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On Galois 
overings and tilting modulesPatri
k Le Meur ∗†17th November 2006Abstra
tLet A be a basi
 
onne
ted �nite dimensional algebra over an algebrai
ally 
losed �eld k. Let T bea basi
 tilting A-module with arbitrary �nite proje
tive dimension. For a �xed group G we 
ompare theset of iso
lasses of 
onne
ted Galois 
overings of A with group G and the set of iso
lasses of 
onne
tedGalois 
overings of EndA(T ) with group G. Using the Hasse diagram −→
KA (see [15℄ and [21℄) of basi
tilting A-modules, we give su�
ient 
onditions on T under whi
h there is a bije
tion between these twosets (these 
onditions are always veri�ed when A is of �nite representation type). Then we apply theseresults to study when the simple 
onne
tedness of A implies the one of EndA(T ) (see [5℄).Introdu
tionLet k be an algebrai
ally 
losed �eld and let A be a �nite dimensional k-algebra. In order to study the
ategory mod(A) of �nite dimensional (left) A-modules we may assume that A is basi
 and 
onne
ted.In the study of mod(A), tilting theory has proved to be a powerful tool. Indeed, if T is a basi
 tilting

A-module and if we set B = EndA(T ), then A and B have many 
ommon properties: Brenner-ButlerTheorem establishes an equivalen
e between 
ertain sub
ategories of mod(A) and mod(B) (see [10℄, [14℄and [19℄), A and B have equivalent derived 
ategories (see [13℄) and (in parti
ular) they have isomorphi
Grothendie
k groups and isomorphi
 Ho
hs
hild 
ohomologies. In this text we will study the followingproblem relating A and B:is it possible to 
ompare the Galois 
overings of A and those of B? (P1)As an example, if A = kQ with Q a �nite quiver without oriented 
y
le and if T is an APR-tilting moduleasso
iated to a sink x of Q (see [6℄) then B = kQ′ where Q′ is obtained from Q by reversing all the arrowsendings at x. In parti
ular Q and Q′ have the same underlying graph and therefore A has a 
onne
tedGalois 
overing with group G if and only if the same holds for B.Re
all that in order to 
onsider Galois 
overings of A we always 
onsider A as a k-
ategory. When
C → A is a Galois 
overing, it is possible to des
ribe part ofmod(A) in terms of C-modules (see for example[9℄ and [12℄). This des
ription is useful be
ause mod(C) is easier to study than mod(A), espe
ially when Cis simply 
onne
ted (this last situation may o

ur when A is of �nite representation type, see [12℄). Noti
ethat simple 
onne
tedness and tilting theory have already been studied together through the following
onje
ture formulated in [5℄:

A is simply 
onne
ted =⇒ B is simply 
onne
ted (P2)More pre
isely, the above impli
ation is true if: A is of �nite representation type and T is of proje
tivedimension at most one (see [2℄), or if: A = kQ (with Q a quiver) and B is tame (see [5℄, see also [3℄ for ageneralisation to the 
ase of quasi-tilted algebras). The two problems (P1) and (P2) are related be
ause Ais simply 
onne
ted if and only if there is no proper Galois 
overing C → A with C 
onne
ted and lo
allybounded (see [17℄).In order to study the question (P1) we will exhibit su�
ient 
onditions for T to be of the �rst kindw.r.t. a �xed Galois 
overing C
F
−→ A. Indeed, if T is of the �rst kind w.r.t. F , then it is possible to
onstru
t a Galois 
overing of B. Under additional hypotheses on T , the equivalen
e 
lass of this Galois
overing is uniquely determined by the equivalen
e 
lass of F . Here we say that two Galois 
overings

∗adress: Département de Mathématiques, E
ole normale supérieure de Ca
han, 61 avenue du président Wilson, 94235 Ca
han,Fran
e
†e-mail: plemeur�dptmaths.ens-
a
han.fr 1



F : C → A and F ′ : C′ → A are equivalent if and only if there exists a 
ommutative square of k-
ategoriesand k-linear fun
tors:
C

F

��

∼ // C′

F ′

��
A

∼ // Awhere horizontal arrows are isomorphisms and where the bottom horizontal arrow restri
ts to the identitymap on the set of obje
ts of A. For simpli
ity, let us say that A and B have the same 
onne
ted Galois
overings with group G if there exists a bije
tion between the sets GalA(G) and GalB(G) where GalA(G)(resp. GalB(G)) stands for the set of equivalen
e 
lasses of Galois 
overings C → A (resp. C → B) withgroup G and with C 
onne
ted and lo
ally bounded. With this de�nition, we prove the following theoremwhi
h is the main result of this text and whi
h partially answers (P1):Theorem 1. Let T be a basi
 tilting A-module, let B = EndA(T ) and let G be group.1. If T ′ ∈
−→
KA lies in the 
onne
ted 
omponent of −→

KA 
ontaining T , then EndA(T ) and EndA(T ′)have the same 
onne
ted Galois 
overings with group G.2. If T lies in the 
onne
ted 
omponent of −→
KA 
ontaining A or DA, then A and B have the same
onne
ted Galois 
overings with group G.In parti
ular, if −→KA is 
onne
ted (whi
h happens when A is of �nite representation type) then A and Bhave the same 
onne
ted Galois 
overings with group G, for any group G.Here −→

KA is the Hasse diagram asso
iated with the poset TA of basi
 tilting A-modules (see [15℄ and[21℄). Re
all (see [12℄) that when A is of �nite representation type, A admits a 
onne
ted Galois 
overingwith group G if and only if G is a fa
tor group of the fundamental group π1(A) of the Auslander-Reitenquiver of A with its mesh relations. Theorem 1 allows us to get the following 
orollary when A and Bare of �nite representation type. We thank Ibrahim Assem for having pointed out this 
orollary.Corollary 1. Let T be a basi
 tilting A-module and let B = EndA(T ). If both A and B are of �niterepresentation type, then A and B have isomorphi
 fundamental groups.Theorem 1 also allows us to prove the following 
orollary related to (P2).Corollary 2. (see [2℄ and [3℄) Let T be a basi
 tilting A-module and let B = EndA(T ).1. If T ′ ∈
−→
KA lies in the 
onne
ted 
omponent of −→KA 
ontaining T , then: EndA(T ) is simply 
onne
tedif and only if EndA(T ′) is simply 
onne
ted.2. If T lies in the 
onne
ted 
omponent of −→KA 
ontaining A or DA then: A is simply 
onne
ted if andonly if B is simply 
onne
ted.In parti
ular, f −→

KA is 
onne
ted (e.g. A is of �nite representation type, see [15℄), then: A is simply
onne
ted if and only if B is simply 
onne
ted.The text is organised as follows. In Se
tion 1 we will give the de�nition of all the notions mentionedabove and whi
h will be used for the proof of Theorem 1. In Se
tion 2 we will detail the 
onstru
tion andgive some properties of the Galois 
overing F ′ of B starting from a Galois 
overing F : C → A of A anda basi
 tilting A-module T . In this study, we will introdu
e the following hypotheses on the A-module
T : 1) T is of the �rst kind w.r.t. F (this ensures that F ′ exists), 2) the C-module F.T obtained from
T by restri
ting the s
alars is basi
 (this ensures that F ′ is 
onne
ted if F is 
onne
ted) 3) ψ.N ≃ Nfor any dire
t summand N of T and for any automorphism ψ : A

∼
−→ A whi
h restri
ts to the identitymap on obje
ts (this ensures that the equivalen
e 
lass of F ′ does depend only on the equivalen
e 
lassof F ). These three hypotheses la
k of simpli
ity, therefore, Se
tion 3 is devoted to �nd simple su�
ient
onditions for the basi
 tilting A-module T to verify these. In parti
ular, we will prove that the 
ondition�T lies in the 
onne
ted 
omponent of −→KA 
ontaining A� �ts our requirements. Sin
e our main obje
tiveis to establish a 
orresponden
e between the equivalen
e 
lasses of the 
onne
ted Galois 
overings of Aand those of B, we will need to �nd 
onditions for T to lie in both 
onne
ted 
omponents of −→KA and

−→
KB 
ontaining A and B respe
tively (re
all that T is also a basi
 tilting B-module). This will be donein Se
tion 4 where we 
ompare the Hasse diagrams −→KA and −→

KB . In parti
ular, we will prove that thereis an oriented path in −→
KA starting at A and ending at T if and only if there is an oriented path in −→

KBstarting at B and ending at T . This equivalen
e will be used in Se
tion 5 in order to prove Theorem 1,Corollary 1 and Corollary 2. 2



I would like to a
knowledge Eduardo N. Mar
os for his stimulating remarks 
on
erning the impli
ation
(P2) during the CIMPA s
hool Homologi
al methods and representations of non-
ommutative algebras inMar del Plata, Argentina (February 2006).1 Basi
 de�nitions and preparatory lemmataReminder on k-
ategories (see [9℄ for more details). A k-
ategory is small 
ategory C su
h that forany x, y ∈ Ob(C) the set yCx of morphisms from x to y is a k-ve
tor spa
e and su
h that the 
ompositionof morphisms in C is k-bilinear. A k-
ategory C is 
alled 
onne
ted if and only if there is no non trivialpartition Ob(C) = E ⊔ F su
h that yCx = xCy = 0 for any x ∈ E, y ∈ F .All fun
tors between k-
ategories are supposed to be k-linear. If F : E → B and F ′ : E ′ → B arefun
tors between k-
ategories, then F and F ′ are 
alled equivalent if there exists a 
ommutative diagram:

E
∼ //

F

��

E ′

F ′

��
B

∼ // Bwhere horizontal arrows are isomorphisms and where the bottom horizontal arrow restri
ts to the identitymap on Ob(B). A lo
ally bounded k-
ategory is a k-
ategory C verifying the following 
onditions:. distin
t obje
ts in C are not isomorphi
,. for any x ∈ Ob(C), the k-ve
tor spa
es ⊕
y∈Ob(C) yCx and ⊕

y∈Ob(C) xCy are �nite dimensional,. for any x ∈ Ob(C), the k-algebra xCx is lo
al.For example, let A be a basi
 �nite dimensional k-algebra (basi
 means that A is the dire
t sum ofpairwise non-isomorphi
 inde
omposable proje
tive A-modules) and let {e1, . . . , en} be a 
omplete set ofpairwise orthogonal primitive idempotents. Then A 
an be viewed as a lo
ally bounded k-
ategory asfollows: e1, . . . , en are the obje
ts of A, the spa
e of morphisms from ei to ej is equal to ejAei for any i, jand the 
omposition of morphisms is indu
ed by the produ
t in A. Noti
e that di�erent 
hoi
es for theprimitive idempotents e1, . . . , en give rise to isomorphi
 k-
ategories. In this text we shall always 
onsidersu
h an algebra A as a lo
ally bounded k-
ategory.Modules over k-
ategories. If C is a k-
ategory, a (left) C-module is a k-linear fun
tor M : C →
MOD(k) where MOD(k) is the 
ategory of k-ve
tor spa
es. A morphism of C-modules M → N is a
k-linear natural transformation of fun
tors. The 
ategory of C-modules is denoted by MOD(C).A C-module M is 
alled lo
ally �nite dimensional (resp. �nite dimensional) if and only if M(x) is�nite dimensional for any x ∈ Ob(C) (resp. ⊕

x∈Ob(C)M(x) is �nite dimensional). The 
ategory of lo
ally�nite dimensional (resp. �nite dimensional) C-modules is denoted by Mod(C) (resp. mod(C)). Noti
ethat if C = A as above, then Mod(C) = mod(C).We shall write IND(C) (resp. Ind(C), resp. ind(C)) for the full sub
ategory of MOD(C) (resp. of
Mod(C), resp. ofmod(C)) of inde
omposable C-modules. Finally, ifM = N1

⊕
. . .

⊕
Nt with Ni ∈ ind(C)for any i, then M is 
alled basi
 if and only if N1, . . . , Nt are pairwise non isomorphi
.Tilting modules. Let A be a basi
 �nite dimensional k-algebra. A tilting A-module (see [10℄, [14℄and [19℄) is a module T ∈ mod(A) verifying the following 
onditions:

(T1) T has �nite proje
tive dimension (i.e. pdA(T ) <∞),
(T2) ExtiA(T, T ) = 0 for any i > 0 (i.e. T is selforthogonal),
(T3) there is an exa
t sequen
e in mod(A): 0 → A→ T1 → . . .→ Tr → 0 with T1, . . . , Tr ∈ add(T ) (thislast property means that T1, . . . , Tr are dire
t sums of dire
t summands of T ).A module whi
h satis�es 
onditions (T1) and (T2) above is 
alled an ex
eptional module. Assume that
T is a tilting A-module. Then, T is also a tilting EndA(T )-module for the following a
tion: f.t = f(t)for f ∈ EndA(T ) and t ∈ T . Assume moreover that T is basi
 as an A-module and �x a de
omposition
T = T1 ⊕ . . .⊕ Tn with T1, . . . , Tn ∈ ind(A). This de�nes a de
omposition of the unit of EndA(T ) into asum of primitive pairwise orthogonal idempotents so that B := EndA(T ) is a lo
ally bounded k-
ategory

3



as follows: the set of obje
ts is {T1, . . . , Tn} and for any i, j the spa
e of morphisms TjBTi is equal to
HomA(Ti, Tj). For any x ∈ Ob(A), T (x) is an inde
omposable B-module:

B → MOD(k)
Ti ∈ Ob(B) 7→ Ti(x)

u ∈ TjBTi 7→ Ti(x)
ux−−→ Tj(x)and T =

⊕
x∈Ob(A) T (x). Finally, the following fun
tor is an isomorphism of k-
ategories:

ρA : A −→ EndB(T )
x ∈ Ob(A) 7−→ T (x) ∈ Ob(EndB(T ))

u ∈ yAx 7−→ T (x)
T (u)
−−−→ T (y)For more details on the above properties and for a more general study of EndA(T ), we refer the readerto [10℄, [13℄, [14℄ and [19℄.Let TA be the set of basi
 tilting A-modules up to isomorphism. Then TA is endowed with a partial orderintrodu
ed in [21℄ and de�ned as follows. If T ∈ TA, the right perpendi
ular 
ategory T⊥ of T is de�nedby (see [7℄):

T⊥ = {X ∈ mod(A) | (∀i > 1) ExtiA(T,X) = 0}If T ′ ∈ TA is another basi
 tilting module, we write T 6 T ′ provided that T⊥ ⊆ T
′⊥. In parti
ular, wehave T 6 A for any T ∈ TA. In [15℄, D. Happel and L. Unger have proved that the Hasse diagram −→

KA of
TA is as follows. The verti
es in −→

KA are the elements in TA and there is an arrow T → T ′ in −→
KA if and onlyif: T = X

⊕
T withX ∈ ind(A), T ′ = Y

⊕
T with Y ∈ ind(A) and there exists a non split exa
t sequen
e

0 → X
u
−→ M

v
−→ Y → 0 in mod(A) with M ∈ add(T ). In su
h a situation, u (resp. v) is the left (resp.right) add(T )-approximation of X (resp. Y ). For more details on −→

KA, we refer the reader to [15℄ and [16℄.Galois 
overings of k-
ategories. Let G be a group. A free G-
ategory is a k-
ategory E endowedwith a morphism of groups G→ Aut(E) su
h that the indu
ed a
tion of G on Ob(E) is free. In this 
ase,there exists a (unique) quotient E → E/G of E by G in the 
ategory of k-
ategories. With this property,a Galois 
overing of B with group G is by de�nition a fun
tor F : E → B endowed with a group morphism
G→ Aut(F ) = {g ∈ Aut(E) | F ◦ g = F} and verifying the following fa
ts:. the group morphism G→ Aut(F ) →֒ Aut(E) endows E with a stru
ture of free G-
ategory,. the fun
tor E/G F

−→ B indu
ed by F is an isomorphism.This de�nition implies that the group morphism G→ Aut(F ) is one-to-one (a
tually one 
an show thatthis is an isomorphism when E is 
onne
ted). Moreover for any x ∈ Ob(B) the set F−1(x) is non emptyand 
alled the �ber of F at x. It veri�es F−1(F (x)) = G.x for any x ∈ Ob(E).We re
all that Galois 
overings are parti
ular 
ases of 
overing fun
tors (see [9℄). A 
overing fun
toris a k-linear fun
tor F : E → B su
h that for any x, y ∈ E0, the following mappings indu
ed by F arebije
tive: ⊕

y′∈F−1(F (y))

y′Ex → F (y)BF (x) and ⊕

x′∈F−1(F (x))

yEx′ → F (y)BF (x)Remark that a 
overing fun
tor is not supposed to restri
t to a surje
tive mapping on obje
ts. However,a 
overing fun
tor is an isomorphism of k-
ategories if and only if it restri
ts to a bije
tive mapping onobje
ts. Using basi
 linear algebra arguments it is easy to prove the following useful lemma:Lemma 1.1. Let p, q be k-linear fun
tors su
h that the 
omposition q ◦ p is de�ned. Then p, q and q ◦ pare 
overing fun
tors as soon as two of them are so.If F : E → B is a Galois 
overing with group G and with B 
onne
ted then E need not be 
onne
ted. Insu
h a 
ase, if E =
∐
i∈I

Ei where the Ei's are the 
onne
ted 
omponents of E , then for ea
h i, the followingfun
tor:
Fi : Ei →֒ E → Bis a Galois 
overing with group:

Gi := {g ∈ G | g(Ob(Ei)) ∩Ob(Ei) 6= ∅} = {g ∈ G | g(Ob(Ei)) = Ob(Ei)}4



Moreover, if i, j ∈ I then the groups Gi and Gj are 
onjugated in G and there exists a 
ommutativediagram:
Ei

∼ //

Fi ��?
??

??
??

Ej

Fj����
��

��
�

Bwhere the horizontal arrow is an isomorphism. This implies that G a
ts transitively on the set {Ei | i ∈ I}of the 
onne
ted 
omponents of E . Noti
e that all these fa
ts may be false if B is not 
onne
ted.Two Galois 
overings of B are 
alled equivalent if and only if they are isomorphi
 as fun
tors between
k-
ategories (see above, this implies that the groups of the Galois 
overings are isomorphi
). The equiv-alen
e 
lass of a Galois 
overing F will be denoted by [F ]. Finally, we shall say for short that a Galois
overing E → B is 
onne
ted if and only if E is 
onne
ted and lo
ally bounded (this implies that B is
onne
ted and lo
ally bounded, see [12, 1.2℄).Simply 
onne
ted lo
ally bounded k-
ategories. Let B be a lo
ally bounded k-
ategory. Then
B is 
alled simply 
onne
ted if and only if there is no proper 
onne
ted Galois 
overing of B (propermeans with non trivial group). This de�nition is equivalent to the original one (see [18℄ for the triangular
ase and [17, Prop. 4.1℄ for the non-triangular 
ase) whi
h was introdu
ed in [1℄: B is simply 
onne
tedif and only if π1(QB, I) = 1 for any admissible presentation kQB/I ≃ B of B (see [18℄ for the de�nition of
π1(QB, I)).Basi
 notions on 
overing te
hniques (see [9℄ and [20℄). Let F : E → B be a Galois 
overing withgroup G. The G-a
tion on E gives rise to an a
tion of G on MOD(E): if M ∈MOD(E) and g ∈ G, then
gM := F ◦ g−1 ∈ MOD(E). Moreover, F de�nes two additive fun
tors Fλ : MOD(E) → MOD(B) (thepush-down fun
tor) and F. : MOD(B) → MOD(E) (the pull-up fun
tor) with the following properties(for more details we refer the reader to [9℄):. F.M = M ◦ F for any M ∈MOD(B),. if M ∈ MOD(E), then (FλM) (x) =

⊕
x′∈F−1(x)M(x′) for any x ∈ Ob(B). If u ∈ yEx, then therestri
tion of (FλM) (F (u)) to M(g.x) (for g.x ∈ F−1(F (x)) = G.x) is equal to M(g.u) : M(g.x) →

M(g.y),. Fλ and F. are exa
t and send proje
tive modules to proje
tive modules,. FλE ≃
⊕

g∈G B and F.B ≃ E , where E (resp. B) is the E-module x 7→
⊕

y∈Ob(E) yEx (resp. the
B-module x 7→

⊕
y∈Ob(B) yBx),. F.Fλ =

⊕
g∈G

gIdMOD(E). if X ∈MOD(B) veri�es X ≃ FλY for some Y ∈MOD(E), then FλF.X ≃
⊕

g∈GX,. Fλ(mod(E)) ⊆ mod(B), Fλ(Mod(E)) ⊆Mod(B), F.(Mod(B)) ⊆Mod(E),. D ◦ F. = F. ◦D and D ◦ Fλ|mod(E) ≃ Fλ ◦D|mod(E) where D = Homk(?, k) is the usual duality,. Fλ is left adjoint to F.,. D ◦Fλ ◦D is right adjoint to F. (in parti
ular, there is a fun
torial isomorphism HomE(F.M,N) ≃
HomB(M,FλN) for any M ∈MOD(B) and any N ∈ mod(E)).. for any M,N ∈MOD(E), the following mappings indu
ed by Fλ are bije
tive:

⊕

g∈G

HomE( gM,N) → HomB(FλM,FλN) and ⊕

g∈G

HomE(M, gN) → HomB(FλM,FλN)These properties give the following result whi
h will be used many times in this text:Lemma 1.2. IfM ∈MOD(E) (resp. M ∈MOD(B)) has �nite proje
tive dimension, then so does FλM(resp. F.(M)).Let M ∈MOD(E), N ∈MOD(B) and j > 1. There is an isomorphism of ve
tor spa
es:
ExtjB(FλM,N) ≃ ExtjE(M,F.N)Moreover, if M ∈ mod(E) then there is an isomorphism of ve
tor spa
es:
ExtjE(F.N,M) ≃ ExtjB(N,FλN)5



Proof: The �rst assertion is due to the fa
t that F. and Fλ are exa
t and send proje
tive modulesto proje
tive modules. For the same reasons, F. and Fλ indu
e F. : D(MOD(B)) → D(MOD(E)) and
Fλ : D(MOD(E)) → D(MOD(B)) respe
tively and the adjun
tions (Fλ, F.) and (F., Fλ) at the levelof module 
ategories give rise to adjun
tions at the level of derived 
ategories. Sin
e ExtjE(X,Y ) =
HomD(MOD(E))(Y,X[j]) we get the announ
ed isomorphisms. �Remark that an isomorphism of k-
ategories is a parti
ular 
ase of Galois 
overing. When F is anisomorphism, F. and Fλ have additional properties as shows the following lemma whose proof is a dire
t
onsequen
e of the de�nition of the push-down and pull-up fun
tors.Lemma 1.3. Assume that F : E → B is an isomorphism of k-
ategories. Then F.Fλ = IdMOD(E) and
FλF. = IdMOD(B).Modules of the �rst kind. Let F : E → B be a Galois 
overing with group G. A B-module M is
alled of the �rst kind w.r.t. F if and only if for any inde
omposable dire
t summand N ofM there exists
N̂ ∈ MOD(E) su
h that N ≃ FλN̂ . We will denote by ind1(B) (resp. mod1(B)) the full sub
ategory of
ind(B) (resp. of mod(B)) of modules of the �rst kind w.r.t. F . Noti
e the following properties of ind1(B):. if M ∈ ind1(B) and N ∈MOD(E) verify M ≃ FλN , then N ∈ ind(E),. if M ∈ ind1(B) and N,N ′ ∈MOD(E) verify M ≃ FλN ≃ FλN

′, then there exists g ∈ G su
h that
N ′ ≃ gN .If B is 
onne
ted and if E =

∐
i∈I Ei, where the Ei's are the 
onne
ted 
omponents of E , then aninde
omposable B-module M is of the �rst kind w.r.t. F if and only if it is of the �rst kind w.r.t.

Fi : Ei →֒ E → B for any i ∈ I . More pre
isely, we have the following well know lemma where we keepthe established notations.Lemma 1.4. Let M ∈ ind(B). If M̂ ∈ ind(E) is su
h that FλM̂ ≃M , then there is a unique i ∈ I su
hthat M̂ ∈ ind(Ei). In su
h a 
ase, we have M ≃ (Fi)λM̂ . Moreover, if j ∈ I then there exists g ∈ G su
hthat g(Ei) = Ej, and for any su
h g we have: gM̂ ∈ ind(Ej) and (Fj)λ
gM̂ ≃M .Throughout this text A will denote a basi
 and 
onne
ted �nite dimensional k-algebra and n willdenote the rank of its Grothendie
k group K0(A).2 Galois 
overings asso
iated with modules of the �rst kindThroughout this se
tion we will use the following data:- F : C → A a Galois 
overing with group G- T = T1

⊕
. . .

⊕
Tn ∈ mod(A) (with Ti ∈ ind(A)) a basi
 tilting A-module of the �rst kind w.r.t.

F ,- λi : Fλ(T̂i) → Ti an isomorphism with T̂i ∈ ind(C), for every i ∈ {1, . . . , n}.Let B = EndA(T ). With these data, we wish to:1. 
onstru
t a Galois 
overing FT̂i,λi
with group G of B,2. study the dependen
e of the equivalen
e 
lass of FT̂i,λi

on the data T̂i, λi and on the 
hoi
e of F inits equivalen
e 
lass [F ],3. repeat the 
onstru
tion made at the �rst step starting from T (viewed as a basi
 tilting B-module)and the Galois 
overing FT̂i,λi
. This will give a Galois 
overing of EndB(T ) whi
h will be 
omparedwith F using the isomorphism ρA : A

∼
−→ EndB(T ).2.1 Constru
tion of the Galois 
overing F

T̂i,λiLet EndC(
⊕

g,i
gT̂i) be the following k-
ategory:. the set of obje
ts is { gT̂i | g ∈ G, i ∈ {1, . . . , n}} (gT̂i and g′ T̂j are 
onsidered as di�erent obje
tsif (i, g) 6= (j, g′)),. the spa
e of morphisms from gT̂i to hT̂j is equal to HomC( gT̂i,

hT̂j),. the 
omposition is indu
ed by the 
omposition of morphisms in mod(C).6



Remark 2.1. 1. The C-modules ⊕
g,i

gT̂i and F.T are isomorphi
.2. If G is a �nite group, then C is a �nite dimensional k-algebra. In parti
ular, EndC(
⊕

g,i
gT̂i) and

EndC(F.T ) are isomorphi
 k-algebras.3. The G-a
tion on mod(C) naturally endows EndC(
⊕

g,i
gT̂i) with a stru
ture of free G-
ategory.4. EndC(

⊕
i,g

gT̂i) is lo
ally bounded if and only if GT̂i
= 1 for any i. This is equivalent to say that

F.T is a basi
 C-module.The isomorphisms λ1, . . . , λn de�ne the following fun
tor:
FT̂i,λi

: EndC(
⊕

g,i
gT̂i) −→ B

gT̂i 7−→ Ti

gT̂i
u
−→ hT̂j 7−→ Ti

λj Fλu λ
−1
i−−−−−−−−−→ TjLemma 2.2. The fun
tor FT̂i,λi

: EndC(
⊕

i,g
gT̂i) → B is a Galois 
overing with group G.Proof: For simpli
ity, we shall write C′ for EndC(

⊕
i,g

gT̂i) and F ′ : C′ → B for FT̂i,λi
. Re
all (seeRemark 2.1) that G a
ts freely on C′. Moreover, we have F ′ ◦g = F ′ by 
onstru
tion of F ′. So, F ′ de�nesa 
ommutative diagram of k-
ategories and k-linear fun
tors:

C′

��

F ′

!!C
CC

CC
CC

C

C′/G
F ′

// B

(⋆)
Where C′ → C′/G is the quotient fun
tor. From the properties veri�ed by Fλ (see Se
tion 1) we inferthat F ′ is a 
overing fun
tor. Sin
e C′ → C′/G is a also 
overing fun
tor we dedu
e that so is F ′ (seeLemma 1.1). Finally, F ′ restri
ts to a bije
tive mapping Ob(C′)/G = { gT̂i | g ∈ G, i ∈ {1, . . . , n}}/G →
Ob(B) = {T1, . . . , Tn} so F ′ is an isomorphism. Thus, F ′ is a Galois 
overing with group G. �Sin
e FT̂i,λi

is a Galois 
overing, it is natural to ask whether EndC(
⊕

i,g
gT̂i) is 
onne
ted or not. Thefollowing lemma partially answers this question.Lemma 2.3. If C is not 
onne
ted, then EndC(

⊕
i,g

gT̂i) is not 
onne
ted.Proof : For simpli
ity let us write C′ for EndC(
⊕

i,g
gT̂i). Assume that C is not 
onne
ted and let

C =
∐
x∈I Cx where the Cx's are the 
onne
ted 
omponents of C. For i ∈ {1, . . . , n}, we have T̂i ∈ ind(C),so there exists a unique xi ∈ I su
h that T̂i ∈ ind(Cxi). Let us set:

Gx1 = {g ∈ G | g(Cx1) = Cx1}Let i ∈ {1, . . . , n}, sin
e G a
ts transitively on {Cx | x ∈ I}, there exists gi ∈ G su
h that gi(Cx1) = Cxi(in parti
ular g1 ∈ Gx1). Therefore:
(∀i ∈ {1, . . . , n}) g

−1
i T̂i ∈ mod(Cx1)Let us set O to be the following set of obje
ts of C′:

O := { gT̂i | i ∈ {1, . . . , n} and ggi ∈ Gx1} ⊆ Ob(C′)Remark that O satis�es the following:. O 6= ∅ be
ause T̂1 ∈ O.. Sin
e C is not 
onne
ted and sin
e G a
ts transitively on {Cx | x ∈ I} we have Gx1 ( G. Let
g ∈ G\Gx1 , then gg1 6∈ Gx1 and gT̂1 6∈ O. Hen
e O ( Ob(C).. For any gT̂i ∈ Ob(C′), we have gT̂i ∈ O if and only if gT̂i ∈ ind(Cx1). As a 
onsequen
e, there is nonon zero morphism in C′ between an obje
t in O and an obje
t in Ob(C′)\O.As a 
onsequen
e, C′ is not 
onne
ted. �7



2.2 Independen
e of the equivalen
e 
lass of FT̂i,λi
on the data F, T̂i, λiIn the two following lemmas, we examine the dependen
e of the equivalen
e 
lass [FT̂i,λi

] of FT̂i,λi
on the
hoi
e of T̂1, . . . , T̂n, λ1, . . . , λn and on the 
hoi
e of F in its equivalen
e 
lass [F ].Lemma 2.4. For ea
h i ∈ {1, . . . , n}, let µi : FλT i → Ti be an isomorphism with T i ∈ ind(C). Then

FT̂i,λi
and FT i,µi

are equivalent.Proof: We need to exhibit a 
ommutative square:
EndC(

⊕
i,g

gT i)
ϕ //

F
Ti,µi

��

EndC(
⊕

i,g
gT̂i)

F
T̂i,λi

��
B

ψ // B

(⋆)where ϕ,ψ are isomorphisms and where ψ(x) = x for any x ∈ Ob(B) = {T1, . . . , Tn}. Let i ∈ {1, . . . , n}.We have FλT i ≃ Ti ≃ FλT̂i, so there exists an isomorphism θi : T i
∼
−→ gi T̂i with gi ∈ G. Let us de�ne ϕby:

ϕ : EndC(
⊕

i,g
gT i) −→ EndC(

⊕
i,g

gT̂i)
gT i 7−→ ggi T̂i

gT i
u
−→ hT j 7−→ ggi T̂i

hθj u gθ
−1
i−−−−−−−−−→ hgj T̂jThen ϕ is an isomorphism of k-
ategories. Noti
e that θi de�nes an isomorphism Fλθi : FλT i → FλT̂i.So we 
an de�ne ψ by:

ψ : B −→ B
Ti 7−→ Ti

Ti
u
−→ Tj 7−→ ψ(u)where ψ(u) is the 
omposition:

Ti
λ
−1
i−−−→ FλT̂i

Fλθ
−1
i−−−−→ FλT i

µi−→ Ti
u
−→ Tj

µ
−1
j

−−−→ FλT j
Fλθj
−−−→ FλT̂j

λj
−→ TjSo ψ is an isomorphism of k-
ategories whi
h restri
ts to the identity map on Ob(B). Moreover ϕ and ψmake (⋆) 
ommutative. �In the following lemma, we show that, under additional hypotheses on T , the equivalen
e 
lass of

FT̂i,λi
does not depend on the 
hoi
e of F in [F ].Lemma 2.5. Assume that F ′ : C′ → A is a Galois 
overing (with group G) equivalent to F and assumethat T veri�es the following 
ondition:(HA,T ):�ψ.Ti ≃ Ti for any i and for any isomorphism ψ : A

∼
−→ A whi
h restri
ts to the identity map on

Ob(A).�Then T is of the �rst kind w.r.t. F ′. For ea
h i ∈ {1, . . . , n} let µi : F ′
λT i → Ti be an isomorphism with

T i ∈ ind(C′). Then F ′
T i,µi

and FT̂i,λi
are equivalent.Proof: Let us �x an isomorphism between F and F ′:

C′
ϕ //

F ′

��

C

F

��
A

ψ // ALet us set ν : Aut(C′) → Aut(C) to be the isomorphism of groups (re
all that Aut(C′) = G and Aut(C) =
G):

ν : Aut(C′) → Aut(C)
g 7→ ϕ ◦ g ◦ ϕ−1Re
all that any g ∈ Aut(C) = G (resp. g ∈ Aut(C′) = G) de�nes an automorphism g of MOD(C) (resp.of MOD(C′)). Therefore we have an equality of fun
tors MOD(C′) →MOD(A):

(∀g ∈ Aut(C′)) ϕλ ◦ g = ν(g) ◦ ϕλ8



Let us �x an isomorphism θi : ψ.Ti → Ti, for ea
h i, and let us set T i = ϕ.T̂i. In parti
ular: ϕλT i = T̂i(see Lemma 1.3). Sin
e ψ.ψλ = IdMOD(A) (lo
. 
it.) and ψF ′ = Fϕ, we infer that:
F ′
λT i = ψ.ψλF

′
λTi = ψ.FλϕλT i = ψ.FλT̂iTherefore, we get for ea
h i an isomorphism µi : F

′
λT i → Ti equal to the 
omposition:

µi : F
′
λT i = ψ.FλT̂i

ψ.λi−−−→ ψ.Ti
θi−→ TiThis proves that T is of the �rst kind w.r.t. F ′. A

ording to the pre
eding subse
tion, this de�nes theGalois 
overing with group G:

F ′
T i,µi

: EndC′(
⊕

g,i

gT i) → BThanks to Lemma 2.4 we only need to prove that F ′
T i,µi

and FT̂i,λi
are equivalent.First, we have the following fun
tor indu
ed by ϕλ:

ϕ : EndC′(
⊕

i,g
gT i) −→ EndC(

⊕
i,g

gT̂i)
gT i 7−→ ν(g)T̂i = ϕλ

gT i
gT i

u
−→ hT j 7−→ ν(g)T̂i

ϕλu−−−→ ν(h)T̂jSin
e ν : G→ G is an isomorphism and be
ause of the equalities ϕλϕ. = IdMOD(C) and ϕ.ϕλ = IdMOD(C)(see Lemma 1.3), the fun
tor ϕ is an isomorphism.Se
ondly, we have the following fun
tor indu
ed by ψλ:
ψ : B −→ B

Ti 7−→ Ti

Ti
u
−→ Tj 7−→ Ti

ψλ(θ−1
j
uθi)

−−−−−−−−→ TjSin
e ψλψ. = ψ.ψλ = IdMOD(A), the fun
tor ψ is a well de�ned isomorphism and restri
ts to the identitymap on Ob(B). Therefore, we have a diagram whose horizontal arrows are isomorphisms and whosebottom horizontal arrow restri
ts to the identity map on the set of obje
ts:
EndC′(

⊕
i,g

gT i)
ϕ //

F ′

Ti,µi

��

EndC(
⊕

i,g
gT̂i)

F
T̂i,λi

��
B

ψ // BThis diagram is 
ommutative, indeed, for any gT i
u
−→ hT j we have:

ψF ′
T i,µi

(u) = ψ(µjF
′
λ(u)µ

−1
i ) = ψλ(θ

−1
j µjF

′
λ(u)µ

−1
i θi)

= ψλ(θ
−1
j θjψ.(λj)F

′
λ(u)ψ.(λi)

−1θ−1
i θi)

= λj (ψλF
′
λ)(u) λ

−1
i be
ause ψλψ. = IdMOD(C)

= λj (Fλϕλ)(u) λ
−1
i be
ause Fϕ = ψF ′

= FT̂i,λi
(ϕλ(u)) = FT̂i,λi

ϕ(u)This proves that F ′
T i,µi

and FT̂i,λi
are equivalent. �Later, we shall prove that if T is a basi
 tilting A-module lying in the 
onne
ted 
omponent of

−→
KA 
ontaining A, then the hypothesis (HA,T ) in the pre
eding lemma is automati
ally veri�ed. As a
onsequen
e, for these tilting A-modules, the property �to be of the �rst kind w.r.t. an equivalen
e 
lass ofGalois 
overings of A� does make sense. However, the hypothesis (HA,T ) is not veri�ed for any A-module
T as the following example shows.Example 2.6. Let A be the path algebra of the following quiver:

2

c

��>
>>

>>
>>

1

b

@@�������
a

// 39



Here n = 3 and we have an isomorphism of k-
ategories: ψ : A
∼
−→ A su
h that ψ(x) = x for any

x ∈ Ob(A), ψ(a) = a+ cb, ψ(b) = b and ψ(c) = c. For any integer i, let Ti be the following A-module:
k

1

��>
>>

>>
>>

k

1

@@�������

i

// kThen:- Ti and Ti+1 are not isomorphi
, for any i,- if car(k) 6= 2, then T1, T2, T3 are pairwise non isomorphi
,- ψ.Ti = Ti+1 for any i.In parti
ular, if car(k) 6= 2, then hypothesis (HA,T ) is not satis�ed for T = T1 ⊕ T2 ⊕ T3. Remark that Tis not tilting. Indeed, for any i, we have Ext1A(Ti, Ti) ≃ k be
ause τA(Ti) ≃ Ti.Remark 2.1, Lemma 2.4 and Lemma 2.5 justify the following de�nition:De�nition 2.7. Assume that the hypothesis (HA,T ) is satis�ed (see Lemma 2.5). The equivalen
e 
lass
[F ] of F and the basi
 tilting A-module T = T1

⊕
. . .

⊕
Tn of the �rst kind w.r.t. [F ] (with Ti ∈ ind(A))uniquely de�ne an equivalen
e 
lass of Galois 
overing of B with group G and whi
h admits FT̂i,λi

as arepresentative. This equivalen
e 
lass will be denoted by [F ]T : EndC(F.T ) → B.2.3 Comparison of [F ] and ([F ]T )TFor short, let us write C′ for EndC(
⊕

g,i
gT̂i) and F ′ for FT̂i,λi

. In this subse
tion we shall not assumethat the hypothesis (HA,T ) of Lemma 2.5 is satis�ed, ex
ept for the last proposition. Starting from Fand from the isomorphisms λi : FλT̂i ∼
−→ Ti, i ∈ {1, . . . , n}, we have 
onstru
ted the Galois 
overing F ′ of

B. One may try to perform the same 
onstru
tion starting from F ′ in order to get a Galois 
overing F ′′of EndB(T ) ≃ A and eventually 
ompare F ′′ with F . In this purpose, we need to prove that T is of the�rst kind w.r.t. F ′. Let us �x a lifting L : Ob(A) → Ob(C) of the surje
tive mapping F : Ob(C) → Ob(A).For x ∈ Ob(A), let T̂ (x) be the C′-module su
h that:- T̂ (x)( gT̂i) = T̂i(g
−1L(x)) for any gT̂i ∈ Ob(C′),- T̂ (x)

(
gT̂i

u
−→ hT̂j

) is equal to T̂i(g−1L(x))
uL(x)
−−−−→ T̂j(h

−1L(x)) for any u ∈ hT̂j
C′

gT̂i
.Therefore, for any i ∈ {1, . . . , n}, we have:

(
F ′
λT̂ (x)

)
(Ti) =

⊕

g∈G

T̂ (x)( gT̂i) =
⊕

g∈G

T̂i(g
−1L(x)) =

(
FλT̂i

)
(x)So we may set (µx)Ti :

(
F ′
λT̂ (x)

)
(Ti) → (T (x)) (Ti) to be equal to (FλT̂i)(x)

(λi)x
−−−→ Ti(x).Lemma 2.8. The linear isomorphisms (µx)Ti (i ∈ {1, . . . , n}) de�ne an isomorphism of B-modules:

µx : F ′
λT̂ (x)

∼
−→ T (x)Proof: We only need to prove that µx is a morphism of B-modules. Let u ∈ tT̂j

C′
sT̂i

so that F ′(u) ∈

TjBTi , and let us prove that the following diagram 
ommutes:
(
F ′
λT̂ (x)

)
(Ti)

(µx)Ti
=(λi)x

//

(
F ′

λT̂ (x)
)
(F ′(u))

��

Ti(x)

(T (x))(F ′(u))=F ′(u)x

��(
F ′
λT̂ (x)

)
(Tj)

(µx)Tj
=(λj)x

// Tj(x)

(⋆)
Let g ∈ G and let us 
ompute the restri
tion of F ′(u)x ◦ (λi)x to T̂ (x)( gT̂i). Re
all that F ′(u)x is equalto the 
omposition:

Ti(x)
(λ−1

i
)x

−−−−−→
(
Fλ

sT̂i
)

(x)
(Fλu)x−−−−−→

(
Fλ

tT̂j
)

(x)
(λj)x
−−−→ Tj(x)10



Moreover, the restri
tion of (Fλu)x to T̂ (x)( gT̂i) = T̂i(g
−1L((x)) is (by 
onstru
tion of the push-downfun
tor) equal to T̂i(g

−1L(x))
u

sg−1L(x)
−−−−−−−→ T̂j(t

−1sg−1L(x)). Thus, the restri
tion of F ′(u)x ◦ (λi)x to
T̂ (x)( gT̂i) is equal to the 
omposition:

T̂i(g
−1L(x))

u
sg−1L(x)

−−−−−−−→ T̂j(t
−1sg−1L(x))

(λj)x
−−−→ Tj(x) (i)On the other hand, the restri
tion of (

F ′
λT̂ (x)

)
(F ′(u)) to T̂ (x)( gT̂i) = T̂ (x)( gs

−1sT̂i) is (by 
onstru
tionof the push-down fun
tor) equal to:̂
T (x)( gT̂i)

T̂ (x)( gs−1
u)

−−−−−−−−→ T̂ (x)( gs
−1tT̂j) (ii)and T̂ (x)( gs

−1

u) =
(
gs−1

u
)

L(x)
= usg−1L(x). This last equality, together with (i) and (ii), proves thatthe diagram (⋆) 
ommutes. �Thanks to Lemma 2.8, we have a Galois 
overing F ′

T̂ (x),µx
: EndC′(

⊕
g,x

gT̂ (x)) → EndB(T ) withgroup G. For short, we shall write C′′ for EndC′(
⊕

g,x
gT̂ (x)) and F ′′ for F ′

T̂ (x),µx
. The following lemmarelates F ′′ and F .Lemma 2.9. There exists an isomorphism of k-
ategories ψ : C

∼
−→ C′′ su
h that the following diagram is
ommutative:

C

F

��

ψ // C′′

F ′′

��
A

ρA// EndB(T )In parti
ular, F and ρ−1
A F ′′ are equivalent as Galois 
overings of A.Proof: Sin
e G a
ts freely on Ob(C) and sin
e L : Ob(A) → Ob(C) lifts F : Ob(C) → Ob(A), any x ∈ Ob(C)is equal to gL(x′) with g ∈ G, x′ ∈ Ob(A) uniquely determined by x. Let ψ : C → C′′ be as follows:- ψ(gL(x)) = gT̂ (x) for any gL(x) ∈ Ob(C),- for u ∈ hL(y)CgL(x), we let ψ(u) : gT̂ (x) → hT̂ (y) be the morphism of C′-modules su
h that for any

sT̂i ∈ Ob(C′), ψ(u) sT̂i
is equal to:

T̂i(s
−1u) : T̂i(s

−1gL(x)) → T̂i(s
−1hL(y))Let us prove the following fa
ts:1. ψ(u) is a morphism of C′-modules for any u ∈ hL(y)CgL(x),2. ψ is a fun
tor,3. F ′′ ◦ ψ = ρA ◦ F ,4. ψ is an isomorphism.

1) Let u ∈ hL(y)CgL(x). We need to prove that for any f ∈ tT̂j
C′

sT̂i
, the following diagram 
ommutes:

gT̂ (x)( sT̂i)
ψ(u)sT̂i //

g T̂ (x)(f)

��

hT̂ (y)( sT̂i)

hT̂ (y)(f)

��
gT̂ (x)( tT̂j)

ψ(u)tT̂j // hT̂ (y)( tT̂j)By 
onstru
tion, this diagram is equal to:
T̂i(s

−1gL(x))
T̂i(s

−1u)
//

fgL(x)

��

T̂i(s
−1hL(y))

fhL(y)

��
T̂j(t

−1gL(x))
T̂j(t−1u)

// T̂j(t−1hL(y))11



and the latter is 
ommutative be
ause f : sT̂i →
tT̂j is a morphism of C-modules. This proves that ψ(u)is a morphism of C′-modules for any morphism u in C.

2) One easily 
he
ks that ψ(1gL(x)) = IdgT̂ (x)
for any gL(x) ∈ Ob(C). Let u, v be morphisms in Csu
h that the 
omposition vu exists. Then, for any sT̂j ∈ Ob(C′):

(ψ(v) ◦ ψ(u))sT̂j
= ψ(v)sT̂j

◦ ψ(u)sT̂j
= T̂j(s

−1v) ◦ T̂j(s
−1u) = T̂j(s

−1(v ◦ u)) = ψ(v ◦ u)sT̂jSo ψ : C → C′′ is a fun
tor.
3) Let gL(x) ∈ Ob(C). Then:

F ′′ ◦ ψ(gL(x)) = F ′′( gT̂ (x)) = T (x) = ρA(x) = ρA ◦ F (gL(x))Let u ∈ hL(y)CgL(x) and let us prove that F ′′ψ(u) = ρAF (u). Let Ti ∈ Ob(B). Then:




(F ′′ψ(u))Ti

= Ti(x)
(λ−1

i
)x

−−−−−→
(
F ′
λ
gT̂ (x)

)
(Ti)

(F ′

λ(ψ(u)))
Ti−−−−−−−−−→

(
F ′
λ
hT̂ (y)

)
(Ti)

(λi)y
−−−→ Ti(y)

(ρAF (u))Ti
= Ti(x)

Ti(F (u))
−−−−−−→ Ti(y)Re
all that (

F ′
λ
gT̂ (x)

)
(Ti) =

⊕
s∈G

gT̂ (x)( sT̂i) and that gT̂ (x)( sT̂i) = T̂i(s
−1gL(x)), for any s ∈ G.Let s ∈ G. Then, the restri
tion of (F ′

λ(ψ(u)))Ti
to gT̂ (x)( sT̂i) is equal to:

T̂i(s
−1gL(x))

ψ(u)sT̂i
=T̂i(s

−1u)

−−−−−−−−−−−−→ T̂i(s
−1hL(y))Therefore, for any s ∈ G, the restri
tion of (λ−1

i )y ◦ (F ′′ψ(u))Ti
◦ (λi)x (resp. (λ−1

i )y ◦ (ρAF (u))Ti
◦ (λi)x)to gT̂ (x)( sT̂i) = T̂i(s

−1gL(x)) is equal to:
T̂i(s

−1gL(x))
T̂i(s

−1u)
−−−−−−−−→ T̂i(s

−1hL(y))resp. T̂i(s
−1gL(x))

(λ−1
i

)y Ti(F (u)) (λi)x
−−−−−−−−−−−−−−−−−→ T̂i(s

−1hL(y))Sin
e λi : Fλ (
sT̂i

)
→ Ti is an isomorphism of A-modules, (λ−1

i )y ◦ Ti(F (u)) ◦ (λi)x equals T̂i(s−1u).We infer that (λ−1
i )y ◦ (F ′′ψ(u))Ti

◦ (λi)x and (λ−1
i )y ◦ (ρAF (u))Ti

◦ (λi)x 
oin
ide on T̂ (s−1gL(x)),for any s ∈ G. As a 
onsequen
e, (F ′′ψ(u))Ti
= (ρAF (u))Ti

, for any Ti ∈ Ob(B). This proves that
F ′′ ◦ ψ(u) = ρA ◦ F (u) for any morphism u in C. In other words: F ′′ ◦ ψ = ρA ◦ F .

4) Let us prove that ψ is an isomorphism. Sin
e F ′′ and ρA◦F are 
overing fun
tors, Lemma 1.1 impliesthat so does ψ. Sin
e ψ restri
ts to a bije
tive mapping on obje
ts, we dedu
e that ψ is an isomorphism. �Thanks to Lemma 2.9 we 
an 
omplete Lemma 2.3 
on
erning the 
onne
tedness of C′. The followingproposition will be useful in the sequel, it is a dire
t 
onsequen
e of Lemma 2.3 and Lemma 2.9.Proposition 2.10. C is 
onne
ted if and only if C′ = EndC(
⊕

g,i T̂i) is 
onne
ted.We �nish this subse
tion with the following proposition whi
h 
ompares the equivalen
e 
lass of Fand ([F ]T )T when the latter is well de�ned (see De�nition 2.7). It is a dire
t 
onsequen
e of Lemma 2.9.Noti
e that ρ−1
A ◦ ([F ]T )T is an equivalen
e 
lass of Galois 
overings of A.Proposition 2.11. Assume that both 
onditions (HA,T ) and (HB,T ) are satis�ed. Then, the equivalen
e
lass [F ] of F 
oin
ides with ρ−1

A ◦ ([F ]T )T .3 Tilting modules of the �rst kindLet F : C → A be a Galois 
overing with group G and with C lo
ally bounded. The aim of this se
tion isto give �simple� su�
ient 
onditions whi
h guarantee the following fa
ts:- T is of the �rst kind w.r.t. F ,- F.T is a basi
 C-module,- the hypothesis (HA,T ) is satis�ed (see Lemma 2.5), i.e. ψ.N ≃ N for any dire
t summand N of Tand for any automorphism ψ : A
∼
−→ A whi
h restri
ts to the identity map on obje
ts.We begin with the following proposition. 12



Proposition 3.1. Assume that T and T ′ lie in a same 
onne
ted 
omponent of −→KA. Then:
T ∈ mod1(A) ⇔ T ′ ∈ mod1(A)In parti
ular, if T ′ = A or T ′ = DA, then T ∈ mod1(A).Proof: Sin
e A,DA ∈ mod1(A), we only need to prove the equivalen
e of the proposition under theassumption: there is an arrow T → T ′ in −→

KA. Let us assume that T ∈ mod1(A). Sin
e T → T ′ is anarrow in −→
KA, we have the following data:. T = X

⊕
T with X ∈ ind(A),. T ′ = Y

⊕
T with Y ∈ ind(A),. ε : 0 → X →M → Y → 0 a non split exa
t sequen
e in mod(A) with M ∈ add(T ).Thus, we only need to prove that Y ∈ mod1(A) in order to get T ′ ∈ mod1(A). In this purpose, we willneed the following lemma.Lemma 3.2. Let ε : 0 → X

u
−→ M → Y → 0 be an exa
t sequen
e in mod(A) verifying the followinghypotheses:. X,Y ∈ ind(A) and X = FλX̂ (with X̂ ∈ ind(C)),. M = M1

⊕
. . .

⊕
Mt where Mi = FλM̂i ∈ ind(A) (with M̂i ∈ ind(C)), for every i,. Ext1A(Y,M) = 0.Then (ε) is isomorphi
 to an exa
t sequen
e in mod(A):

0 → X




Fλu
′
1...

Fλu
′
t




−−−−−−→ M1

⊕
. . .

⊕
MT → Y → 0where u′

i ∈ HomC(X̂, giM̂i) for some gi ∈ G, for every i.Proof of Lemma 3.2: For short, we shall say that u ∈ HomA(X,Mi) is homogeneous of degree g ∈ Gif and only if u = Fλu
′ with u′ ∈ HomC(X̂, gM̂i). Re
all from Se
tion 1 that any u ∈ HomA(X,Mi)is (uniquely) the sum of d homogeneous morphisms with pairwise di�erent degrees (with d > 0). Let uswrite u =



u1...
ut


 with ui : X → Mi for ea
h i. We may assume that u1 : X → M1 is not homogeneous.Thus:

u1 = h1 + . . .+ hdwhere d > 2 and h1, . . . , hd : X →M1 are non zero homogeneous morphisms of pairwise di�erent degree.In order to prove the lemma, it su�
es to prove the following property whi
h we denote by (P):� (ε) is isomorphi
 to an exa
t sequen
e of the form:
0 → X




u′
1

u2...
ut




−−−−→M1

⊕
. . .

⊕
Mt → Y → 0 (ε′)where u′

1 is the sum of at most d− 1 non zero homogeneous morphisms of pairwise di�erent degree. �For simpli
ity we adopt the following notations:. M = M2

⊕
· · ·

⊕
Mt (so M = M1

⊕
M),. u =



u2...
ut


 : X → M (so u =

[
u1

u

]
: X →M1

⊕
M),. h = h2 + . . .+ hd : X →M1 (so u1 = h1 + h).13



From HomA(ε,M1) we get the exa
t sequen
e:
HomA(M1

⊕
M,M1)

u∗

−−→ HomA(X,M1) → Ext1A(Y,M1) = 0So there exists [λ, µ] : M1

⊕
M →M1 su
h that h1 = [λ, µ]u. Hen
e:

h1 = λu1 + µu = λh1 + λh+ µu (i)Let us distinguish two 
ases whether λ ∈ EndA(M1) is invertible or nilpotent (re
all that M1 ∈ ind(A)):
• If λ is invertible then:

θ :=

[
λ µ
0 IdM

]
: M1

⊕
M → M1

⊕
Mis invertible. Using (i) we dedu
e an isomorphism of exa
t sequen
es:

0 // X



u1

u





// M1

⊕
M //

θ

��

Y //

∼

��

0 (ε)

0 // X



h1

u





// M1

⊕
M // Y // 0 (ε′)Sin
e h1 : X →M1 is homogeneous, (ε′) �ts property (P). So (P) is satis�ed in this 
ase.

• If λ ∈ EndA(M1) is nilpotent, let p > 0 be su
h that λp = 0. Using (i) we get the following equalities:
h1 = λ2h1 + (λ2 + λ)h+ (λ+ IdM1)µu... ... ...
h1 = λth1 + (λt + λt−1 + . . .+ λ)h+ (λt−1 + . . .+ λ+ IdM1)µu... ... ...
h1 = λph1 + (λp + λp−1 + . . .+ λ)h+ (λp−1 + . . .+ λ+ IdM1)µuSin
e λp = 0 and u1 = h1 + h we infer that:

u1 = λ′h+ λ′µuwhere λ′ := IdM1 + λ+ . . .+ λp−1 ∈ EndA(M1) is invertible. So we have an isomorphism:
θ :=

[
λ′ λ′µ
0 IdM

]
: M1

⊕
M →M1

⊕
Mand 
onsequently we have an isomorphism of exa
t sequen
es:

0 // X



h
u





// M1

⊕
M

θ

��

// Y //

∼

��

0 (ε′)

0 // X



u1

u





// M1

⊕
M // Y // 0 (ε)where h = h2 + . . .+hp is the sum of p−1 non zero homogeneous morphisms of pairwise di�erent degrees.So (P) is satis�ed in this 
ase. This �nishes the proof of the lemma. �Now we 
an prove that Y ∈ mod1(A). Thanks to the pre
eding lemma, and with the same notations,we know that (ε) is isomorphi
 to an exa
t sequen
e in mod(A):

0 → X




Fλu
′
1...

Fλu
′
t




−−−−−−→M1

⊕
. . .Mt → Y → 0 (ε′)14



where u′
i ∈ HomC(X̂, giM̂i) for some gi ∈ G, for every i. Therefore (re
all that Fλ is exa
t):

Y ≃ Coker



Fλ(u

′
1)...

Fλ(u
′
t)


 ≃ Fλ


Coker



u′

1...
u′
t





This proves that Y ∈ mod1(A). Therefore T ′ = Y

⊕
T ∈ mod1(A).The proof of the impli
ation T ′ ∈ mod1(A) ⇒ T ∈ mod1(A) is similar, ex
epted that instead of usingLemma 3.2 we use a dual version:Lemma 3.3. Let ε : 0 → X → M

v
−→ Y → 0 be an exa
t sequen
e in mod(A) verifying the followinghypotheses:. X,Y ∈ ind(A) and Y = FλŶ (with Ŷ ∈ ind(C)),. M = M1

⊕
. . .

⊕
Mt where Mi = FλM̂i ∈ ind(A) (with M̂i ∈ ind(C)), for every i,. Ext1A(M,X) = 0.Then (ε) is isomorphi
 to an exa
t sequen
e in mod(A):

0 → X →M1

⊕
. . .

⊕
MT




Fλv
′
1...

Fλv
′
t




−−−−−→ Y → 0where v′i ∈ HomC( giM̂i, Ŷ ) for some gi ∈ G, for every i.This �nishes the proof of Proposition 3.1. �Remark 3.4. Proposition 3.1 is similar to part of [12, Thm 3.6℄ where P. Gabriel proves the following: if
F : C → A is a Galois 
overing with group G, with C lo
ally bounded and su
h that G a
ts freely on ind(C),then for any 
onne
ted 
omponent C of the Auslander-Reiten quiver of A, all inde
omposable modules of
C lie in ind1(A) as soon as any one of them does.Remark 3.5. The proof of Proposition 3.1 shows that for an arrow T → T ′ in −→

KA su
h that T, T ′ ∈
mod1(A) there exists an exa
t sequen
e in mod(C):

0 → X
ι
−→M

π
−→ Y → 0with the following properties:. T = FλX

⊕
T and FλX ∈ ind(A),. T ′ = FλY

⊕
T and FλY ∈ ind(A),. FλM ∈ add(T ).Re
all that −→KA has a Brauer-Thrall type property (see [15, Cor. 2.2℄): −→KA is �nite and 
onne
ted if ithas a �nite 
onne
ted 
omponent. In parti
ular, −→KA is �nite and 
onne
ted if A is of �nite representationtype. Using Proposition 3.1, we get the following 
orollary.Corollary 3.6. If −→KA is �nite (e.g. A is of �nite representation type), then any T ∈

−→
KA is of the �rstkind w.r.t. F .Now we turn to the se
ond goal of this se
tion: for T ∈ mod1(A) a basi
 tilting A-module, givesu�
ient 
onditions for F.T to be a basi
 C-module.Proposition 3.7. Let T, T ′ ∈

−→
KA ∩mod1(A) lie in a same 
onne
ted 
omponent of −→KA, then:

F.T is a basi
 C-module ⇔ F.T ′ is a basi
 C-module.In parti
ular, if T ′ = A or T ′ = DA, then T ∈ mod1(A) and F.T is a basi
 C-module.Proof : The k-
ategory C is lo
ally bounded so F.A ≃ C and F.(DA) ≃ DC are basi
 C-modules.Therefore,we only need to prove the equivalen
e of the proposition.Without loss of generality, we may assumethat there is an arrow T → T ′ in −→
KA. Let us assume that F.T is basi
 and let us prove that so is

F.T ′. We will use Remark 3.5 from whi
h the adopt the notations, in parti
ular, the exa
t sequen
e
0 → X

ι
−→ M

π
−→ Y → 0 in mod(C) will be denoted by (ε). Be
ause F.T is basi
 and be
ause of the15



properties veri�ed by (ε), we only need to prove that GY = 1. Let ϕ : Y → gY be an isomorphism in
mod(C) (with g ∈ G), and let us prove that g = 1. To do this we will exhibit an isomorphism θ : X → gX.Noti
e that:

(∀h ∈ G)

{
hX, hM ∈ add(F.T )
hY, hM ∈ add(F.T ′)

(1)Moreover, thanks to T ∈
−→
KA and to FλF.T =

⊕
h∈G T (whi
h is true be
ause T is of the �rst kind w.r.t.

F , see Se
tion 1), we have:
(∀i > 1) ExtiC(F.T, F.T ) ≃ ExtiA(FλF.(T ), T ) ≃

∏

h∈G

ExtiA(T, T ) = 0In parti
ular:
Ext1C( gM,X) = Ext1C(M, gX) = 0 (i)With HomC(M, gε), this last equality gives the exa
t sequen
e:

HomC(M, gM)
( gπ)∗
−−−−→ HomC(M, gY ) → Ext1C(M, gX) = 0From this exa
t sequen
e, we dedu
e the existen
e of ψ ∈ HomC(M, gM) su
h that the following diagram
ommutes:

M
π //

ψ

��

Y

ϕ

��
gM

gπ // gYThis implies the existen
e of θ ∈ HomC(X, gX) making 
ommutative the following diagram with exa
trows:
0 // X

ι //

θ

��

M
π //

ψ

��

Y

ϕ

��

// 0

0 // gX
gι // gM

gπ // gY // 0

(ii)We 
laim that θ : X → gX is an isomorphism. The arguments that have been used to get (ii) may beadapted (just repla
e the use of HomC(M, gε) and of ϕ : Y → gY by HomC( gM, ε) and ϕ−1 : gY → Y )to get the following 
ommutative diagram with exa
t rows:
0 // gX

gι //

θ′

��

gM
gπ //

ψ′

��

gY

ϕ−1

��

// 0

0 // X
ι // M

π // Y // 0

(iii)In order to show that θ : X → gX is an isomorphism, let us show that θ′θ ∈ EndC(X) is an isomorphism.Noti
e (ii) and (iii) give the following 
ommutative diagram:
0 // X

ι //

θ′θ−idX

��

M
π //

ψ′ψ−IdM

��

Y

0

��

// 0

0 // X
ι // M

π // Y // 0

(iv)In parti
ular we have π(ψ′ψ − IdM) = 0, so there exists λ ∈ HomC(M,X) su
h that:
ψ′ψ − IdM = ιλTherefore:
ι(θ′θ − IdX) = ιλιSin
e ι is one-to-one, we get θ′θ − idX = λι, i.e.:
θ′θ = IdX + λιIf λι ∈ EndC(X) was an isomorphism, then ι : X →M would be a se
tion. This would imply that FλX is adire
t summand of FλM . This last property is impossible be
ause: T = FλX

⊕
T , FλM ∈ add(T ) and Tis basi
. This 
ontradi
tion proves that λι ∈ EndC(X) is nilpotent. Therefore θ′θ = IdX +λι ∈ EndC(X)is invertible. As a 
onsequen
e, θ : X → gX is a se
tion. Sin
e X, gX ∈ ind(C), we dedu
e that

θ : X → gX is an isomorphism. But we assumed that F.T is basi
, so g = 1. This �nishes the proof ofthe impli
ation: 16



F.T is basi
 ⇒ F.T ′ is basi
.After ex
hanging the roles of T and T ′ in the above arguments, we also prove that:
F.T is basi
 ⇐ F.T ′ is basi
.under the assumption that T → T ′ is an arrow in −→

KA. This a
hieves the proof of the proposition. �Proposition 3.7 has the following 
orollary whi
h will be useful to prove Theorem 1.Corollary 3.8. Let F : C → A be a 
onne
ted Galois 
overing with group G. Let T = T1 ⊕ . . . ⊕ Tn(Ti ∈ ind(A)) and T ′ = T ′
1 ⊕ . . .⊕ T ′

n (T ′
i ∈ ind(A)) be basi
 tilting A-modules lying in a same 
onne
ted
omponent of −→KA. Assume that T, T ′ ∈ mod1(A) and �x isomorphisms λi : FλT̂i ∼

−→ Ti and λi : FλT̂ ′
i

∼
−→

T ′
i with T̂i, T̂ ′

i ∈ ind(C) for every i. Then:
FT̂i,λi

is 
onne
ted ⇔ F
T̂ ′

i,λ
′

i
is 
onne
ted.In parti
ular, if T ′ = A or T ′ = DA, then FT̂i,λi

is 
onne
ted.Proof : Re
all that �the Galois 
overing E → B is 
onne
ted� means E is 
onne
ted and lo
ally bounded.Thanks to Remark 2.1 and to Proposition 2.10, we know that FT̂i,λi
(resp. F

T̂ ′
i,λ

′

i
) is 
onne
ted if andonly if F.T (resp. F.T ′) is a basi
 C-module. The 
orollary is therefore a 
onsequen
e of Proposition 3.7.�We �nish with the last obje
tive of the se
tion: give �simple� 
onditions on T ∈

−→
KA under whi
h
ondition (HA,T ) is satis�ed (see Lemma 2.5).Proposition 3.9. Let T, T ′ lie in a same 
onne
ted 
omponent of −→KA. Then:(HA,T ) is satis�ed ⇔ (HA,T ′) is satis�edIn parti
ular, if T ′ = A or T ′ = DA, then (HA,T ) is satis�ed.Proof: Let ψ : A

∼
−→ A be an automorphism restri
ting to the identity map on obje
ts. Let x ∈ Ob(A)and let ?Ax : y ∈ Ob(A) 7→ yAx be the inde
omposable proje
tive A-module asso
iated to x. Then, wehave an isomorphism of A-modules:

?Ax −→ ψ. ?Ax
u ∈ yAx 7−→ F (u) ∈ (ψ. ?Ax) (y) = yAxSo (HA,A) is satis�ed, and similarly (HA,DA) is satis�ed. Therefore, in order to prove the proposition, itsu�
es to prove that (HA,T ) is satis�ed if and only if (HA,T ′) is satis�ed, for any arrow T → T ′ in −→

KA.Assume that T → T ′ is an arrow in −→
KA and that (HA,T ) is satis�ed. So we have the data:- T = X ⊕ T with X ∈ ind(A),- T ′ = Y ⊕ T with Y ∈ ind(A),- a non split exa
t sequen
e 0 → X

u
−→M → Y → 0 where M ∈ add(T ) and where u : X →M is theleft add(T )-approximation of X.Noti
e that in order to prove that (HA,T ′) is satis�ed, we only need to prove that ψ.Y ≃ Y . Sin
e ψ is anautomorphism, ψ. : mod(A) → mod(A) is an equivalen
e of abelian 
ategories. Therefore, the sequen
e

0 → ψ.X
ψ.u
−−→ ψ.M → ψ.Y → 0 is non split exa
t and veri�es: ψ.M ∈ add(ψ.T ) and ψ.u : ψ.X → ψ.M isthe left add(ψ.T )-approximation of ψ.Y . Moreover ψ.X ≃ X, ψ.M ≃M and ψ.T ≃ T be
ause (HA,T ) issatis�ed. So, ψ.Y is isomorphi
 to the 
okernel of the left add(T )-approximation of X. This implies that

Y ≃ ψ.Y . So (HA,T ′) is satis�ed. The 
onverse is dealt with using dual arguments. �4 Comparison of −→KA and −→
KEndA(T ) for a tilting A-module TLet T be a basi
 tilting A-module. Let B = EndA(T ). In the pre
eding se
tion, we have pointed out
onditions of the form: �T lies in the 
onne
ted 
omponent of −→KA 
ontaining A�. Sin
e our �nal obje
tive(i.e. to 
ompare the Galois 
overings of A and of B) is symmetri
al between A and B, we ought to �ndsu�
ient 
onditions for T to lie in both 
onne
ted 
omponents of −→

KA and −→
KB 
ontaining A and Brespe
tively. Thus, this se
tion is devoted to 
ompare −→

KA and −→
KB . For simpli
ity, if X ∈ mod(A) (resp.

u ∈ HomA(X,Y )) we shall write XT (resp. uT ) for the B-module (resp. the morphism of B-modules)
HomA(X,T ) (resp. HomA(u, T ) : HomA(Y, T ) → HomA(X,T )). Also, whenever f is a morphism ofmodules, we shall write f∗ (resp. f∗) for the mapping g 7→ fg (resp. g 7→ gf). We begin with a usefullemma. 17



Lemma 4.1. Let X ∈ mod(A) and let T ′ ∈
−→
KA be a prede
essor of T (i.e. there is an oriented path in

−→
KA starting at T ′ and ending at T ). Then, the is an isomorphism, for any Y ∈ add(T ′):

θX,Y : HomA(X,Y ) −→ HomB(YT ,XT )
u 7−→ uTIn parti
ular: Y ∈ ind(A) ⇔ YT ∈ ind(B), for any Y ∈ add(T ′).Proof: Remark that θX,T ′ is an isomorphism if and only if θX,Y is an isomorphism for any Y ∈ add(T ′).By assumption on T ′, there exists a path in −→

KA starting at T ′ and ending at T . Let us prove by indu
tionon the length l of this path that θX,T ′ is an isomorphism.If l = 0 then T = T ′. So θX,T ′ = θX,T is equal to:
HomA(X,T ) = XT −→ HomB(TT ,XT ) = HomB(B,XT )

u 7−→ (f 7→ fu)So θX,T ′ is an isomorphism (with inverse ϕ 7→ ϕ(1B)). This proves the lemma when l = 0.Now, assume that l > 0 and assume that θX,T ′′ is an isomorphism whenever T ′′ is the sour
e of apath in −→
KA ending at T and with length equal to l− 1. We have a path T ′ → T ′′ → . . .→ T of length lin −→

KA. Therefore:
θX,Y is an isomorphism for any Y ∈ add(T ′′) (i)Moreover, thanks to the arrow T ′ → T ′′ in −→

KA, we have:
(ii) T ′ = T

⊕
Y ′ with Y ′ ∈ ind(A),

(iii) T ′′ = T
⊕
Y ′′ with Y ′′ ∈ ind(A),

(iv) a non split exa
t sequen
e 0 → Y ′ →M → Y ′′ → 0 with M ∈ add(T ).Thanks to (i), (ii) and (iii) we only need to prove that θX,Y ′ is an isomorphism. Remark that byassumption on T ′ and T ′′ we have T ∈ T⊥ ⊆ T ′′⊥. This implies in parti
ular that Ext1A(Y ′′, T ) = 0.Therefore, (iv) yields an exa
t sequen
e in mod(A):
0 → Y ′′

T →MT → Y ′
T → 0This gives rise to the exa
t sequen
e:

0 → HomB(Y ′
T ,XT ) → HomB(MT ,XT ) → HomB(Y ′′

T ,XT )On the other hand, (iv) yields the following exa
t sequen
e:
0 → HomA(X,Y ′) → HomA(X,M) → HomA(X,Y ′′)Therefore, we have a 
ommutative diagram:

0 // HomA(X,Y ′) //

θX,Y ′

��

HomA(X,M) //

θX,M

��

HomA(X,Y ′′)

θX,Y ′′

��
0 // HomA(Y ′

T , XT ) // HomA(MT ,XT ) // HomA(Y ′′
T , XT )where the rows are exa
t and where θX,M and θX,Y ′′ are isomorphisms. This shows that θX,Y ′ is anisomorphism. So θX,T ′ is an isomorphism and the indu
tion is �nished. This proves the �rst assertion ofthe lemma. The se
ond assertion is due to the fun
toriality of θX,Y . �Remark 4.2. Assume that A is hereditary. Then Lemma 4.1 still holds if one repla
es the hypothesis"T ′ is a prede
essor of T" by "T ′

> T" (i.e. T⊥ ⊆ T ′⊥). The proof is then a 
lassi
al appli
ation of left
add(T )-approximations.The following proposition is the base of the link between −→

KA and −→
KB: it explains how to asso
iatesuitable tilting B-modules with tilting A-modules.Proposition 4.3. Let X → Y be an arrow in −→

KA where X and Y are prede
essors of T . Then:
XT ∈

−→
KB ⇔ YT ∈

−→
KAIf the two 
onditions of the above equivalen
e are satis�ed, then there is an arrow YT → XT in −→

KB.18



Proof: Let us assume that YT ∈
−→
KB and let us show that XT ∈

−→
KB and that there is an arrow YT → XTin −→

KB (the proof of the remaining impli
ation is then obtained by ex
hanging the roles of X and Y ).The arrow X → Y in −→
KA gives the following data:. X = M

⊕
X with M ∈ ind(A),. Y = N

⊕
X with N ∈ ind(A),. ε : 0 →M
i
−→ X ′ p

−→ N → 0 is a non split exa
t sequen
e in mod(A) with X ′ ∈ add(X).The tilting A-module Y is a prede
essor of T . Hen
e T ∈ T⊥ ⊆ Y ⊥ and therefore Ext1A(N,T ) = 0. Weinfer that HomA(ε, T ) gives an exa
t sequen
e in mod(B):
0 → NT

pT−−→ X ′
T

iT−→MT → 0 (εT )Noti
e that we also have:. XT = MT

⊕
XT ,. YT = NT

⊕
XT ,. X ′

T ∈ add(XT ).Therefore, in order to prove that XT ∈
−→
KB and that there is an arrow YT → XT in −→

KB , we only needto prove the following fa
ts:
1) εT does not split,
2) MT ∈ ind(B) and NT ∈ ind(B),
3) pdB(XT ) <∞,
4) XT is selforthogonal,
5) XT is the dire
t sum of n inde
omposable A-modules and XT is basi
.

1) Let us prove that εT does not split. If εT splits, then iT is a retra
tion:
(∃λ ∈ HomB(MT ,X

′
T )) IdMT = iT ◦ λSin
e M is a dire
t summand of X ∈

−→
KA and sin
e X is a prede
essor of T , Lemma 4.1 implies that

λ = πT with π ∈ HomA(X ′,M). Thus we have (π ◦ i)T = (IdM )T . Using again Lemma 4.1 we dedu
ethat π ◦ i = IdM whi
h is impossible be
ause ε does not split. So εT does not split.
2) Lemma 4.1 implies that MT , NT ∈ ind(B).
3) Sin
e we assumed that YT ∈

−→
KB, we have pdB(XT ) < ∞, pdB(X ′

T ) < ∞ and pdB(NT ) < ∞.Hen
e εT gives pdB(MT ) <∞. So pdB(XT ) <∞.
4) Let us prove that XT is selforthogonal. In this purpose, we will use the following lemma.Lemma 4.4. Let L ∈ add(X). Then, the following morphism indu
ed by pT : NT → X ′

T is surje
tive:
(pT )∗ HomB(X ′

T , LT ) −→ HomB(NT , LT )
f 7−→ f ◦ pTProof: Sin
e L ∈ add(X) and sin
e X ∈

−→
KA, we have Ext1A(L,M) = 0. Hen
e, HomA(L, ε) gives riseto a surje
tive morphism indu
ed by p:

p∗ : HomA(L,X ′) ։ HomA(L,N)
f 7−→ p ◦ fLet us apply Lemma 4.1 to X ′ ∈ add(Y ) and to N ∈ add(Y ). We get the following 
ommutative diagramwhere verti
al arrows are isomorphisms:

HomA(L,X ′)
p∗ //

θL,X′

��

HomA(L,N)

θL,N

��
HomB(X ′

T , LT )
(pT )∗

// HomB(NT , LT )Sin
e p∗ is surje
tive, we infer that so is (pT )∗. �19



Now we 
an prove that XT = XT

⊕
MT is selforthogonal. Sin
e XT ∈ add(YT ) and YT ∈

−→
KB, weget:

(∀i > 1) ExtiB(XT ,XT ) = 0 (i)For ea
h i > 1, HomB(XT , εT ) gives the following exa
t sequen
e:
ExtiB(XT , X

′
T ) → ExtiB(XT ,MT ) → Exti+1

B (XT , NT )Sin
e XT ,X
′
T , NT ∈ add(YT ) and YT ∈

−→
KB, we get:

(∀i > 1) ExtiB(XT ,MT ) = 0 (ii)On the other hand, HomB(εT , XT ) gives the following exa
t sequen
es:
.HomB(X ′

T ,XT )
(pT )∗

−−−−→ HomB(NT ,XT ) → Ext1B(MT ,XT ) → Ext1B(X ′
T ,XT )

.ExtiB(NT ,XT ) → Exti+1
B (MT ,XT ) → Exti+1

B (X ′
T ,XT ) for i > 1These exa
t sequen
es together with Lemma 4.4 and the selforthogonality of YT imply that:

(∀i > 1) ExtiB(MT ,XT ) = 0 (iii)In order to get the selforthogonality of XT = MT

⊕
XT it only remains to prove thatMT is selforthogonal(be
ause of (i), (ii) and (iii)). Noti
e that HomB(NT , εT ) gives the following exa
t sequen
e for ea
h

i > 1:
ExtiB(NT , X

′
T ) → ExtiB(NT ,MT ) → Exti+1

B (NT , NT )Using YT ∈
−→
KB and X ′

T , NT ∈ add(YT ) we dedu
e that:
(∀i > 1) ExtiB(NT ,MT ) = 0 (iv)Finally HomB(εT ,MT ) gives the following exa
t sequen
es:

.HomB(X ′
T ,MT )

(pT )∗

−−−−→ HomB(NT ,MT ) → Ext1B(MT ,MT ) → Ext1B(X ′
T ,MT )

.ExtiB(NT ,MT ) → Exti+1
B (MT ,MT ) → Exti+1

B (X ′
T ,MT ) for i > 1These exa
t sequen
es together with Lemma 4.4, (ii) and (iv) imply that (re
all that X ′

T ∈ add(XT )):
(∀i > 1) ExtiB(MT ,MT ) = 0 (v)From (i), (ii), (iii) and (v) we dedu
e that XT = MT

⊕
XT is selforthogonal.

5) To �nish, let us prove that XT is basi
 and that XT is the dire
t sum of n inde
omposable modules.Noti
e that XT is basi
 be
ause it is a dire
t summand of the basi
 tilting B-module YT . On the otherhand, εT does not split, so Ext1A(MT , NT ) 6= 0, hen
e MT 6∈ add(YT ) and therefore MT 6∈ add(XT ).Sin
e MT ∈ ind(B), we dedu
e that XT is basi
. Finally, YT is by assumption the dire
t sum of ninde
omposable modules, and XT and YT di�er by one inde
omposable dire
t summand so XT is alsothe dire
t sum of n inde
omposable modules. �Remark 4.5. When A is hereditary, Proposition 4.3 has the following generalisation: Let X ∈
−→
KA besu
h that X > T , then XT ∈

−→
KB. The proof of this generalisation is obtained by repla
ing the use of theexa
t sequen
e ε by a 
oresolution of X in add(T ).Proposition 4.3 gives the following proposition whi
h will be used in the 
omparison of the Galois
overings of A and B. We omit the proof whi
h is immediate using Proposition 4.3.Proposition 4.6. Let X ∈
−→
KA be su
h that there exists a path in −→

KA starting at X and ending at T .Then XT ∈
−→
KB and there exists in −→

KB a path starting at B and ending at XT .Proposition 4.3 also allows us to prove the main result of this se
tion. Re
all that for a quiver Q, wewrite Qop for the opposite quiver (obtained from Q by reversing the arrows).Theorem 4.7. Let −→
KA(T ) (resp. −→

KB(T )) be the 
onvex hull of {A, T} (resp. {B,T}) in −→
KA (resp.

−→
KB). Then we have an isomorphism of quivers:

α :
−→
KA(T ) 7−→

−→
KB(T )op

X 7−→ XT = HomA(X,T )Under this 
orresponden
e, A ∈
−→
KA(T ) (resp. T ∈

−→
KA(T )) is asso
iated with T ∈

−→
KB(T ) (resp.

B ∈
−→
KB(T )). 20



Proof: Thanks to Proposition 4.3, the mapping α is a well de�ned morphism of quivers. Thus, it onlyremains to exhibit an inverse morphism. Noti
e that Proposition 4.6 implies that −→
KA(T ) = {A, T} ⇔

−→
KB(T ) = {B, T} ⇔ there is no path in −→

KA(T ) starting at A and ending at T . Therefore, we mayassume that there is a path starting at A and ending at T . This assumption implies that any X ∈
−→
KA(T )is a prede
essor of T . From [19, Thm 1.5℄ we know that T is a basi
 tilting EndB(T )-module and thatwe have an isomorphism of k-algebras:

A −→ EndB(T )
a 7−→ (t 7→ at)Hen
eforth, we shall 
onsider A-modules as EndB(T )-modules and vi
e-versa using the above isomor-phism. In parti
ular, we have an identi�
ation of quivers:

−→
KA(T )

∼
−→

−→
KEndB(T )(T )

X 7→ XTherefore, we also have a well de�ned morphism of quivers:
α′ :

−→
KB(T )op →

−→
KA(T )

X 7→ XT = HomB(X,T )Let us prove that α′α is an isomorphism. Let X ∈
−→
KA(T ). Then X is a prede
essor of T . Therefore,Lemma 4.1 implies that:

HomB(HomA(X,T ), T ) ≃ HomB(HomA(X,T ),HomA(A,T )) ≃ HomA(A,X) ≃ XThis proves that α′α is an isomorphism of quivers. With the same arguments one also shows that αα′ isan isomorphism. So does α :
−→
KA(T ) →

−→
KB(T )op. �Noti
e that −→

KA and −→
K op
B are not isomorphi
 in general. Indeed these quivers may have di�erentnumber of verti
es as the following example shows.Example 4.8. Let Q be the quiver:

2

��>
>>

>>
>>

1 //

@@�������
3and let A = kQ/I where I is the ideal generated by the oriented path of length 2 in Q. Noti
e that A is of�nite representation type. Let T = P1 ⊕ P2 ⊕ τ−1

A P3 be the APR-tilting A-module asso
iated to the sink
3. Hen
e:

T =
1

2 3
⊕

2
3
⊕

1 2
2 3and the Hasse diagram −→

KA of basi
 tilting A-modules is equal to:
•

��=
==

==
==

=

•

��=
==

==
==

=

@@��������
• // D(A)

A // T

@@��������

��@
@@

@@
@@

•

@@��������

•

??��������On the other hand, B = EndA(T ) is isomorphi
 to kQ′/I ′ where Q′ is equal to:
a // b

''
cgg21



and I ′ is the ideal generated by the path c→ b→ c. As a B-module, T is equal to
T =

a
b
c
b

⊕
c
b
⊕
a c
band −→

KB is equal to:
•

��@
@@

@@
@@

•

��?
??

??
??

?

??~~~~~~~
•

!!C
CC

CC
CC

C

T

??�������
•

??��������

��>
>>

>>
>>

> DB

B

??~~~~~~~

  A
AA

AA
AA

•

@@��������
•

==||||||||

•

  @
@@

@@
@@

@

??��������
•

??��������

•

??~~~~~~~In parti
ular, −→
KA and −→

KB do not have the same number of verti
es. Noti
e that, in this example, theisomorphism of Theorem 4.7 is equal to:
−→
KA(T ) = (A→ T ) −→

−→
KB(T )op = (T → B)

A 7−→ T = HomA(A,T )
T 7−→ B = HomA(T, T )Remark 4.9. Assume that A is hereditary, then Theorem 4.7 has the following generalisation, thanksto Remark 4.5: Let QA (resp. QB) be the full subquiver of −→KA (resp. −→

KB) made of the tilting modules
X > T . Then X 7→ XT indu
es an isomorphism of quivers QA ∼

−→ QopB .5 Comparison of the Galois 
overings of A and EndA(T ) for T basi
tilting A-moduleThis se
tion is devoted to the proof of Theorem 1, of Corollary 1 and of Corollary 2. Let T ∈
−→
KA andlet B = EndA(T ). As in the introdu
tion, we shall say that A and B have the same 
onne
ted Galois
overings with group G if and only if there exists a bije
tion GalA(G)

∼
−→ GalB(G). Here GalA(G) denotesthe set of equivalen
e 
lasses of 
onne
ted Galois 
overings with group G of A. In order to 
ompare theequivalen
e 
lasses of 
onne
ted Galois 
overings of A and those of B, we introdu
e the following assertionwhi
h depends on A, on T and on a �xed group G:

P(A, T,G) =�(HA,T ) is satis�ed and for any 
onne
ted Galois 
overing F : C → A with group G, the
A-module T is of the �rst kind w.r.t. F and F.T is a basi
 C-module�Re
all from De�nition 2.7 that the 
ondition (HA,T ) ensures the existen
e of an equivalen
e 
lass [F ]T ofGalois 
overings of B depending only on the equivalen
e 
lass [F ] of F . Re
all also from Remark 2.1 andfrom Proposition 2.10 that the 
ondition �F.T is a basi
 C-module� implies that [F ]T is an equivalen
e
lass of 
onne
ted Galois 
overings of B. Finally, re
all that P(A,A,G) and P(A,DA,G) are true forany G (see Proposition 3.1, Proposition 3.7 and Proposition 3.9). The above de�nition of P(A,T,G) isrelevant be
ause of the following proposition.Proposition 5.1. Let G be a group. Assume that P(A,T,G) and P(B,T,G) are true. Then A and Bhave the same 
onne
ted Galois 
overings with group G.Proof : Sin
e P(A, T,G) is true, we have a well de�ned mapping:

ϕA : GalA(G) −→ GalB(G)
[F ] 7−→ [F ]T

(i)22



Similarly, P(B,T,G) is true so we have a well de�ned mapping:
ϕB : GalB(G) −→ GalG(EndB(T ))

[F ] 7−→ [F ]T
(ii)Thanks to Proposition 2.11 we know that ρ−1

A ◦ (ϕBϕA([F ])) = [F ] for any [F ] ∈ GalA(G). Therefore,
ϕA is one-to-one and ϕB is onto. Noti
e that thanks to the isomorphism ρA : A

∼
−→ EndB(T ), the as-sertion P(EndB(T ), T, G) is true, so that the above arguments imply that ϕB is one-to-one and that

ϕEndB(T ) is onto. As a 
onsequen
e, ϕB is bije
tive, so the mapping [F ] 7→ ρ−1
A ◦ [F ]T indu
es a bije
tion

GalB(G)
∼
−→ GalA(G). �Thanks to Proposition 5.1 we are redu
ed to �nd su�
ient 
onditions for P(A, T,G) and P(B,T,G)to be simultaneously true. The following proposition is a dire
t 
onsequen
e of Proposition 3.1, ofCorollary 3.8, of Proposition 3.9 and of the fa
t that P(A,A,G) and P(A,DA,G) are true.Proposition 5.2. Let G be a group. Let T ′ ∈

−→
KA lying in the 
onne
ted 
omponent of −→KA 
ontaining

T . Then:
P(A, T,G) is true ⇔ P(A,T ′, G) is trueIn parti
ular, if T ′ = A or if T ′ = DA then P(A,T,G) is true.Thanks to Proposition 5.2, we are redu
ed look for 
onditions for T to lie in both 
onne
ted 
omponentsof −→KA and −→

KB 
ontaining A and B respe
tively. Su
h a 
ondition is given by the following proposition.Proposition 5.3. Let G be a group and assume that there exists a path in −→
KA starting at A and endingat T . Then T lies in the 
onne
ted 
omponent of −→KA (resp. −→

KB) 
ontaining A (resp. B). Consequently,
P(A,T,G) and P(B,T,G) are true.Proof : Theorem 4.7 implies that there exists a path in −→

KB starting at HomA(T, T ) = B and ending at
HomA(A,T ) = T . Using Proposition 5.2 we get the desired 
on
lusion. �Now we 
an prove Theorem 1:Proof of Theorem 1: 1) Sin
e T and T ′ lie in a same 
onne
ted 
omponent of −→KA, there exists asequen
e T (1) = T, T (2), . . . , T (r) = T ′ of basi
 tilting A-modules su
h that for any i ∈ {1, . . . , r − 1},there exists a path in −→

KA with T (i) and T (i+1) as end-points. For short, let us write Bi for EndA(T (i)).Let i ∈ {1, . . . , r− 1} and let us assume, for example, that there exists a path in −→
KA starting at T (i) andending at T (i+1). Using Lemma 4.1 and Proposition 4.6 we infer that:

(i) EndA(T (i)) and EndBi+1(HomA(T (i), T (i+1))) are isomorphi
 as k-algebras (and therefore as k-
ategories),
(ii) there exists a path in −→

KBi+1 starting at B and ending at HomA(T (i), T (i+1)).This implies (thanks to Proposition 5.3 and to Proposition 5.1) that EndA(T (i)) and EndA(T (i+1)) havethe same 
onne
ted Galois 
overings with group G. Sin
e this fa
t is true for any i, we dedu
e that
EndA(T ) and EndA(T ′) have the same 
onne
ted Galois 
overings with group G.

2) is a 
onsequen
e of 1), of the fa
t that EndA(A) ≃ EndA(DA) ≃ Aop and of the fa
t that A and
Aop have the same Galois 
overings (F : C → A is a Galois 
overing if and only if F op : Cop → A is aGalois 
overing and Cop is 
onne
ted and lo
ally bounded if and only if Cop is). �Using Theorem 1 we 
an prove Corollary 1 and Corollary 2.Proof of Corollary 1: Sin
e A is of �nite representation type, Theorem 1 implies that A and B have thesame 
onne
ted Galois 
overings. For the same reason, A (resp. B) admits a 
onne
ted Galois 
overingwith group G if and only if G is a fa
tor group of the fundamental group π1(A) (resp. π1(B)) of A (resp.of B). Consequently, π1(A) and π1(B) are isomorphi
. �Proof of Corollary 2: 1) and 2) are 
onsequen
es of Theorem 1 and of the fa
t that A is simply
onne
ted if and only if it has no proper 
onne
ted Galois 
overing (see [17, Cor. 4℄).

3) is a 
onsequen
e of 2). �Corollary 1 naturally leads to the following question: let G be a group su
h that A and B have thesame Galois 
overings with group G, is it true that A admits an admissible presentation with fundamentalgroup isomorphi
 to G if and only if the same holds for B? The answer is no in general as the followingexample shows : 23



Example 5.4. Let Q be the following quiver:
2

b

��>
>>

>>
>>

1 a
//

b

@@�������
3

d

// 4and let A = kQ/I where I =< da >. Let T = P1 ⊕ P2 ⊕ P3 ⊕ τ−1
A (P4) = P1 ⊕ P2 ⊕ P3 ⊕ S3 be theAPR-tilting module asso
iated with the sink 3 (here Si is the simple A-module asso
iated to the vertex iand Pi is the inde
omposable proje
tive A-module with top Si). Then B = EndA(T ) is the path algebraof the following quiver:

��?
??

??
????�������

��?
??

??
?? ??�������Sin
e T is an APR-tilting A-module, there is an arrow A → T in −→

KA. Then, Theorem 1 implies thatfor any group G, the k-algebras A and B have the same 
onne
ted Galois 
overing with group G. On theother hand, any admissible presentation of B has fundamental group isomorphi
 to Z whereas A admitsan admissible presentation with fundamental group 0 and another one with fundamental group isomorphi
to Z (see for example [4, 1.4℄).In the pre
eding example, the reader may remark that the fundamental group of any admissiblepresentation of A is a fa
tor group of Z and that the same holds for B. Let us say that A admitsan optimum fundamental group (G) if and only if there exists an admissible presentation of A withfundamental group G and if the fundamental group of any other admissible presentation is a fa
torgroup of G. For example, A admits an optimum fundamental group in the following 
ases: A is of �niterepresentation type (see [12℄), A is 
onstri
ted (see [8, Thm 3.5℄), A is monomial, A is triangular andhas no double bypass (see [17, Thm. 1℄). Then we have the following 
orollary whose proof is a dire
t
onsequen
e of Theorem 1:Corollary 5.5. Assume that T lies in the 
onne
ted 
omponent of −→KA 
ontaining A. Then A admits Gas optimum fundamental group if and only if B admits G as optimum fundamental group.Final remarkThe Hasse diagram −→
KA of basi
 tilting A-modules des
ribes the 
ombinatori
 relations between tiltingmodules. When A is hereditary (i.e. A = kQ with Q a �nite quiver with no oriented 
y
le) these
ombinatori
s are also des
ribed by the 
luster 
ategory CQ of the quiver Q (see [11℄). In parti
ular, theinde
omposable tilting obje
ts in CQ are displayed as the verti
es of an unoriented graph. Sin
e this graphis always 
onne
ted (see [11, 3.5℄) it is natural to ask if it is possible to remove all 
onditions 
on
erning
onne
ted 
omponents in Theorem 1 and Corollary 2 (in the hereditary 
ase). These developpements willbe detailed in a fore
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