∈ ind(A),

(iv) a non split exat sequene 0 → Y ′ →M → Y ′′ → 0 with M ∈ add(T ).Thanks to (i), (ii) and (iii) we only need to prove that θX,Y ′ is an isomorphism. Remark that byassumption on T ′ and T ′′ we have T ∈ T⊥ ⊆ T ′′⊥. This implies in partiular that Ext1A(Y ′′, T ) = 0.Therefore, (iv) yields an exat sequene in mod(A):
0 → Y ′′

T →MT → Y ′
T → 0This gives rise to the exat sequene:

0 → HomB(Y ′
T ,XT ) → HomB(MT ,XT ) → HomB(Y ′′

T ,XT )On the other hand, (iv) yields the following exat sequene:
0 → HomA(X,Y ′) → HomA(X,M) → HomA(X,Y ′′)Therefore, we have a ommutative diagram:

0 // HomA(X,Y ′) //

θX,Y ′

��

HomA(X,M) //

θX,M

��

HomA(X,Y ′′)

θX,Y ′′

��
0 // HomA(Y ′

T , XT ) // HomA(MT ,XT ) // HomA(Y ′′
T , XT )where the rows are exat and where θX,M and θX,Y ′′ are isomorphisms. This shows that θX,Y ′ is anisomorphism. So θX,T ′ is an isomorphism and the indution is �nished. This proves the �rst assertion ofthe lemma. The seond assertion is due to the funtoriality of θX,Y . �Remark 4.2. Assume that A is hereditary. Then Lemma 4.1 still holds if one replaes the hypothesis"T ′ is a predeessor of T" by "T ′

> T" (i.e. T⊥ ⊆ T ′⊥). The proof is then a lassial appliation of left
add(T )-approximations.The following proposition is the base of the link between −→

KA and −→
KB: it explains how to assoiatesuitable tilting B-modules with tilting A-modules.Proposition 4.3. Let X → Y be an arrow in −→

KA where X and Y are predeessors of T . Then:
XT ∈

−→
KB ⇔ YT ∈

−→
KAIf the two onditions of the above equivalene are satis�ed, then there is an arrow YT → XT in −→

KB.18



Proof: Let us assume that YT ∈
−→
KB and let us show that XT ∈

−→
KB and that there is an arrow YT → XTin −→

KB (the proof of the remaining impliation is then obtained by exhanging the roles of X and Y ).The arrow X → Y in −→
KA gives the following data:. X = M

⊕
X with M ∈ ind(A),. Y = N

⊕
X with N ∈ ind(A),. ε : 0 →M
i
−→ X ′ p

−→ N → 0 is a non split exat sequene in mod(A) with X ′ ∈ add(X).The tilting A-module Y is a predeessor of T . Hene T ∈ T⊥ ⊆ Y ⊥ and therefore Ext1A(N,T ) = 0. Weinfer that HomA(ε, T ) gives an exat sequene in mod(B):
0 → NT

pT−−→ X ′
T

iT−→MT → 0 (εT )Notie that we also have:. XT = MT

⊕
XT ,. YT = NT

⊕
XT ,. X ′

T ∈ add(XT ).Therefore, in order to prove that XT ∈
−→
KB and that there is an arrow YT → XT in −→

KB , we only needto prove the following fats:
1) εT does not split,
2) MT ∈ ind(B) and NT ∈ ind(B),
3) pdB(XT ) <∞,
4) XT is selforthogonal,
5) XT is the diret sum of n indeomposable A-modules and XT is basi.

1) Let us prove that εT does not split. If εT splits, then iT is a retration:
(∃λ ∈ HomB(MT ,X

′
T )) IdMT = iT ◦ λSine M is a diret summand of X ∈

−→
KA and sine X is a predeessor of T , Lemma 4.1 implies that

λ = πT with π ∈ HomA(X ′,M). Thus we have (π ◦ i)T = (IdM )T . Using again Lemma 4.1 we deduethat π ◦ i = IdM whih is impossible beause ε does not split. So εT does not split.
2) Lemma 4.1 implies that MT , NT ∈ ind(B).
3) Sine we assumed that YT ∈

−→
KB, we have pdB(XT ) < ∞, pdB(X ′

T ) < ∞ and pdB(NT ) < ∞.Hene εT gives pdB(MT ) <∞. So pdB(XT ) <∞.
4) Let us prove that XT is selforthogonal. In this purpose, we will use the following lemma.Lemma 4.4. Let L ∈ add(X). Then, the following morphism indued by pT : NT → X ′

T is surjetive:
(pT )∗ HomB(X ′

T , LT ) −→ HomB(NT , LT )
f 7−→ f ◦ pTProof: Sine L ∈ add(X) and sine X ∈

−→
KA, we have Ext1A(L,M) = 0. Hene, HomA(L, ε) gives riseto a surjetive morphism indued by p:

p∗ : HomA(L,X ′) ։ HomA(L,N)
f 7−→ p ◦ fLet us apply Lemma 4.1 to X ′ ∈ add(Y ) and to N ∈ add(Y ). We get the following ommutative diagramwhere vertial arrows are isomorphisms:

HomA(L,X ′)
p∗ //

θL,X′

��

HomA(L,N)

θL,N

��
HomB(X ′

T , LT )
(pT )∗

// HomB(NT , LT )Sine p∗ is surjetive, we infer that so is (pT )∗. �19



Now we an prove that XT = XT

⊕
MT is selforthogonal. Sine XT ∈ add(YT ) and YT ∈

−→
KB, weget:

(∀i > 1) ExtiB(XT ,XT ) = 0 (i)For eah i > 1, HomB(XT , εT ) gives the following exat sequene:
ExtiB(XT , X

′
T ) → ExtiB(XT ,MT ) → Exti+1

B (XT , NT )Sine XT ,X
′
T , NT ∈ add(YT ) and YT ∈

−→
KB, we get:

(∀i > 1) ExtiB(XT ,MT ) = 0 (ii)On the other hand, HomB(εT , XT ) gives the following exat sequenes:
.HomB(X ′

T ,XT )
(pT )∗

−−−−→ HomB(NT ,XT ) → Ext1B(MT ,XT ) → Ext1B(X ′
T ,XT )

.ExtiB(NT ,XT ) → Exti+1
B (MT ,XT ) → Exti+1

B (X ′
T ,XT ) for i > 1These exat sequenes together with Lemma 4.4 and the selforthogonality of YT imply that:

(∀i > 1) ExtiB(MT ,XT ) = 0 (iii)In order to get the selforthogonality of XT = MT

⊕
XT it only remains to prove thatMT is selforthogonal(beause of (i), (ii) and (iii)). Notie that HomB(NT , εT ) gives the following exat sequene for eah

i > 1:
ExtiB(NT , X

′
T ) → ExtiB(NT ,MT ) → Exti+1

B (NT , NT )Using YT ∈
−→
KB and X ′

T , NT ∈ add(YT ) we dedue that:
(∀i > 1) ExtiB(NT ,MT ) = 0 (iv)Finally HomB(εT ,MT ) gives the following exat sequenes:

.HomB(X ′
T ,MT )

(pT )∗

−−−−→ HomB(NT ,MT ) → Ext1B(MT ,MT ) → Ext1B(X ′
T ,MT )

.ExtiB(NT ,MT ) → Exti+1
B (MT ,MT ) → Exti+1

B (X ′
T ,MT ) for i > 1These exat sequenes together with Lemma 4.4, (ii) and (iv) imply that (reall that X ′

T ∈ add(XT )):
(∀i > 1) ExtiB(MT ,MT ) = 0 (v)From (i), (ii), (iii) and (v) we dedue that XT = MT

⊕
XT is selforthogonal.

5) To �nish, let us prove that XT is basi and that XT is the diret sum of n indeomposable modules.Notie that XT is basi beause it is a diret summand of the basi tilting B-module YT . On the otherhand, εT does not split, so Ext1A(MT , NT ) 6= 0, hene MT 6∈ add(YT ) and therefore MT 6∈ add(XT ).Sine MT ∈ ind(B), we dedue that XT is basi. Finally, YT is by assumption the diret sum of nindeomposable modules, and XT and YT di�er by one indeomposable diret summand so XT is alsothe diret sum of n indeomposable modules. �Remark 4.5. When A is hereditary, Proposition 4.3 has the following generalisation: Let X ∈
−→
KA besuh that X > T , then XT ∈

−→
KB. The proof of this generalisation is obtained by replaing the use of theexat sequene ε by a oresolution of X in add(T ).Proposition 4.3 gives the following proposition whih will be used in the omparison of the Galoisoverings of A and B. We omit the proof whih is immediate using Proposition 4.3.Proposition 4.6. Let X ∈
−→
KA be suh that there exists a path in −→

KA starting at X and ending at T .Then XT ∈
−→
KB and there exists in −→

KB a path starting at B and ending at XT .Proposition 4.3 also allows us to prove the main result of this setion. Reall that for a quiver Q, wewrite Qop for the opposite quiver (obtained from Q by reversing the arrows).Theorem 4.7. Let −→
KA(T ) (resp. −→

KB(T )) be the onvex hull of {A, T} (resp. {B,T}) in −→
KA (resp.

−→
KB). Then we have an isomorphism of quivers:

α :
−→
KA(T ) 7−→

−→
KB(T )op

X 7−→ XT = HomA(X,T )Under this orrespondene, A ∈
−→
KA(T ) (resp. T ∈

−→
KA(T )) is assoiated with T ∈

−→
KB(T ) (resp.

B ∈
−→
KB(T )). 20



Proof: Thanks to Proposition 4.3, the mapping α is a well de�ned morphism of quivers. Thus, it onlyremains to exhibit an inverse morphism. Notie that Proposition 4.6 implies that −→
KA(T ) = {A, T} ⇔

−→
KB(T ) = {B, T} ⇔ there is no path in −→

KA(T ) starting at A and ending at T . Therefore, we mayassume that there is a path starting at A and ending at T . This assumption implies that any X ∈
−→
KA(T )is a predeessor of T . From [19, Thm 1.5℄ we know that T is a basi tilting EndB(T )-module and thatwe have an isomorphism of k-algebras:

A −→ EndB(T )
a 7−→ (t 7→ at)Heneforth, we shall onsider A-modules as EndB(T )-modules and vie-versa using the above isomor-phism. In partiular, we have an identi�ation of quivers:

−→
KA(T )

∼
−→

−→
KEndB(T )(T )

X 7→ XTherefore, we also have a well de�ned morphism of quivers:
α′ :

−→
KB(T )op →

−→
KA(T )

X 7→ XT = HomB(X,T )Let us prove that α′α is an isomorphism. Let X ∈
−→
KA(T ). Then X is a predeessor of T . Therefore,Lemma 4.1 implies that:

HomB(HomA(X,T ), T ) ≃ HomB(HomA(X,T ),HomA(A,T )) ≃ HomA(A,X) ≃ XThis proves that α′α is an isomorphism of quivers. With the same arguments one also shows that αα′ isan isomorphism. So does α :
−→
KA(T ) →

−→
KB(T )op. �Notie that −→

KA and −→
K op
B are not isomorphi in general. Indeed these quivers may have di�erentnumber of verties as the following example shows.Example 4.8. Let Q be the quiver:

2

��>
>>

>>
>>

1 //

@@�������
3and let A = kQ/I where I is the ideal generated by the oriented path of length 2 in Q. Notie that A is of�nite representation type. Let T = P1 ⊕ P2 ⊕ τ−1

A P3 be the APR-tilting A-module assoiated to the sink
3. Hene:

T =
1

2 3
⊕

2
3
⊕

1 2
2 3and the Hasse diagram −→

KA of basi tilting A-modules is equal to:
•

��=
==

==
==

=

•

��=
==

==
==

=

@@��������
• // D(A)

A // T

@@��������

��@
@@

@@
@@

•

@@��������

•

??��������On the other hand, B = EndA(T ) is isomorphi to kQ′/I ′ where Q′ is equal to:
a // b

''
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and I ′ is the ideal generated by the path c→ b→ c. As a B-module, T is equal to
T =

a
b
c
b

⊕
c
b
⊕
a c
band −→

KB is equal to:
•

��@
@@

@@
@@

•

��?
??

??
??

?

??~~~~~~~
•

!!C
CC

CC
CC

C

T

??�������
•

??��������

��>
>>

>>
>>

> DB

B

??~~~~~~~

  A
AA

AA
AA

•

@@��������
•

==||||||||

•

  @
@@

@@
@@

@

??��������
•

??��������

•

??~~~~~~~In partiular, −→
KA and −→

KB do not have the same number of verties. Notie that, in this example, theisomorphism of Theorem 4.7 is equal to:
−→
KA(T ) = (A→ T ) −→

−→
KB(T )op = (T → B)

A 7−→ T = HomA(A,T )
T 7−→ B = HomA(T, T )Remark 4.9. Assume that A is hereditary, then Theorem 4.7 has the following generalisation, thanksto Remark 4.5: Let QA (resp. QB) be the full subquiver of −→KA (resp. −→

KB) made of the tilting modules
X > T . Then X 7→ XT indues an isomorphism of quivers QA ∼

−→ QopB .5 Comparison of the Galois overings of A and EndA(T ) for T basitilting A-moduleThis setion is devoted to the proof of Theorem 1, of Corollary 1 and of Corollary 2. Let T ∈
−→
KA andlet B = EndA(T ). As in the introdution, we shall say that A and B have the same onneted Galoisoverings with group G if and only if there exists a bijetion GalA(G)

∼
−→ GalB(G). Here GalA(G) denotesthe set of equivalene lasses of onneted Galois overings with group G of A. In order to ompare theequivalene lasses of onneted Galois overings of A and those of B, we introdue the following assertionwhih depends on A, on T and on a �xed group G:

P(A, T,G) =�(HA,T ) is satis�ed and for any onneted Galois overing F : C → A with group G, the
A-module T is of the �rst kind w.r.t. F and F.T is a basi C-module�Reall from De�nition 2.7 that the ondition (HA,T ) ensures the existene of an equivalene lass [F ]T ofGalois overings of B depending only on the equivalene lass [F ] of F . Reall also from Remark 2.1 andfrom Proposition 2.10 that the ondition �F.T is a basi C-module� implies that [F ]T is an equivalenelass of onneted Galois overings of B. Finally, reall that P(A,A,G) and P(A,DA,G) are true forany G (see Proposition 3.1, Proposition 3.7 and Proposition 3.9). The above de�nition of P(A,T,G) isrelevant beause of the following proposition.Proposition 5.1. Let G be a group. Assume that P(A,T,G) and P(B,T,G) are true. Then A and Bhave the same onneted Galois overings with group G.Proof : Sine P(A, T,G) is true, we have a well de�ned mapping:

ϕA : GalA(G) −→ GalB(G)
[F ] 7−→ [F ]T

(i)22



Similarly, P(B,T,G) is true so we have a well de�ned mapping:
ϕB : GalB(G) −→ GalG(EndB(T ))

[F ] 7−→ [F ]T
(ii)Thanks to Proposition 2.11 we know that ρ−1

A ◦ (ϕBϕA([F ])) = [F ] for any [F ] ∈ GalA(G). Therefore,
ϕA is one-to-one and ϕB is onto. Notie that thanks to the isomorphism ρA : A

∼
−→ EndB(T ), the as-sertion P(EndB(T ), T, G) is true, so that the above arguments imply that ϕB is one-to-one and that

ϕEndB(T ) is onto. As a onsequene, ϕB is bijetive, so the mapping [F ] 7→ ρ−1
A ◦ [F ]T indues a bijetion

GalB(G)
∼
−→ GalA(G). �Thanks to Proposition 5.1 we are redued to �nd su�ient onditions for P(A, T,G) and P(B,T,G)to be simultaneously true. The following proposition is a diret onsequene of Proposition 3.1, ofCorollary 3.8, of Proposition 3.9 and of the fat that P(A,A,G) and P(A,DA,G) are true.Proposition 5.2. Let G be a group. Let T ′ ∈

−→
KA lying in the onneted omponent of −→KA ontaining

T . Then:
P(A, T,G) is true ⇔ P(A,T ′, G) is trueIn partiular, if T ′ = A or if T ′ = DA then P(A,T,G) is true.Thanks to Proposition 5.2, we are redued look for onditions for T to lie in both onneted omponentsof −→KA and −→

KB ontaining A and B respetively. Suh a ondition is given by the following proposition.Proposition 5.3. Let G be a group and assume that there exists a path in −→
KA starting at A and endingat T . Then T lies in the onneted omponent of −→KA (resp. −→

KB) ontaining A (resp. B). Consequently,
P(A,T,G) and P(B,T,G) are true.Proof : Theorem 4.7 implies that there exists a path in −→

KB starting at HomA(T, T ) = B and ending at
HomA(A,T ) = T . Using Proposition 5.2 we get the desired onlusion. �Now we an prove Theorem 1:Proof of Theorem 1: 1) Sine T and T ′ lie in a same onneted omponent of −→KA, there exists asequene T (1) = T, T (2), . . . , T (r) = T ′ of basi tilting A-modules suh that for any i ∈ {1, . . . , r − 1},there exists a path in −→

KA with T (i) and T (i+1) as end-points. For short, let us write Bi for EndA(T (i)).Let i ∈ {1, . . . , r− 1} and let us assume, for example, that there exists a path in −→
KA starting at T (i) andending at T (i+1). Using Lemma 4.1 and Proposition 4.6 we infer that:

(i) EndA(T (i)) and EndBi+1(HomA(T (i), T (i+1))) are isomorphi as k-algebras (and therefore as k-ategories),
(ii) there exists a path in −→

KBi+1 starting at B and ending at HomA(T (i), T (i+1)).This implies (thanks to Proposition 5.3 and to Proposition 5.1) that EndA(T (i)) and EndA(T (i+1)) havethe same onneted Galois overings with group G. Sine this fat is true for any i, we dedue that
EndA(T ) and EndA(T ′) have the same onneted Galois overings with group G.

2) is a onsequene of 1), of the fat that EndA(A) ≃ EndA(DA) ≃ Aop and of the fat that A and
Aop have the same Galois overings (F : C → A is a Galois overing if and only if F op : Cop → A is aGalois overing and Cop is onneted and loally bounded if and only if Cop is). �Using Theorem 1 we an prove Corollary 1 and Corollary 2.Proof of Corollary 1: Sine A is of �nite representation type, Theorem 1 implies that A and B have thesame onneted Galois overings. For the same reason, A (resp. B) admits a onneted Galois overingwith group G if and only if G is a fator group of the fundamental group π1(A) (resp. π1(B)) of A (resp.of B). Consequently, π1(A) and π1(B) are isomorphi. �Proof of Corollary 2: 1) and 2) are onsequenes of Theorem 1 and of the fat that A is simplyonneted if and only if it has no proper onneted Galois overing (see [17, Cor. 4℄).

3) is a onsequene of 2). �Corollary 1 naturally leads to the following question: let G be a group suh that A and B have thesame Galois overings with group G, is it true that A admits an admissible presentation with fundamentalgroup isomorphi to G if and only if the same holds for B? The answer is no in general as the followingexample shows : 23



Example 5.4. Let Q be the following quiver:
2

b

��>
>>

>>
>>

1 a
//

b

@@�������
3

d

// 4and let A = kQ/I where I =< da >. Let T = P1 ⊕ P2 ⊕ P3 ⊕ τ−1
A (P4) = P1 ⊕ P2 ⊕ P3 ⊕ S3 be theAPR-tilting module assoiated with the sink 3 (here Si is the simple A-module assoiated to the vertex iand Pi is the indeomposable projetive A-module with top Si). Then B = EndA(T ) is the path algebraof the following quiver:

��?
??

??
????�������

��?
??

??
?? ??�������Sine T is an APR-tilting A-module, there is an arrow A → T in −→

KA. Then, Theorem 1 implies thatfor any group G, the k-algebras A and B have the same onneted Galois overing with group G. On theother hand, any admissible presentation of B has fundamental group isomorphi to Z whereas A admitsan admissible presentation with fundamental group 0 and another one with fundamental group isomorphito Z (see for example [4, 1.4℄).In the preeding example, the reader may remark that the fundamental group of any admissiblepresentation of A is a fator group of Z and that the same holds for B. Let us say that A admitsan optimum fundamental group (G) if and only if there exists an admissible presentation of A withfundamental group G and if the fundamental group of any other admissible presentation is a fatorgroup of G. For example, A admits an optimum fundamental group in the following ases: A is of �niterepresentation type (see [12℄), A is onstrited (see [8, Thm 3.5℄), A is monomial, A is triangular andhas no double bypass (see [17, Thm. 1℄). Then we have the following orollary whose proof is a diretonsequene of Theorem 1:Corollary 5.5. Assume that T lies in the onneted omponent of −→KA ontaining A. Then A admits Gas optimum fundamental group if and only if B admits G as optimum fundamental group.Final remarkThe Hasse diagram −→
KA of basi tilting A-modules desribes the ombinatori relations between tiltingmodules. When A is hereditary (i.e. A = kQ with Q a �nite quiver with no oriented yle) theseombinatoris are also desribed by the luster ategory CQ of the quiver Q (see [11℄). In partiular, theindeomposable tilting objets in CQ are displayed as the verties of an unoriented graph. Sine this graphis always onneted (see [11, 3.5℄) it is natural to ask if it is possible to remove all onditions onerningonneted omponents in Theorem 1 and Corollary 2 (in the hereditary ase). These developpements willbe detailed in a foreoming text.Referenes[1℄ I. Assem and Skowro«ski A. On some lasses of simply onneted algebras. Proeedings of the LondonMathematial Soiety, 56(3):417�450, 1988.[2℄ I. Assem and Skowro«ski A. Tilting simply onneted algebras. Communiations in Algebra,22(12):4611�4619, 1994.[3℄ I. Assem, F. U. Coelho, and S. Trepode. Simply onneted tame quasi-tilted algebras. Journal ofPure and Applied Algebra, 172(2�3):139�160, 2002.[4℄ I. Assem and J. A. de La Peña. The fundamental groups of a triangular algebra. Communiationsin Algebra, 24(1):187�208, 1996.[5℄ I. Assem, E. N. Maros, and J. A. de La Peña. The simple onnetedness of a tame tilted algebra.Journal of Algebra, 237(2):647�656, 2001. 24
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