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Abstract

Let A be a basic connected finite dimensional algebra over an algebraically closed field k. Let T be
a basic tilting A-module with arbitrary finite projective dimension. For a fixed group G we compare the
set of isoclasses of connected Galois coverings of A with group G and the set of isoclasses of connected
Galois coverings of Enda(T) with group G. Using the Hasse diagram K a (see [15] and [21]) of basic
tilting A-modules, we give sufficient conditions on 7" under which there is a bijection between these two
sets (these conditions are always verified when A is of finite representation type). Then we apply these
results to study when the simple connectedness of A implies the one of Enda(T) (see [5]).

Introduction

Let k be an algebraically closed field and let A be a finite dimensional k-algebra. In order to study the
category mod(A) of finite dimensional (left) A-modules we may assume that A is basic and connected.
In the study of mod(A), tilting theory has proved to be a powerful tool. Indeed, if T is a basic tilting
A-module and if we set B = Enda(T), then A and B have many common properties: Brenner-Butler
Theorem establishes an equivalence between certain subcategories of mod(A) and mod(B) (see [10], [14]
and [19]), A and B have equivalent derived categories (see [13]) and (in particular) they have isomorphic
Grothendieck groups and isomorphic Hochschild cohomologies. In this text we will study the following
problem relating A and B:

1s it possible to compare the Galois coverings of A and those of B? (P1)

As an example, if A = kQ with @ a finite quiver without oriented cycle and if 7" is an APR-tilting module
associated to a sink z of Q (see [6]) then B = kQ' where Q' is obtained from @) by reversing all the arrows
endings at z. In particular Q and Q' have the same underlying graph and therefore A has a connected
Galois covering with group G if and only if the same holds for B.

Recall that in order to consider Galois coverings of A we always consider A as a k-category. When
C — Ais a Galois covering, it is possible to describe part of mod(A) in terms of C-modules (see for example
[9] and [12]). This description is useful because mod(C) is easier to study than mod(A), especially when C
is simply connected (this last situation may occur when A is of finite representation type, see [12]). Notice
that simple connectedness and tilting theory have already been studied together through the following
conjecture formulated in [5]:

A is simply connected = B is simply connected (P2)

More precisely, the above implication is true if: A is of finite representation type and T is of projective
dimension at most one (see [2]), or if: A = kQ (with @) a quiver) and B is tame (see [5], see also [3] for a
generalisation to the case of quasi-tilted algebras). The two problems (P;) and (P») are related because A
is simply connected if and only if there is no proper Galois covering C — A with C connected and locally
bounded (see [17]).

In order to study the question (Pi) we will exhibit sufficient conditions for T" to be of the first kind

w.r.t. a fixed Galois covering C LA Indeed, if T is of the first kind w.r.t. F, then it is possible to

construct a Galois covering of B. Under additional hypotheses on T', the equivalence class of this Galois
covering is uniquely determined by the equivalence class of F'. Here we say that two Galois coverings
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F:C — Aand F': C' — A are equivalent if and only if there exists a commutative square of k-categories
> !

and k-linear functors:
C C
F\L lF’

A——A

where horizontal arrows are isomorphisms and where the bottom horizontal arrow restricts to the identity
map on the set of objects of A. For simplicity, let us say that A and B have the same connected Galois
coverings with group G if there exists a bijection between the sets Gala(G) and Galp(G) where Gala(G)
(resp. Galp(G)) stands for the set of equivalence classes of Galois coverings C — A (resp. C — B) with
group G and with C connected and locally bounded. With this definition, we prove the following theorem
which is the main result of this text and which partially answers (P1):

Theorem 1. Let T be a basic tilting A-module, let B = Enda(T) and let G be group.

1. If T € E)A lies in the connected component of E)A containing T, then Enda(T) and Enda(T")
have the same connected Galois coverings with group G.

2. If T lies in the connected component of E)A containing A or DA, then A and B have the same
connected Galois coverings with group G.

In particular, if E)A is connected (which happens when A is of finite representation type) then A and B
have the same connected Galotis coverings with group G, for any group G.

Here K 4 is the Hasse diagram associated with the poset 74 of basic tilting A-modules (see [15] and
[21]). Recall (see [12]) that when A is of finite representation type, A admits a connected Galois covering
with group G if and only if G is a factor group of the fundamental group 71(A) of the Auslander-Reiten
quiver of A with its mesh relations. Theorem 1 allows us to get the following corollary when A and B
are of finite representation type. We thank Ibrahim Assem for having pointed out this corollary.

Corollary 1. Let T be a basic tilting A-module and let B = Enda(T). If both A and B are of finite
representation type, then A and B have isomorphic fundamental groups.

Theorem 1 also allows us to prove the following corollary related to (P2).
Corollary 2. (see [2] and [3]) Let T be a basic tilting A-module and let B = Enda(T).

1. IfT" € E)A lies in the connected component of E)A containing T, then: Enda(T) is simply connected
if and only if Enda(T') is simply connected.

_
2. If T lies in the connected component of K a containing A or DA then: A is simply connected if and
only if B is simply connected.

In particular, f K 4 is connected (e.g. A is of finite representation type, see [15]), then: A is simply
connected if and only if B is simply connected.

The text is organised as follows. In Section 1 we will give the definition of all the notions mentioned
above and which will be used for the proof of Theorem 1. In Section 2 we will detail the construction and
give some properties of the Galois covering F’ of B starting from a Galois covering F': C — A of A and
a basic tilting A-module T'. In this study, we will introduce the following hypotheses on the A-module
T: 1) T is of the first kind w.r.t. F (this ensures that F’ exists), 2) the C-module F.T obtained from
T by restricting the scalars is basic (this ensures that F’ is connected if F' is connected) 3) ¥.N ~ N
for any direct summand N of T and for any automorphism v: A =5 A which restricts to the identity
map on objects (this ensures that the equivalence class of F’ does depend only on the equivalence class
of F). These three hypotheses lack of simplicity, therefore, Section 3 is devoted to find simple sufficient
conditions for the basic tilting A-module T to verify these. In particular, we will prove that the condition
“T lies in the connected component of E}A containing A” fits our requirements. Since our main objective
is to establish a correspondence between the equivalence classes of the connected Galois coverings of A
and those of B, we will need to find conditions for 7" to lie in both connected components of E)A and
E}B containing A and B respectively (recall that 7" is also a basic tilting B-module). This will be done
in Section 4 where we compare the Hasse diagrams K 4 and K B. In particular, we will prove that there
is an oriented path in E)A starting at A and ending at 7" if and only if there is an oriented path in E}B
starting at B and ending at 7". This equivalence will be used in Section 5 in order to prove Theorem 1,
Corollary 1 and Corollary 2.



I would like to acknowledge Eduardo N. Marcos for his stimulating remarks concerning the implication
(P2) during the CIMPA school Homological methods and representations of non-commutative algebras in
Mar del Plata, Argentina (February 2006).

1 Basic definitions and preparatory lemmata

Reminder on k-categories (see [9] for more details). A k-category is small category C such that for
any z,y € Ob(C) the set ,C, of morphisms from x to y is a k-vector space and such that the composition
of morphisms in C is k-bilinear. A k-category C is called connected if and only if there is no non trivial
partition Ob(C) = E'U F such that ,C; = ,Cy =0 for any z € E,y € F.

All functors between k-categories are supposed to be k-linear. If F: £ — B and F': &' — B are
functors between k-categories, then F' and I’ are called equivalent if there exists a commutative diagram:

~

E——=¢'

B——=

where horizontal arrows are isomorphisms and where the bottom horizontal arrow restricts to the identity
map on Ob(B). A locally bounded k-category is a k-category C verifying the following conditions:

. distinct objects in C are not isomorphic,
. for any x € Ob(C), the k-vector spaces @yGOb(c) yCe and EByGOb(c) +Cy are finite dimensional,
. for any x € Ob(C), the k-algebra ,C, is local.

For example, let A be a basic finite dimensional k-algebra (basic means that A is the direct sum of
pairwise non-isomorphic indecomposable projective A-modules) and let {e1,...,en} be a complete set of
pairwise orthogonal primitive idempotents. Then A can be viewed as a locally bounded k-category as
follows: ei,..., e, are the objects of A, the space of morphisms from e; to e; is equal to e; Ae; for any i, j
and the composition of morphisms is induced by the product in A. Notice that different choices for the
primitive idempotents ey, ..., e, give rise to isomorphic k-categories. In this text we shall always consider
such an algebra A as a locally bounded k-category.

Modules over k-categories. If C is a k-category, a (left) C-module is a k-linear functor M: C —
MOD(k) where MOD(k) is the category of k-vector spaces. A morphism of C-modules M — N is a
k-linear natural transformation of functors. The category of C-modules is denoted by MOD(C).

A C-module M is called locally finite dimensional (resp. finite dimensional) if and only if M(x) is
finite dimensional for any @ € Ob(C) (resp. @, cop(c) M (¢) is finite dimensional). The category of locally
finite dimensional (resp. finite dimensional) C-modules is denoted by Mod(C) (resp. mod(C)). Notice
that if C = A as above, then Mod(C) = mod(C).

We shall write IND(C) (resp. Ind(C), resp. ind(C)) for the full subcategory of MOD(C) (resp. of
Mod(C), resp. of mod(C)) of indecomposable C-modules. Finally, if M = N1 @ ... N: with N; € ind(C)
for any ¢, then M is called basic if and only if Ni,..., N are pairwise non isomorphic.

Tilting modules. Let A be a basic finite dimensional k-algebra. A tilting A-module (see [10], [14]
and [19]) is a module T' € mod(A) verifying the following conditions:
(T'1) T has finite projective dimension (i.e. pda(T) < c0),
(T2) Ext'y(T,T) =0 for any i > 0 (i.e. T is selforthogonal),
(T'3) there is an exact sequence in mod(A): 0 = A —= Ty — ... — T, — 0 with T1,..., T € add(T') (this

last property means that 71,...,T, are direct sums of direct summands of 7).

A module which satisfies conditions (7'1) and (7'2) above is called an exceptional module. Assume that
T is a tilting A-module. Then, T is also a tilting Enda(T")-module for the following action: f.t = f(t)
for f € Enda(T) and t € T. Assume moreover that T is basic as an A-module and fix a decomposition

T=T1®...®&T, with T1,...,T, € ind(A). This defines a decomposition of the unit of Enda(T) into a
sum of primitive pairwise orthogonal idempotents so that B := Enda(T) is a locally bounded k-category



as follows: the set of objects is {T1,...,T»} and for any i, the space of morphisms r; Br, is equal to
Homa(T;,Tj). For any « € Ob(A), T'(z) is an indecomposable B-module:

B — MOD(k)
T, Ob(B) — Ti(z)
we 7,Br, — Ti(z) =5 Tj(z)

and T' = @, cop(a) (). Finally, the following functor is an isomorphism of k-categories:

PA: A — Endp(T)
z € Ob(A) +— T(z) € Ob(Endp(T))

we yAe — T(x) 7 T(y)

For more details on the above properties and for a more general study of Enda(T"), we refer the reader
to [10], [13], [14] and [19].
Let 74 be the set of basic tilting A-modules up to isomorphism. Then 74 is endowed with a partial order
introduced in [21] and defined as follows. If T' € 74, the right perpendicular category T+ of T'is defined
by (see [7]):

T+ = {X € mod(A) | (Vi > 1) Ext'y(T,X) =0}

If T’ € T4 is another basic tilting module, we write T < 7" provided that T+ C Tt In particular, we
have T' < A for any T' € 74. In [15], D. Happel and L. Unger have proved that the Hasse diagram E)A of
T4 is as follows. The vertices in E}A are the elements in 74 and there is an arrow T — T in E)A if and only
it T=X@T with X € ind(A), T =Y @ T with Y € ind(A) and there exists a non split exact sequence
0— X% MY —0in mod(A) with M € add(T). In such a situation, u (resp. v) is the left (resp.
right) add(T)-approximation of X (resp. Y). For more details on E)A, we refer the reader to [15] and [16].

Galois coverings of k-categories. Let G be a group. A free G-category is a k-category £ endowed
with a morphism of groups G — Aut(€) such that the induced action of G on Ob(€) is free. In this case,
there exists a (unique) quotient &€ — £/G of € by G in the category of k-categories. With this property,
a Galois covering of B with group G is by definition a functor F': £ — B endowed with a group morphism
G — Aut(F) ={g € Aut(€) | F o g = F} and verifying the following facts:

. the group morphism G — Aut(F) — Aut(€) endows £ with a structure of free G-category,

. the functor £/G T, B induced by F is an isomorphism.

This definition implies that the group morphism G — Aut(F) is one-to-one (actually one can show that
this is an isomorphism when £ is connected). Moreover for any = € Ob(B) the set F~'(x) is non empty
and called the fiber of F at . It verifies F~'(F(z)) = G.x for any = € Ob(E).

We recall that Galois coverings are particular cases of covering functors (see [9]). A covering functor
is a k-linear functor F': £ — B such that for any z,y € &, the following mappings induced by F are
bijective:

EB v & — F(y)Br() and @ v = F)Br)
Yy EF~1(F(y)) x/ €F~1(F(2))
Remark that a covering functor is not supposed to restrict to a surjective mapping on objects. However,
a covering functor is an isomorphism of k-categories if and only if it restricts to a bijective mapping on
objects. Using basic linear algebra arguments it is easy to prove the following useful lemma:

Lemma 1.1. Let p,q be k-linear functors such that the composition q o p is defined. Then p,q and qop
are covering functors as soon as two of them are so.

If F: £ — Bis a Galois covering with group G and with B connected then £ need not be connected. In

such a case, if £ = [] & where the &;’s are the connected components of £, then for each 4, the following
i€l
functor:

is a Galois covering with group:

Gii={g € G| g(Ob(E)) NOB(E) # 0} = {g € G | g(O(E:)) = Ob(EN}



Moreover, if ¢,j € I then the groups G; and G; are conjugated in G and there exists a commutative

diagram:
g—— = s
B

where the horizontal arrow is an isomorphism. This implies that G acts transitively on the set {&; | ¢ € I}
of the connected components of £. Notice that all these facts may be false if 3 is not connected.

Two Galois coverings of B are called equivalent if and only if they are isomorphic as functors between
k-categories (see above, this implies that the groups of the Galois coverings are isomorphic). The equiv-
alence class of a Galois covering F' will be denoted by [F]. Finally, we shall say for short that a Galois
covering £ — B is connected if and only if € is connected and locally bounded (this implies that B is
connected and locally bounded, see [12, 1.2]).

Simply connected locally bounded k-categories. Let B be a locally bounded k-category. Then
B is called simply connected if and only if there is no proper connected Galois covering of B (proper
means with non trivial group). This definition is equivalent to the original one (see [18] for the triangular
case and [17, Prop. 4.1] for the non-triangular case) which was introduced in [1]: B is simply connected
if and only if 71 (@B, I) = 1 for any admissible presentation kQg/I ~ B of B (see [18] for the definition of
m1(Qs,1)).

Basic notions on covering techniques (see [9] and [20]). Let F': £ — B be a Galois covering with
group G. The G-action on & gives rise to an action of G on MOD(E): if M € MOD(E) and g € G, then
IM :=Fog '€ MOD(E). Moreover, F defines two additive functors Fy: MOD(E) — MOD(B) (the
push-down functor) and F.: MOD(B) — MOD(E) (the pull-up functor) with the following properties
(for more details we refer the reader to [9]):

. FM=MoF forany M € MOD(B),

. if M € MOD(E), then (FAM) (z) = @ ,rcp-102) M(z'") for any x € Ob(B). If u € 4&, then the
restriction of (F\M) (F(u)) to M(g.z) (for g.x € F~*(F(z)) = G.z) is equal to M(g.u): M(g.x) —
M(g.y),

. F\ and F. are exact and send projective modules to projective modules,

- INE = P e B and F.B ~ &, where £ (resp. B) is the &-module  — @, o) vz (resp. the
B-module z — @, coys) vBe)s

. FFy=@,c “Idvone)

. if X € MOD(B) verifies X ~ F\Y for some Y € MOD(E), then I\F.X ~ P s X,

. Fx(mod(€)) € mod(B), Fx(Mod(E)) C Mod(B), F.(Mod(B)) C Mod(£),

. DoF.=F.oD and D o F)moa(e) = Fx © Djmoa(s) where D = Homy(?,k) is the usual duality,

. F\ is left adjoint to F.,

. Do FyoD is right adjoint to F. (in particular, there is a functorial isomorphism Homg(F.M,N) ~
Homp(M, FAN) for any M € MOD(B) and any N € mod(£)).

. for any M, N € MOD(£), the following mappings induced by F\ are bijective:

P Home (M, N) — Homg(F\xM,FAN) and @ Home(M, °N) — Homs(FxM, FAN)
geG geG

These properties give the following result which will be used many times in this text:
Lemma 1.2. If M € MOD(E) (resp. M € MOD(B)) has finite projective dimension, then so does FxM
(resp. F.(M)).
Let M € MOD(E), N € MOD(B) and j > 1. There is an isomorphism of vector spaces:
Extly(FA\M,N) ~ Ext.(M, F.N)

Moreover, if M € mod(E) then there is an isomorphism of vector spaces:

Extl(F.N,M) ~ Ext};(N, F\N)



Proof: The first assertion is due to the fact that F. and F) are exact and send projective modules
to projective modules. For the same reasons, F. and F) induce F.: D(MOD(B)) — D(MOD(E)) and
Fx: D(MOD(E)) — D(MOD(B)) respectively and the adjunctions (Fx, F.) and (F., Fx) at the level
of module categories give rise to adjunctions at the level of derived categories. Since EztZ(X,Y) =
Hompope)) (Y, X[j]) we get the announced isomorphisms. ]

Remark that an isomorphism of k-categories is a particular case of Galois covering. When F' is an
isomorphism, F. and F have additional properties as shows the following lemma whose proof is a direct
consequence of the definition of the push-down and pull-up functors.

Lemma 1.3. Assume that F': &€ — B is an isomorphism of k-categories. Then F.F)\ = Idyop(e) and
FAF. = IdMOD(B)-

Modules of the first kind. Let F': £ — B be a Galois covering with group G. A B-module M is
called of the first kind w.r.t. F if and only if for any indecomposable direct summand N of M there exists
N € MOD(E) such that N ~ Fy\N. We will denote by ind:(B) (resp. modi(B)) the full subcategory of
ind(B) (resp. of mod(B)) of modules of the first kind w.r.t. F'. Notice the following properties of ind; (B):

. if M €indi(B) and N € MOD(E) verify M ~ F\N, then N € ind(E),

. if M € indi(B) and N, N € MOD(E) verify M ~ FyN ~ Fy\N’, then there exists g € G such that

N'~ 9N.

If B is connected and if £ = [],.; &, where the &’s are the connected components of £, then an
indecomposable B-module M is of the first kind w.r.t. F if and only if it is of the first kind w.r.t.
Fi: & — & — B for any ¢ € I. More precisely, we have the following well know lemma where we keep
the established notations.

Lemma 1.4. Let M € ind(B). Ifﬁ € ind(€) is such that F\M ~ M, then there is a unique i € I such
that M € ind(&;). In such a case, we have M ~ (F;)xM. Moreover, if j € I then there exists g € G such
that g(&;) = &;, and for any such g we have: M € ind(&;) and (Fj)x M ~ M.

Throughout this text A will denote a basic and connected finite dimensional k-algebra and n will
denote the rank of its Grothendieck group Ko(A).

2 Galois coverings associated with modules of the first kind

Throughout this section we will use the following data:
- F: C — A a Galois covering with group G
ST =T1P.. PBTn € mod(A) (with T; € ind(A)) a basic tilting A-module of the first kind w.r.t.
F,
- Ai: F\(T)) — T; an isomorphism with T; € ind(C), for every i € {1,...,n}.
Let B = Enda(T). With these data, we wish to:
1. construct a Galois covering F, \, with group G of B,
2. study the dependence of the equivalence class of F@m_ on the data ﬁ-, i and on the choice of F' in
its equivalence class [F],

3. repeat the construction made at the first step starting from 7' (viewed as a basic tilting B-module)
and the Galois covering F. , . This will give a Galois covering of Endp (") which will be compared

with I using the isomorphism pa: A = Endg(T).

2.1 Construction of the Galois covering 7%

Let Ende (P, ; T:) be the following k-category:

g5t

. the set of objects is { 9T} | g€ &, i€ {1,...,n}} (°T: and g,j—\jj are considered as different objects
if (i,9) # (4,9)),

. the space of morphisms from 9T} to hf’j is equal to Homc(gﬁ7 hf’j),

. the composition is induced by the composition of morphisms in mod(C).



Remark 2.1. 1. The C-modules @w 9T, and F.T are tsomorphic.

2. If G is a finite group, then C is a finite dimensional k-algebra. In particular, Ende(D, ; gﬁ) and
Endc(F.T) are isomorphic k-algebras.

3. The G-action on mod(C) naturally endows Ende (D, , gﬁ) with a structure of free G-category.

4. Ende(D, , gﬁ) is locally bounded if and only if G =1 for any i. This is equivalent to say that
F.T is a basic C-module.

The isomorphisms A1, ..., A, define the following functor:
FfivAi: 5ndc(@/\gyi IT) — B
9T — T;
g’f’i o, hfj — T Aj Fhu A;l Tj

Lemma 2.2. The functor Fz, | : Ende (D, , gﬁ-) — B is a Galois covering with group G.

Proof: For simplicity, we shall write C’ for Ende(ED, , I9T}) and F': C' — B for Fz \,- Recall (see
Remark 2.1) that G acts freely on C’. Moreover, we have F'og = F' by construction of F’. So, F’ defines
a commutative diagram of k-categories and k-linear functors:

¢’ (%)

|

C'/G——B
F/

Where C’ — C'/G is the quotient functor. From the properties verified by F\ (see Section 1) we infer
that F’ is a covering functor. Since C' — C’/G is a also covering functor we deduce that so is F’ (see
Lemma 1.1). Finally, F” restricts to a bijective mapping Ob(C')/G = {*T; | g€ G, i € {1,...,n}}/G —
Ob(B) = {T\,...,T»} so I’ is an isomorphism. Thus, F’ is a Galois covering with group G. |

Since Fz \, isa Galois covering, it is natural to ask whether Endc (€D, B gﬁ-) is connected or not. The
following lemma partially answers this question.
Lemma 2.3. IfC is not connected, then Sndc(aaiyg gﬁ) 18 mot connected.
Proof: For simplicity let us write C’ for Ende (D, , gYA’,-). Assume that C is not connected and let

C = [1,c;Cx where the C;’s are the connected components of C. For i € {1,...,n}, we have T, € ind(C),
so there exists a unique x; € I such that ﬁ € ind(Cy,). Let us set:

Gay = {g €G | 9(Csy) = Cﬂcl}

Let ¢ € {1,...,n}, since G acts transitively on {C, | « € I}, there exists g; € G such that ¢;(Cz,) = Cq,
(in particular g1 € G4, ). Therefore:

—1

(Vie{l,....,n}) % T, €mod(Cs,)
Let us set O to be the following set of objects of C':
O:={T|ie{l,...,n} and ggi € Ga, } C Ob(C")

Remark that O satisfies the following:
. O # 0 because Ty € O.

. Since C is not connected and since G acts transitively on {C, | * € I} we have G;; C G. Let
g € G\Gq,, then gg1 € Gz, and 9T1 ¢ O. Hence O C Ob(C).

. For any 9T} € Ob(C"), we have 9T, € O if and only if 9T} € ind(Ce, ). As a consequence, there is no
non zero morphism in C’ between an object in O and an object in Ob(C’)\O.

As a consequence, C’' is not connected. |



2.2 Independence of the equivalence class of [ , on the data F, YA}, A

In the two following lemmas, we examine the dependence of the equivalence class [Fﬁ Ai] of Fz 5, on the
choice of fl, e ,fn, A1,...,An and on the choice of F in its equivalence class [F].

Lemma 2.4. For each i € {1,...,n}, let pi: FxT; — T; be an isomorphism with T; € ind(C). Then
Fﬁ' Iy and FTi,m are equivalent.

Proof: We need to exhibit a commutative square:

Ende(@D,; , “Ti) — Ende(@, , °T:) O]

FT@M\L lpﬁv*i
P

B B

where ¢, 1) are isomorphisms and where ¢ (x) = z for any « € Ob(B) = {T1,...,Tn}. Let i € {1,...,n}.
We have F\T; ~T; ~ F\T;, so there exists an isomorphism 6; : T, = 9T; with gi € G. Let us define ¢
by:
p: Ende(D,, IT,) — Sndc(@&g 9T3)
9T, —_— 99 T,

= w pe= ~ R w997t
IT; % T s 99T, i

hg; fj
Then ¢ is an isomorphism of k-categories. Notice that ; defines an isomorphism F)6;: T — FAYA’,-.
So we can define 1 by:
P B — B
T; — T
T, =T, — (u)
where ¢ (u) is the composition:

1 1 -1
A PN = w " — F\6; A
T, = BT, 2 BT 25T 5 T) = BT, 25 BT, 5Ty

So % is an isomorphism of k-categories which restricts to the identity map on Ob(B). Moreover ¢ and
make (x) commutative. u

In the following lemma, we show that, under additional hypotheses on 7', the equivalence class of
Fz. \, does not depend on the choice of F in [F].

Lemma 2.5. Assume that F': C' — A is a Galois covering (with group G) equivalent to F and assume

that T verifies the following condition:

(Har):b.T; ~T; for any i and for any isomorphism 1p: A = A which restricts to the identity map on
Ob(A).”

Then T 1s of the first kind w.r.t. F'. For each i € {1,...,n} let u;: F{T; — T; be an isomorphism with

Ti € ind(C'). Then Fr L, and Fg - are equivalent.

Proof: Let us fix an isomorphism between F and F':

o —2s¢

| ¢ lF

A——A

Let us set v: Aut(C') — Aut(C) to be the isomorphism of groups (recall that Aut(C’) = G and Aut(C) =
G):
v: Aut(C') — Aut(C)
g = pogoy
Recall that any g € Aut(C) = G (resp. g € Aut(C') = G) defines an automorphism g of MOD(C) (resp.
of MOD(C')). Therefore we have an equality of functors MOD(C') — MOD(A):

1

(Vg € Aut(C")) @rog=r(g)opx



Let us fix an isomorphism 6;: ¢.T; — T, for each i, and let us set T; = <pﬁ In particular: p)\T; = T
(see Lemma 1.3). Since ¥.¢x = Idyop(a) (loc. cit.) and ¢ F' = Fo, we infer that:

F\T: = Y F3T; = . FaoaT: = 1/1F>\ﬁ
Therefore, we get for each i an isomorphism p;: F{T; — T; equal to the composition:
wi: F\T; = 1/J4F,\ﬁ' RN . T; LN T

This proves that T is of the first kind w.r.t. F’. According to the preceding subsection, this defines the
Galois covering with group G:
Py, Ende (@D T:) — B
g5t
Thanks to Lemma 2.4 we only need to prove that F’ ~and Fg .\, are equivalent.

Tipi

First, we have the following functor induced by ¢x:

7 Ende(@®,, T —  Ende(®,, °Th)
9T, — V(g)T - 90)\ 9T,
QT,L' i) th [ V(g)T it u(h)fl—}
Since v: G — G is an isomorphism and because of the equalities pxp. = Idyop(c) and ¢.ox = Idyop(e)

(see Lemma 1.3), the functor ¥ is an isomorphism.
Secondly, we have the following functor induced by x:

P B — B
T; — T;
P (05 M ub;)

T, 5T, — T —2— T
Since Y. = Y.\ = Idpop(a), the functor % is a well defined isomorphism and restricts to the identity

map on Ob(B). Therefore, we have a diagram whose horizontal arrows are isomorphisms and whose
bottom horizontal arrow restricts to the identity map on the set of objects:

Ende(D,, °T:) — = Ende(@, , °T))

FL F-
T,y \L l Ty N
P

B B

. . . . . a3l u a3l
This diagram is commutative, indeed, for any 9T; - "T'; we have:

TR () = BlusF)ur) = a0 s Fo(wu6)
= U (0; 059 (AJ)Fﬁ(U $.(X) 710, 16:)
=\ (z/;AFA)(u) A because 1x1. = Idrop(e)
= )\3 (Fxex)(u) )\;1 because Fp = ¢ F’
= Iy, (ex(u) = Fy,  9(u)
This proves that F%lm and Fy , - are equivalent. [ |

Later, we shall prove that if T is a basic tilting A-module lying in the connected component of
K a containing A, then the hypothesis (Ha,r) in the preceding lemma is automatically verified. As a
consequence, for these tilting A-modules, the property “to be of the first kind w.r.t. an equivalence class of
Galois coverings of A” does make sense. However, the hypothesis (Ha,7) is not verified for any A-module
T as the following example shows.

Example 2.6. Let A be the path algebra of the following quiver:

2
N
l———"3



Here n = 3 and we have an isomorphism of k-categories: : A =5 A such that (z) = x for any
x € Ob(A), Y(a) =a+cb, Y(b) =b and ¢(c) = c. For any integer i, let T; be the following A-module:

k
Then:

- T; and Ti+1 are not isomorphic, for any i,

- if car(k) # 2, then Th, T2, T3 are pairwise non isomorphic,

- .1 =Tipa for any i.
In particular, if car(k) # 2, then hypothesis (Ha,r) is not satisfied for T =T & T> ® T3. Remark that T
is not tilting. Indeed, for any i, we have Ext)(T:,T;) ~ k because Ta(T;) ~ T;.

Remark 2.1, Lemma 2.4 and Lemma 2.5 justify the following definition:
Definition 2.7. Assume that the hypothesis (Ha,r) is satisfied (see Lemma 2.5). The equivalence class
[F] of F and the basic tilting A-module T =T1 @@ ... D Ty of the first kind w.r.t. [F] (with T; € ind(A))

uniquely define an equivalence class of Galois covering of B with group G and which admits Fz 5, 08 a
representative. This equivalence class will be denoted by [Flr: Ende(F.T) — B.

2.3 Comparison of [F] and ([F]|r),

For short, let us write C’ for Endc(D,, , 9T,) and F' for F7. , - In this subsection we shall not assume
that the hypothesis (Ha,r) of Lemma 2.5 is satisfied, except for the last proposition. Starting from F
and from the isomorphisms \;: FAﬁ- = Ty, i€ {1,...,n}, we have constructed the Galois covering F’ of
B. One may try to perform the same construction starting from F' in order to get a Galois covering F”’
of Endg(T) ~ A and eventually compare F"' with F. In this purpose, we need to prove that T is of the
first kind w.r.t. F'. Let us fix a lifting L: Ob(A) — Ob(C) of the surjective mapping F': Ob(C) — Ob(A).

—

For x € Ob(A), let T(x) be the C’'-module such that:
- T(@)(T)) = Ti(g~"L()) for any 9T; € Ob(C),
- /(;) (gf’,— han hﬁ) is equal to ﬁ-(g*lL(x)) RGN fj(hflL(ac)) for any u € thC;f.
Therefore, for any ¢ € {1,...,n}, we have:
(BT@) (1) = PT@(T) = P Ty L) = (RT) (@)

geG geG

(Xi)a
LAY

So we may set (tz)1; : (Fﬂ{(;)) (T:) — (T(x)) (T3) to be equal to (F\T})(x) Ti(x).

Lemma 2.8. The linear isomorphisms (uz)r; (¢ € {1,...,n}) define an isomorphism of B-modules:

Proof: We only need to prove that p, is a morphism of B-modules. Let u € o7 C’f so that F'(u) €
T Br,, and let us prove that the following diagram commutes:

S (b)) Ty =(Ni)=
(FT(@)) (1) T() (*)
(FT@) (F’(u))l (T(@)(F (u)=F(u)z

() ;=)

(RT@) (1) Ty(a)

—

Let g € G and let us compute the restriction of F'(u). o (A:)x to T(x)(9T;). Recall that F’(u). is equal
to the composition:

A7t * ~ u = j)x
Ti@) == (B 1) () 225 (BT (@) 225 1 @)

10



Moreover, the restriction of (Fau), to f(;)(gﬁ) = Ti(g "L((z)) is (by construction of the push-down
functor) equal to Ti(g~'L(z)) BN T;(t 'sg~'L(z)). Thus, the restriction of F'(u)s o (Ai)x to
T(z)( gﬁ-) is equal to the composition:

T(g ™' L(x)) =9 7 (1 sg ™ Liw)) 225 1y () (i)

— o~

On the other hand, the restriction of (Fﬂ{(;)) (F'(u)) to T(z)(*Ty) = T'(z)( gsflsﬁ) is (by construction

of the push-down functor) equal to:

T(@)(oTy) T 0, F3y(oe ey (ii)

—

and T(m)(gsflu) = (gsflu) . = Ugg-1p(y)- This last equality, together with (i) and (ii), proves that
L(x

the diagram (*) commutes. |

Thanks to Lemma 2.8, we have a Galois covering Filf(?) w Ender (D, , 91/’(;)) — Endp(T) with

group G. For short, we shall write C” for Ende (D, , ?T'(z)) and F” for Filf(?) i The following lemma
relates F” and F.

Lemma 2.9. There ezists an isomorphism of k-categories 1): C == C" such that the following diagram is
commutative:

c——=c"

A—22 Endp(T)

In particular, F and p;llF" are equivalent as Galois coverings of A.

Proof: Since G acts freely on Ob(C) and since L: Ob(A) — Ob(C) lifts F': Ob(C) — Ob(A), any = € Ob(C)
is equal to gL(z") with g € G,z’ € Ob(A) uniquely determined by =. Let ¢: C — C” be as follows:

—

- ¥(gL(x)) = *T(z) for any gL(z) € OB(C),
- for u € 4y Cor(a), We let (u): gY/’(;) — hT/’(y\) be the morphism of C’-modules such that for any
*T; € Ob(C), Y(u) ., is equal to:
Ti(s ™ u): Ti(s™'gL(x)) — Ti(s™'hL(y))
Let us prove the following facts:
1. 9(u) is a morphism of C’-modules for any u € pr(y)Cyr(z)s
2. 1 is a functor,
3. "oty =paokF,

4. ¢ is an isomorphism.

1) Let w € pr(y)Cyr(z)- We need to prove that for any f € o7 cgf_, the following diagram commutes:
IT(x)(°T3) "T(y)(°Ty)
QT(I)(f)J/ J{hTf(\y)(f)
' Vg, '
IT(x)("T}) "T(y)("Ty)
By construction, this diagram is equal to:
~ 1 ’_:[\“.L(s 1u) —~ 1
Ti(s™ gL(x)) Ti(s™ hL(y))
fgL(m)l lfhuy)
Tt w)

Ti(t1gL(x)) T;(t ' hL(y))

11



and the latter is commutative because f: Ty — tfj is a morphism of C-modules. This proves that t(u)
is a morphism of C’-modules for any morphism u in C.
2) One easily checks that (1,50,)) = Id, 7 for any gL(z) € Ob(C). Let u,v be morphisms in C
such that the composition vu exists. Then, for any Sfj € 0b(C):
() 0 bWz, = (v).z, 0 V(w).g, = Ty(s v) 0 Ty(s ™ w) = (s (wou) = w(vou).s,

J

So 9: C — C" is a functor.
3) Let gL(x) € Ob(C). Then:

—

F"otp(gL(z)) = F'(*T(x)) = T(x) = pa(x) = pa o F(gL(x))
Let u € pr(y)Cyr(x) and let us prove that F”"¢(u) = paF (u). Let T; € Ob(B). Then:

_— - (FL @), — Ay
Py, = Ta) S (KT@) (1) ———5 (B T(R) (T) 22 Tuy)

(paF(w)y, = Ti(x) 2 1)

— —

Recall that (Fg Q:F(Z)) (T)) = @, °T(@)(°T)) and that 9T (z)(*Ty) = Ti(s 'gL(x)), for any s € G.
Let s € G. Then, the restriction of (Fx(¢(u))), to 97{(;)( *T}) is equal to:

~ w(u)s@_:fi(sflu) ~ .

Ti(s™ gL(z)) ———— Ti(s” " hL(y))
Therefore, for any s € G, the restriction of (A; ")y o (F"9(u))7, o (Ai)e (resp. (A, 1)y o (paF (w))y, o (Ai)s)
to 977;)(5?,-) = ﬁ-(sflgL(ac)) is equal to:

Ti(sflu)

Ti(s 'gL(x)) ———"— Ti(s'hL(y))
A7 Dy Ti(F@) (M To(s AL ()

resp. ﬁ-(s*lgL(x))

Since X\;: F (Sﬁ) — T; is an isomorphism of A-modules, (A; '), o T;(F(u)) o (i)« equals Ti(s ' u).
We infer that (A\;j'), o (F"¢(u)) g, © (Ai)a and A7)y o (paF(u))g, © (Ai)z coincide on T(s 'gL(z)),
for any s € G. As a consequence, (F"¢(u));, = (paF(u))y,, for any T; € Ob(B). This proves that
F" o4(u) = pa o F(u) for any morphism v in C. In other words: F" o) = pao F.

4) Let us prove that 1 is an isomorphism. Since F”' and paoF are covering functors, Lemma 1.1 implies
that so does 1. Since v restricts to a bijective mapping on objects, we deduce that i is an isomorphism. B

Thanks to Lemma 2.9 we can complete Lemma 2.3 concerning the connectedness of C’'. The following
proposition will be useful in the sequel, it is a direct consequence of Lemma 2.3 and Lemma 2.9.

Proposition 2.10. C is connected if and only if C' = Sndc(@g’iﬁ) is connected.

We finish this subsection with the following proposition which compares the equivalence class of F’
and ([F]r)r when the latter is well defined (see Definition 2.7). It is a direct consequence of Lemma 2.9.
Notice that p,' o ([F]r)r is an equivalence class of Galois coverings of A.

Proposition 2.11. Assume that both conditions (Ha,r) and (Hp,r) are satisfied. Then, the equivalence
class [F)] of F coincides with p' o ([F]r)r.

3 Tilting modules of the first kind

Let F': C — A be a Galois covering with group G and with C locally bounded. The aim of this section is
to give “simple” sufficient conditions which guarantee the following facts:

- T is of the first kind w.r.t. F,
- F.T is a basic C-module,

- the hypothesis (Ha,r) is satisfied (see Lemma 2.5), i.e. ©.N ~ N for any direct summand N of T
and for any automorphism v: A = A which restricts to the identity map on objects.

We begin with the following proposition.

12



Proposition 3.1. Assume that T and T’ lie in a same connected component of E)A. Then:
T € modi(A) & T' € modi(A)

In particular, if T' = A or T' = DA, then T € modi(A).

Proof: Since A,DA € modi(A), we only need to prove the equivalence of the proposition under the
assumption: there is an arrow 7 — T” in K 4. Let us assume that T € mod;(A). Since T — T is an
arrow in K A, we have the following data:

. T=X@T with X € ind(A),
. T'=Y@T with Y € ind(A),
.€:0— X — M —Y — 0 a non split exact sequence in mod(A) with M € add(T).

Thus, we only need to prove that Y € modi(A) in order to get T’ € modi(A). In this purpose, we will
need the following lemma.

Lemma 3.2. Lete: 0 — X 5% M — Y — 0 be an ezact sequence in mod(A) verifying the following
hypotheses:

. X,Y €ind(A) and X = F\X (with X € ind(C)),
. M=M&...D M: where M; = F\M, € ind(A) (with M, € ind(C)), for every 1,
. Bxty (Y, M) = 0.

Then (£) is isomorphic to an ezact sequence in mod(A):

/
FAul

FAUI
O—>X—t>M1@...@MT—>Y—>O
where u; € Homc()A(7 gi]\/Z,-) for some g; € G, for every 1.

Proof of Lemma 3.2: For short, we shall say that u € Homa (X, M;) is homogeneous of degree g € G
if and only if u = Fau' with ' € Home (X, 9M;). Recall from Section 1 that any v € Homa(X, M;)
is (uniquely) the sum of d homogeneous morphisms with pairwise different degrees (with d > 0). Let us

U1
write u = | : | with u;: X — M; for each i. We may assume that u;: X — M; is not homogeneous.
Ut
Thus:
ur =h1+...+hg
where d > 2 and h1,...,hq: X — M; are non zero homogeneous morphisms of pairwise different degree.

In order to prove the lemma, it suffices to prove the following property which we denote by (P):
“ (e) is isomorphic to an ezact sequence of the form:

up
U2

Ut

0=X —MP. PM -y -0 (")

where uy is the sum of at most d — 1 non zero homogeneous morphisms of pairwise different degree.

For simplicity we adopt the following notations:
M=M@--- @M, (so M =MGDM),
u2

:X—>M(sou:{uﬂl} : X — M1 M),

gl
I

Ut

. E:h2+.‘.+hdiX—>M1 (SOU1=h1+E).

13



From Homa(e, M1) we get the exact sequence:
Homa(My @ M, My) “ Homa(X, Mi) — Ext}y(Y, M) =0
So there exists [\, u]: M1 @ M — M such that hy = [\, u]u. Hence:
hi = Au1 + p@ = Mha + N + p@ (4)
Let us distinguish two cases whether A € Enda (M) is invertible or nilpotent (recall that My € ind(A)):
o If )\ is invertible then:
0:= B o } MiEPM — M PM

is invertible. Using (i) we deduce an isomorphism of exact sequences:

U1
0—>X—>M1€BM—>Y—>O (e)
k)
O—>X—>M1 M—>Y —>0 ()

Since hi: X — M; is homogeneous, (¢') fits property (P). So (P) is satisfied in this case.
o If A € Enda (M) is nilpotent, let p > 0 be such that A? = 0. Using (i) we get the following equalities:

hi = MNhi4+ A2+ Nh+ (A4 Idy, )@
hi = Mh4+ WX RN A+ T )T
hi = MNhi+ P+ NPT A+ Tda ) pT

Since \? = 0 and u; = h1 + h we infer that:
w = Nh+ Npyu

where \' := Idpy, + A+ ...+ AP e Enda (M) is invertible. So we have an isomorphism:

0:= ﬁ) Id} Ml@MaMl@M

and consequently we have an isomorphism of exact sequences:

h

O—>X—>M1€BM—>Y—>O ()
N

O—>X—>M1€BM—>Y—>0 ()

where h = ha 4. ..+ h, is the sum of p— 1 non zero homogeneous morphisms of pairwise different degrees.
So (P) is satisfied in this case. This finishes the proof of the lemma. |

Now we can prove that Y € modi(A). Thanks to the preceding lemma, and with the same notations,
we know that (¢) is isomorphic to an exact sequence in mod(A):

/
F)\'U/l

Fu
OHX#)Ml@...MtHYHO ()

14



where u; € Homc()?’7 gi ]/\4\1) for some g; € G, for every i. Therefore (recall that F) is exact):

Y ~ Coker ~ Fy | Coker | :
Fi(uy) uj
This proves that Y € modi(A). Therefore 7" =Y @ T € modi(A).

The proof of the implication 7" € modi(A) = T € modi(A) is similar, excepted that instead of using
Lemma 3.2 we use a dual version:

Lemma 3.3. Let e: 0 — X — M 5 Y — 0 be an ezact sequence in mod(A) verifying the following
hypotheses:

. X,Y €ind(A) and Y = F\Y (with Y € ind(C)),
. M=M&...6BM; where M; = F\M; € ind(A) (with M, € ind(C)), for every i,
. Bxty (M, X) =0.

Then (£) is isomorphic to an ezact sequence in mod(A):

/
F/\’Ul

F)(l)l
0—>X—>M1@...EBMT—t>Y—>O
where v} € Homc(‘“]\/i,-7 )A/) for some g; € G, for every i.
This finishes the proof of Proposition 3.1. |

Remark 3.4. Proposition 3.1 is similar to part of [12, Thm 3.6] where P. Gabriel proves the following: if
F:C — A is a Galois covering with group G, with C locally bounded and such that G acts freely on ind(C),
then for any connected component C of the Auslander-Reiten quiver of A, all indecomposable modules of
C lie in ind1(A) as soon as any one of them does.

Remark 3.5. The proof of Proposition 8.1 shows that for an arrow T — T’ in E)A such that T,T' €
modi(A) there ezists an exact sequence in mod(C):

0—-X5MILY -0

with the following properties:
.T=RX@T and FrX € ind(A),
T =FRY@T and F\Y € ind(A),

. FxM € add(T).

Recall that K 4 has a Brauer-Thrall type property (see [15, Cor. 2.2]): K 4 is finite and connected if it
—

has a finite connected component. In particular, K 4 is finite and connected if A is of finite representation
type. Using Proposition 3.1, we get the following corollary.

Corollary 3.6. If E)A is finite (e.g. A is of finite representation type), then any T € EA is of the first
kind w.r.t. F.

Now we turn to the second goal of this section: for 7' € modi(A) a basic tilting A-module, give
sufficient conditions for F.T" to be a basic C-module.

Proposition 3.7. Let T, T’ ¢ E}A N modi(A) lie in a same connected component of fA, then:
F.T is a basic C-module < F.T' is a basic C-module.
In particular, if T' = A or T' = DA, then T € modi(A) and F.T is a basic C-module.

Proof: The k-category C is locally bounded so F.A ~ C and F.(DA) ~ DC are basic C-modules.Therefore,
we only need to prove the equivalence of the proposition.Without loss of generality, we may assume
that there is an arrow T — T’ in E)A. Let us assume that F.T is basic and let us prove that so is
F.T’. We will use Remark 3.5 from which the adopt the notations, in particular, the exact sequence
0—X -5 M5 Y — 0in mod(C) will be denoted by (¢). Because F.T is basic and because of the
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properties verified by (¢), we only need to prove that Gy = 1. Let ¢: Y — 9Y be an isomorphism in
mod(C) (with g € G), and let us prove that g = 1. To do this we will exhibit an isomorphism 0: X — 9X.

Notice that: o h
X, "M € add(F.T)
(Vh € G) { hY, "M € add(F.T") (1)

Moreover, thanks to T' € EA and to Fh\F. T = @hEG T (which is true because T is of the first kind w.r.t.
F, see Section 1), we have:

(Vi > 1) Eato(F.T,F.T) ~ Exty(FAF.(T),T) ~ [[ Eota(T,T)=0
hed
In particular:
Exte (M, X) = Exte (M, 7X) =0 ()
With Home (M, 9¢), this last equality gives the exact sequence:

Home(M, M) S Home(M, 9Y) — Exts(M, °X) =0
From this exact sequence, we deduce the existence of ¥ € Home (M, M) such that the following diagram
commutes:
M —">=Yv

gMi>gy

This implies the existence of § € Home (X, X) making commutative the following diagram with exact
rows:

0 X—>M—T=Y 0 @)
g, 9
0 9x 9N 9y 0

We claim that : X — 9X is an isomorphism. The arguments that have been used to get (i) may be
adapted (just replace the use of Home(M, %¢) and of p: Y — 9Y by Homc(?M,e) and o~ ': 9Y — Y)
to get the following commutative diagram with exact rows:

0 I —t> o)\ T 9y 0 (ii)
ell w/l vll
0 X——=M—"—Y 0

In order to show that 6: X — 9X is an isomorphism, let us show that 0’60 € Endc(X) is an isomorphism.
Notice (77) and (4i7) give the following commutative diagram:

0 X - M . Y 0 (iv)
0/01'Xm w'wszl ol
0 X - M - Y 0
In particular we have 7(v)'y) — Ida) = 0, so there exists A € Home (M, X) such that:

W' — Tdas = o\
Therefore:
100 — Idx) = 1)\
Since ¢ is one-to-one, we get 0’0 — idx = A, i.e.
0'0 = Idx + M\

If Ao € Endc(X) was an isomorphism, then ¢: X — M would be a section. This would imply that FA\X is a
direct summand of F\ M. This last property is impossible because: T = F\X @ T, F’xM € add(T) and T
is basic. This contradiction proves that A € Endc(X) is nilpotent. Therefore 6’0 = Idx + A\t € Ende(X)
is invertible. As a consequence, 0: X — 9X is a section. Since X, X € ind(C), we deduce that
0: X — 9X is an isomorphism. But we assumed that F.T is basic, so g = 1. This finishes the proof of
the implication:
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F.T is basic = F.T" is basic.
After exchanging the roles of T and T” in the above arguments, we also prove that:
F.T is basic < F.T" is basic.

—
under the assumption that T'— T’ is an arrow in K 4. This achieves the proof of the proposition. |

Proposition 3.7 has the following corollary which will be useful to prove Theorem 1.
Corollary 3.8. Let F: C — A be a connected Galois covering with group G. Let T =Ti ® ... d Ty
(T; € ind(A)) and T' =T & ... ® Ty, (T; € ind(A)) be basic tilting A-modules lying in a same connected
component of KA. Assume that T, T’ € mod: (A) and fiz isomorphisms X\;: FAﬁ- 5T and i FAT\% =
T with fui’\’l € ind(C) for every i. Then:
I

T, U8 connected < F,l’:,iy)\

, 18 connected.

In particular, if T' = A or T' = DA, then Fy. , is connected.

Proof: Recall that “the Galois covering £ — B is connected” means £ is connected and locally bounded.
Thanks to Remark 2.1 and to Proposition 2.10, we know that Iz , (resp. Fg ) is connected if and

only if F.T (resp. F.T"') is a basic C-module. The corollary is therefore a consequence of Proposition 3.7.H

We finish with the last objective of the section: give “simple” conditions on T' € E)A under which
condition (Ha,r) is satisfied (see Lemma 2.5).

Proposition 3.9. Let T, T’ lie in a same connected component of E)A. Then:
(Ha,r) is satisfied < (H 4 1/) is satisfied
In particular, if T' = A or T' = DA, then (Ha,r) is satisfied.
Proof: Let ¢: A = A be an automorphism restricting to the identity map on objects. Let z € Ob(A)

and let 7 A;: y € Ob(A) — , Az be the indecomposable projective A-module associated to . Then, we
have an isomorphism of A-modules:

?Aac i ¢7A96
u€ yArz — F(u) € (¢.24z) (y) = yAs

So (Ha,a) is satisfied, and similarly (Ha,pa) is satisfied. Therefore, in order to prove the proposition, it
suffices to prove that (Ha,r) is satisfied if and only if (H4 1) is satisfied, for any arrow 7' — T” in K 4.
Assume that T — T is an arrow in EA and that (Ha,r) is satisfied. So we have the data:

- T=X®T with X € ind(A),

-T' =Y @T with Y € ind(A),

- a non split exact sequence 0 — X % M —Y — 0 where M € add(T) and where u: X — M is the

left add(T")-approximation of X.

Notice that in order to prove that (H 4 7/) is satisfied, we only need to prove that .Y ~ Y. Since ¢ is an
automorphism, 1.: mod(A) — mod(A) is an equivalence of abelian categories. Therefore, the sequence

0— . X RN .M — .Y — 0 is non split exact and verifies: ¥.M € add(y.T) and v.u: .X — .M is
the left add(v.T)-approximation of .Y. Moreover 1. X ~ X, 1.M ~ M and ¢.T ~ T because (Ha r) is
satisfied. So, 1.Y is isomorphic to the cokernel of the left add(T)-approximation of X. This implies that
Y ~4.Y. So (H4 1) is satisfied. The converse is dealt with using dual arguments. |

4 Comparison of EA and E)EndA(T) for a tilting A-module T

Let T be a basic tilting A-module. Let B = Enda(T). In the preceding section, we have pointed out
conditions of the form: “T lies in the connected component of E)A containing A”. Since our final objective
(i.e. to compare the Galois coverings of A and of B) is symmetrical between A and B, we ought to find
sufficient conditions for 7' to lie in both connected cgmponents of K4 and K p containing A and B
respectively. Thus, this section is devoted to compare K 4 and K g. For simplicity, if X € mod(A) (resp.
u € Homa(X,Y)) we shall write X7 (resp. ur) for the B-module (resp. the morphism of B-modules)
Homa(X,T) (resp. Homa(u,T): Homa(Y,T) — Homa(X,T)). Also, whenever f is a morphism of
modules, we shall write f. (resp. f*) for the mapping g — fg (resp. g — gf). We begin with a useful
lemma.
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Lemma 4.1. Let X € mod(A) and let T' € E)A be a predecessor of T (i.e. there is an oriented path in
=
K a starting at T' and ending at T ). Then, the is an isomorphism, for any Y € add(T"):

ex’yi HOTTLA(X,Y) — HomB(YT,XT)
u > ur
In particular: Y € ind(A) < Yr € ind(B), for any Y € add(T").
Proof: Remark that 0x 7 is an isomorphism if and only if fx,y is an isomorphism for any Y € add(T").

.
By assumption on T”, there exists a path in K 4 starting at 7" and ending at T'. Let us prove by induction
on the length [ of this path that 0x 7+ is an isomorphism.

Ifl=0then T =T". So 0x 7 = 0x,r is equal to:

Homa(X,T)=Xr — Homp(Tr,Xr)= Homp(B,Xr)
W — (f fu)

So Ox 1 is an isomorphism (with inverse ¢ — ¢(1g)). This proves the lemma when [ = 0.
Now, assume that ! > 0 and assume that 6x 7 is an isomorphism whenever T" is the source of a

path in K a ending at T and with length equal to I — 1. We have a path 7" — T" — ... — T of length [

in E)A. Therefore:
Ox,y is an isomorphism for any Y € add(T") (4)

Moreover, thanks to the arrow 77 — T" in E)A, we have:
(ii) T' =T @Y’ with Y’ € ind(A),
(iii) T" =TE@Y" with Y € ind(A),
(iv) a non split exact sequence 0 — Y’ — M — Y"” — 0 with M € add(T).

Thanks to (¢), (i¢) and (i4i) we only need to prove that €x ys is an isomorphism. Remark that by
assumption on T’ and T we have T € T+ C T”+. This implies in particular that Extl(Y"” T) = 0.
Therefore, (iv) yields an exact sequence in mod(A):

0—-Yy - Mr—Y;:—0
This gives rise to the exact sequence:
0 — Homp(Y7, X1) — Homp(Mr, X1) — Homp (Y1, XT)
On the other hand, (iv) yields the following exact sequence:
0 — Homa(X,Y") — Homa(X,M) — Homa(X,Y")
Therefore, we have a commutative diagram:

00— Homa(X,Y') ——— Homa(X,M) —— Homa(X,Y")

Ox v l GX,M\L Ox vy l

00— HomA(Y%yXT) —_ HomA(MT,XT) E—— HomA(YT",XT)

where the rows are exact and where 0x as and 0x y~ are isomorphisms. This shows that 6x y/ is an
isomorphism. So 0x 7/ is an isomorphism and the induction is finished. This proves the first assertion of
the lemma. The second assertion is due to the functoriality of Ox y. |

Remark 4.2. Assume that A is hereditary. Then Lemma 4.1 still holds if one replaces the hypothesis
"' is a predecessor of T" by "T" > T (i.e. T+ C T'*). The proof is then a classical application of left
add(T)-approzimations.

The following proposition is the base of the link between E)A and E}B: it explains how to associate
suitable tilting B-modules with tilting A-modules.

Proposition 4.3. Let X — Y be an arrow in E)A where X and Y are predecessors of T'. Then:
— —
XreKpeYrekKa

_
If the two conditions of the above equivalence are satisfied, then there is an arrow Yr — X7 in Kp.
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Proof: Let us assume that Y7 € E)B and let us show that X1 € E)B and that there is an arrow Y7 — X7
in £p (the proof of the remaining implication is then obtained by exchanging the roles of X and Y).

The arrow X — Y in E)A gives the following data:
. X =M@ X with M € ind(A),
.Y = N@X with N € ind(A),
. e:0— M-S X' Z N — 0is a non split exact sequence in mod(A) with X’ € add(X).

The tilting A-module Y is a predecessor of 7. Hence T' € T+ C Y and therefore Extl (N, T) = 0. We
infer that Homa(e,T) gives an exact sequence in mod(B):

0— Np 220 X0 2T Myr — 0 (er)

Notice that we also have:
. Xr=MrPXr,
. Yr=NrPXr,
. Xp € add(XT).
Therefore, in order to prove that Xt € E)B and that there is an arrow Yr — X7 in EB, we only need
to prove the following facts:
1) er does not split,
2) Mr € ind(B) and Nt € ind(B),
3) pdp(Xr) < oo,
4) Xr is selforthogonal,
5) Xr is the direct sum of n indecomposable A-modules and X7 is basic.

1) Let us prove that er does not split. If er splits, then i7 is a retraction:
(3 € Homp(Mr, X7)) Idyy =ir o A

Since M is a direct summand of X € EA and since X is a predecessor of T, Lemma 4.1 implies that
A = 7p with m € Homa (X', M). Thus we have (w0 4)r = (Idy)7. Using again Lemma 4.1 we deduce
that 7 o ¢ = Idys which is impossible because € does not split. So er does not split.

2) Lemma 4.1 implies that Mz, Nt € ind(B).

3) Since we assumed that Yr € KB, we have de(YT) < o0, pdp(X7) < oo and pdp(Nr) < oo.
Hence er gives pdp(Mr) < 00. So pdp(Xr) < o0.

4) Let us prove that X7 is selforthogonal. In this purpose, we will use the following lemma.

Lemma 4.4. Let L € add(X). Then, the following morphism induced by pr: Ny — X is surjective:

(pr)* Homp(Xp,Lr) — Homp(Nr,Lr)
f = fopr

Proof: Since L € add(X) and since X € E)A, we have Extl(L, M) = 0. Hence, Homa(L,¢) gives rise
to a surjective morphism induced by p:

px:  Homa(L,X') —» Homa(L,N)
J — pof

Let us apply Lemma 4.1 to X’ € add(Y) and to N € add(Y'). We get the following commutative diagram
where vertical arrows are isomorphisms:

Homa(L,X') —=—~ Homa(L, N)

0L’X,l eL’Nl
(p7)”

Homp(X%, L) — Homg(Nr, L1)

Since p. is surjective, we infer that so is (pr)™. |
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Now we can prove that X7 = X7 @ Mr is selforthogonal. Since Xt € add(Yr) and Yr € E}B, we
o (Vi>1) Extp(Xr,X1)=0 (i)
For each 7 > 1, Homp(Xr,er) gives the following exact sequence:

Eat's (X7, Xp) — Exts (X1, Mr) — Ext'd (X7, Nr)
Since X1, X%, N7 € add(Yr) and Yr € K 5, we get:
(Vi > 1) Eats(Xr, Mr) =0 (i4)

On the other hand, Homp(er, X1) gives the following exact sequences:

Homz (X}, X1) Y2 Homp(Nr, X1) — Extsy(Mr, X1) — Exts (X, Xr1)
Eat's(Nr, X1) — Ext'd ' (Mr, X 1) — Ext'd (X7, Xr) fori>1
These exact sequences together with Lemma 4.4 and the selforthogonality of Y7 imply that:
(Vi > 1) Extis(Mr,X71)=0 (iid)

In order to get the selforthogonality of X7 = Mt @ X it only remains to prove that My is selforthogonal
(because of (i), (#¢) and (éi7)). Notice that Homp(Nr,e7) gives the following exact sequence for each
7> 1:

Eaxt's(Nr, X)) — Extls(Nr, Mr) — Ext'y' (N7, Nr)

Using Yr € E)B and X7, Ny € add(Yr) we deduce that:
(Vi > 1) Eats(Nr,Mr) =0 (iv)

Finally Homp(er, Mr) gives the following exact sequences:

Homs (X, Mr) P27 Homp(Nr, Mr) — Eatly(Mr, M) — Eats(X), Mr)
Extls(Nr, Mr) — Ext'y ' (Mr, Mr) — Ext'd " (X7, Mr) fori>1
These exact sequences together with Lemma 4.4, (ii) and (iv) imply that (recall that X/} € add(Xr)):
(Vi > 1) Extly(Mr, Mr) =0 (v)

From (i), (i4), (iii) and (v) we deduce that X7 = Mr @ X is selforthogonal.

5) To finish, let us prove that Xr is basic and that X is the direct sum of n indecomposable modules.
Notice that X7 is basic because it is a direct summand of the basic tilting B-module Yr. On the other
hand, er does not split, so Exth(Mr, N7) # 0, hence My ¢ add(Yr) and therefore My ¢ add(Xr).
Since Mt € ind(B), we deduce that Xr is basic. Finally, Y7 is by assumption the direct sum of n
indecomposable modules, and X7 and Yr differ by one indecomposable direct summand so Xt is also
the direct sum of n indecomposable modules. |

Remark 4.5. When A is hereditary, Proposition 4.3 has the following generalisation: Let X € EA be

such that X > T, then Xt € E)B. The proof of this generalisation is obtained by replacing the use of the
exact sequence € by a coresolution of X in add(T).

Proposition 4.3 gives the following proposition which will be used in the comparison of the Galois
coverings of A and B. We omit the proof which is immediate using Proposition 4.3.

Proposition 4.6. Let X € E)A be such that there exists a path in E)A starting at X and ending at T'.
— —
Then X1 € K and there exists in KB a path starting at B and ending at X7 .

Proposition 4.3 also allows us to prove the main result of this section. Recall that for a quiver @, we
write Q°P for the opposite quiver (obtained from @ by reversing the arrows).

Theorem 4.7. Let E}A(T) (resp. E}B(T)) be the conver hull of {A, T} (resp. {B,T}) in K 4 (resp.

iy
K B). Then we have an isomorphism of quivers:

— —
a: Ka(T) — Kp(T)°®
X +— Xr=Homa(X,T)

Under this correspondence, A € E}A(T) (resp. T € E)A(T)) is associated with T € EB(T) (resp.
—
Be Kg(T)).
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Proof: Thanks to Proposition 4.3, the mapping « is a well defined morphism of quivers. Thus, it only
—

remains to exhibit an inverse morphism. Notice that Proposition 4.6 implies that K4(T) = {A, T} <

— —

Ks(T) = {B,T} < there is no path in K 4(T) starting at A and ending at 7. Therefore, we may

assume that there is a path starting at A and ending at 7. This assumption implies that any X € E}A(T)
is a predecessor of 7. From [19, Thm 1.5] we know that T is a basic tilting Endg(T)-module and that
we have an isomorphism of k-algebras:

A — Endg(T)

a +— (t—at)

Henceforth, we shall consider A-modules as Endg(T")-modules and vice-versa using the above isomor-
phism. In particular, we have an identification of quivers:

— ~ —
KaT) — Kgnagm(T)
X - X

Therefore, we also have a well defined morphism of quivers:

, — —
o Kp(T)? — Ka(T)
X +— Xr=Homp(X,T)

Let us prove that o/« is an isomorphism. Let X € K A(T). Then X is a predecessor of T'. Therefore,
Lemma 4.1 implies that:

Homp(Homa(X,T),T) ~ Homp(Homa(X,T), Homa(A,T)) ~ Homa(A,X) ~ X

This proves that o'« is an isomorphism of quivers. With the same arguments one also shows that aa’ is
— —
an isomorphism. So does a: KA(T) — Kp(T). u

— —
Notice that K4 and K% are not isomorphic in general. Indeed these quivers may have different
number of vertices as the following example shows.

Example 4.8. Let Q be the quiver:
2

l——=3

and let A = kQ/I where I is the ideal generated by the oriented path of length 2 in Q. Notice that A is of
finite representation type. Let T = P1 @ P> @ Tgng be the APR-tilting A-module associated to the sink

3. Hence:

1 2 1 2

®,D

T=93939 9 4

and the Hasse diagram K a of basic tilting A-modules is equal to:
.
/ \
.
A—>T .
\ /
.

On the other hand, B = End(T) is isomorphic to kQ'/I' where Q' is equal to:

o — D(4)

a———) c
N
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and I’ is the ideal generated by the path ¢ — b — c. As a B-module, T is equal to

N\
NN
N
A4
N

N
In particular, E)A and KB do not have the same number of vertices. Notice that, in this example, the
isomorphism of Theorem 4.7 s equal to:

Ka(T)=(A—T) — Ks(T)” = (T — B)
A +—— T =Homa(AT)
T +—— B=Homa(T,T)

Remark 4.9. Assume that A is hereditary, then Theorem_4).’7 has the_]:ollowing generalisation, thanks
to Remark 4.5: Let Qa (resp. @B) be the full subquiver of K ao (resp. K B) made of the tilting modules
X >T. Then X — X7 induces an isomorphism of quivers Qa — Q¥

5 Comparison of the Galois coverings of A and Ends(T) for T basic
tilting A-module

This section is devoted to the proof of Theorem 1, of Corollary 1 and of Corollary 2. Let T € E)A and
let B = Enda(T). As in the introduction, we shall say that A and B have the same connected Galois
coverings with group G if and only if there exists a bijection Gala(G) = Galp(G). Here Gala(G) denotes
the set of equivalence classes of connected Galois coverings with group G of A. In order to compare the
equivalence classes of connected Galois coverings of A and those of B, we introduce the following assertion
which depends on A, on T and on a fixed group G:

P(A,T,G) ="(Ha,r) is satisfied and for any connected Galois covering F: C — A with group G, the

A-module T is of the first kind w.r.t. F and F.T is a basic C-module”

Recall from Definition 2.7 that the condition (Ha,r) ensures the existence of an equivalence class [F]r of
Galois coverings of B depending only on the equivalence class [F] of F. Recall also from Remark 2.1 and
from Proposition 2.10 that the condition “F.T is a basic C-module” implies that [F]r is an equivalence
class of connected Galois coverings of B. Finally, recall that P(A, A,G) and P(A, DA, G) are true for
any G (see Proposition 3.1, Proposition 3.7 and Proposition 3.9). The above definition of P(A,T,G) is
relevant because of the following proposition.
Proposition 5.1. Let G be a group. Assume that P(A,T,G) and P(B,T,G) are true. Then A and B
have the same connected Galois coverings with group G.

Proof: Since P(A,T,G) is true, we have a well defined mapping;:

PA: GalA(G) — GalB(G) .
F] — [Flz (©

22



Similarly, P(B,T,G) is true so we have a well defined mapping;:

¢p: Galp(G) — Galg(Endp(T)) .
F — [Flr )

Thanks to Proposition 2.11 we know that p,' o (pspa([F])) = [F] for any [F] € Gala(G). Therefore,
@4 is one-to-one and g is onto. Notice that thanks to the isomorphism pa: A =5 Endg(T), the as-
sertion P(Endp(T),T,G) is true, so that the above arguments imply that ¢p is one-to-one and that
©Endp(T) 15 onto. As a consequence, pp is bijective, so the mapping [F] +— p,' o [F]r induces a bijection
Galp(G) = Gala(G). n

Thanks to Proposition 5.1 we are reduced to find sufficient conditions for P(A,T,G) and P(B,T,G)
to be simultaneously true. The following proposition is a direct consequence of Proposition 3.1, of
Corollary 3.8, of Proposition 3.9 and of the fact that P(A4, A,G) and P(A, DA, Q) are true.

Proposition 5.2. Let G be a group. Let T’ € E)A lying in the connected component of E)A contarning
T. Then:

P(A,T,G) is true & P(A, T, G) is true
In particular, if T' = A or if T' = DA then P(A, T, G) is true.
_T)hanks t_o)Proposition 5.2, we are reduced look for conditions for 7" to lie in both connected components
of K4 and K p containing A and B respectively. Such a condition is given by the following proposition.

Proposition 5.3. Let G be a group and assume that there exists a path in E’A starting at A and ending
— —

at T. Then T lies in the connected component of K a (resp. K ) containing A (resp. B). Consequently,

P(A,T,G) and P(B,T,G) are true.

Proof: Theorem 4.7 implies that there exists a path in K5 starting at Homa(T,T) = B and ending at

Homa(A,T) =T. Using Proposition 5.2 we get the desired conclusion. |

Now we can prove Theorem 1:
_
Proof of Theorem 1: 1) Since T' and 7" lie in a same connected component of K 4, there exists a

sequence T = T, 7@ .. T = T’ of basic tilting A-modules such that for any ¢ € {1,...,r — 1},

there exists a path in 4 with T and TUTY as end-points. For short, let us write B; for EndA(T(”).
— ;

Let ¢ € {1,...,r — 1} and let us assume, for example, that there exists a path in K 4 starting at T® and

ending at T+, Using Lemma 4.1 and Proposition 4.6 we infer that:

(i) Enda(T?) and Endp
categories),

i+1(HomA(T(i)7T(i+1))) are isomorphic as k-algebras (and therefore as k-

(#t) there exists a path in EB-H»I starting at B and ending at Hom a (T, T0+Y).

This implies (thanks to Proposition 5.3 and to Proposition 5.1) that End(T") and Enda(TV) have
the same connected Galois coverings with group G. Since this fact is true for any ¢, we deduce that
Enda(T) and Enda(T") have the same connected Galois coverings with group G.

2) is a consequence of 1), of the fact that Enda(A) ~ Enda(DA) ~ A°? and of the fact that A and
A°P have the same Galois coverings (F: C — A is a Galois covering if and only if F°?: C? — Ais a
Galois covering and C°? is connected and locally bounded if and only if C°? is). |

Using Theorem 1 we can prove Corollary 1 and Corollary 2.
Proof of Corollary 1: Since A is of finite representation type, Theorem 1 implies that A and B have the
same connected Galois coverings. For the same reason, A (resp. B) admits a connected Galois covering
with group G if and only if G is a factor group of the fundamental group 71 (A) (resp. 71(B)) of A (resp.
of B). Consequently, m1(A) and m (B) are isomorphic. [ ]

Proof of Corollary 2: 1) and 2) are consequences of Theorem 1 and of the fact that A is simply
connected if and only if it has no proper connected Galois covering (see [17, Cor. 4]).
3) is a consequence of 2). |

Corollary 1 naturally leads to the following question: let G be a group such that A and B have the
same Galois coverings with group G, is it true that A admits an admissible presentation with fundamental
group isomorphic to G if and only if the same holds for B? The answer is no in general as the following
example shows :
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Example 5.4. Let Q be the following quiver:

and let A = kQ/I where I =< da >. Let T = PL® P, ® Ps @ TXI(P4) = PO P, P S3 be the
APR-tilting module associated with the sink 3 (here S; is the simple A-module associated to the vertez i
and P; is the indecomposable projective A-module with top S;). Then B = Enda(T) is the path algebra

of the following quiver:

Since T is an APR-tilting A-module, there is an arrow A — T in E)A. Then, Theorem 1 implies that
for any group G, the k-algebras A and B have the same connected Galois covering with group G. On the
other hand, any admissible presentation of B has fundamental group isomorphic to Z whereas A admits
an admissible presentation with fundamental group 0 and another one with fundamental group isomorphic
to Z (see for example [4, 1.4]).

In the preceding example, the reader may remark that the fundamental group of any admissible
presentation of A is a factor group of Z and that the same holds for B. Let us say that A admits
an optimum fundamental group (G) if and only if there exists an admissible presentation of A with
fundamental group G and if the fundamental group of any other admissible presentation is a factor
group of GG. For example, A admits an optimum fundamental group in the following cases: A is of finite
representation type (see [12]), A is constricted (see [8, Thm 3.5]), A is monomial, A is triangular and
has no double bypass (see [17, Thm. 1]). Then we have the following corollary whose proof is a direct
consequence of Theorem 1:

Corollary 5.5. Assume that T lies in the connected component of E)A containing A. Then A admits G
as optimum fundamental group if and only if B admits G as optimum fundamental group.

Final remark

The Hasse diagram K a of basic tilting A-modules describes the combinatoric relations between tilting
modules. When A is hereditary (i.e. A = kQ with @ a finite quiver with no oriented cycle) these
combinatorics are also described by the cluster category Cq of the quiver @ (see [11]). In particular, the
indecomposable tilting objects in Cq are displayed as the vertices of an unoriented graph. Since this graph
is always connected (see [11, 3.5]) it is natural to ask if it is possible to remove all conditions concerning
connected components in Theorem 1 and Corollary 2 (in the hereditary case). These developpements will
be detailed in a forecoming text.
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