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On Galois coverings and tilting modules

Patrick Le Meur ∗†

26th September 2006

Abstract

Let A be a basic and connected finite dimensional algebra over an algebraically closed field k. Let T
be a basic tilting A-module with arbitrary finite projective dimension. For a finite group G we establish
a bijection between the set of isoclasses of connected Galois coverings of A with group G and the set of

isoclasses of connected Galois coverings of EndA(T ) with group G. Using the Hasse diagram
−→
KA (see

[15] and [21]) of basic tilting A-modules, we give sufficient conditions on T for this bijection to hold in the
case G is infinite (these conditions are always verified when A is of finite representation type). Finally, we
apply these results to study when the simple connectedness of A implies the one of EndA(T ) (see [4]).

Introduction

Let k be an algebraically closed field and let A be a finite dimensional k-algebra. In order to study the
category mod(A) of finite dimensional (left) A-modules we may assume that A is basic and connected.
In the study of mod(A), tilting theory has proved to be a powerful tool. Indeed, if T is a basic tilting
A-module and if we set B = EndA(T ), then A and B have many common properties: Brenner-Butler
Theorem establishes an equivalence between certain subcategories of mod(A) and mod(B) (see [9], [14]
and [19]), A and B have equivalent derived categories (see [13]) and (in particular) they have isomorphic
Grothendieck groups and isomorphic Hochschild cohomologies. In this text we will study the following
problem relating A and B:

is it possible to compare the Galois coverings of A and those of B? (P1)

As an example, if A = kQ with Q a finite quiver without oriented cycle and if T is an APR-tilting module
associated to a sink x of Q (see [5]) then B = kQ′ where Q′ is obtained from Q by reversing all the arrows
endind at x. In particular Q and Q′ have the same unnderlying graph and therefore A has a connected
Galois covering with group G if and only if the same holds for B.

Recall that in order to consider Galois coverings of A we always consider A as a k-category. When
C → A is a Galois covering (with C a locally bounded k-category), it is possible to describe (part of)
mod(A) in terms of C-modules (see for example [8] and [12]). This description is useful because mod(C)
is easier to study than mod(A) especially when C is simply connected (this last situation may occur when
A is of finite representation type, see [12]). Notice that simple connectedness and tilting theory have
already been studied together through the following conjecture formulated in [4]:

A is simply connected =⇒ B is simply connected (P2)

More precisely, the above implication is true if: A is of finite representation type and T is of projective
dimension at most one (see [2]), or if: A = kQ (with Q a quiver) and B is tame (see [4], see also [3] for a
generalisation to the case of quasi-tilted algebras). The two problems (P1) and (P2) are related because A
is simply connected if and only if there is no proper Galois covering C → A with C connected and locally
bounded (see [17]).

In order to study the question (P1) we will exhibit sufficient conditions for T to be of the first kind

w.r.t. a fixed Galois covering C
F
−→ A. Indeed, if T is of the first kind w.r.t. F , then it is possible to

construct a Galois covering of B which is, up to isomorphism of Galois coverings of B, uniquely determined
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by the isomorphism class of F . Here we say that two Galois coverings F : C → A and F ′ : C′ → A are
isomorphic if and only if there exists a commutative square:

C

F

��

∼ // C′

F ′

��
A

∼ // A

where horizontal arrows are isomorphisms and where the bottom horizontal arrow restricts to the identity
map on the set of objects of A. For simplicity, let us say that A and B have the same connected Galois
coverings with group G if there exists a bijection between the sets GalA(G) and GalB(G) where GalA(G)
(resp. GalB(G)) stands for the set of isomorphism classes of Galois coverings C → A (resp. C → B) with
group G and with C connected and locally bounded. With this definition, we prove the following theorem
which is the main result of this text and which partially answers (P1):

Theorem 1. Let A and T be as above and let G be group.

1) If G is finite, then A and B have the same connected Galois coverings with group G.

2) If T ′ ∈
−→
KA lies in the connected component of

−→
KA containing T , then EndA(T ) and EndA(T ′)

have the same connected Galois coverings with group G

3) If T lies in the connected component of
−→
KA containing A, then A and B have the same connected

Galois coverings with group G.

In particular, if
−→
KA is connected (which happens when A is of finite representation type) then A and B

have the same Galois coverings with group G, for any group G.

Here
−→
KA is the Hasse diagram associated with the poset TA of basic tilting A-modules (see [15] and

[21]). Theorem 1 allows us to prove the following corollary related to (P2). Notice that in this corollary,
the third point has been proved in [2] for tilting modules with projective dimension at most one, and that
in the last point, the whole equivalence has been proved in [3] under the additionnal assumption: B is
tame.

Corollary 1. 1) If T ′ ∈
−→
KA lies in the connected component of

−→
KA containing T , then: EndA(T ) is

simply connected if and only if EndA(T ′) is simply connected.

2) If T lies in the connected component of
−→
KA containing A then: A is simply connected if and only if

B is simply connected.

3) (see [2]) If
−→
KA is connected (e.g. A is of finite representation type, see [15]), then: A is simply

connected if and only if EndA(T ) is simply connected.

4) (see [3]) Assume that A = kQ with Q a connected quiver. Then the following implication holds:
EndA(T ) is simply connected ⇒ Q is a tree (i.e. A is simply connected).

The text is organised as follows. In Section 1 we give the definition of all the notions mentioned above
and which will be used for the proof of Theorem 1. In Section 2 we detail the construction of the Galois
covering of B starting from a Galois covering of A such that T ∈ mod1(A) and we study the connectedness
of this Galois covering. In Section 3 we prove that for a connected Galois covering A′ → A with finite
group G (the finiteness assumption implies that A′ is a k-algebra) the posets TA and T G

A′ are isomorphic.
The proof of this result shows that any T ∈ TA is of the first kind w.r.t. to any connected Galois covering

of A with finite group. In Section 4 we prove that for T ∈
−→
KA the full convex subquiver of

−→
KA defined

by the vertices A and T is isomorphic to the opposite of the full convex subquiver of
−→
KB defined by the

vertices B and T (with B = EndA(T )). This link between
−→
KA and

−→
KB is used in Section 5 in order to

give sufficient conditions for T to be of the first kind w.r.t. to all connected Galois coverings of A. It is
also used in Section 6 which is devoted to the proof of Theorem 1.

I would like to acknowledge Eduardo N. Marcos for his stimulating remarks concerning the implication
(P2) during the CIMPA school Homological methods and representations of non-commutative algebras in
Mar del Plata (February 2006).

1 Basic definitions and preparatory lemmata

Reminder on k-categories (see [8] for more details). A k-category is small category C such that for
any x, y ∈ Ob(C) the set yCx of morphisms from x to y is a k-vector space and such that the composition
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of morphisms in C is k-bilinear. A k-category C is called connected if and only if there is no non trivial
partition Ob(C) = E ⊔ F such that yCx = xCy = 0 for any x ∈ E, y ∈ F .

All functors between k-categories are supposed to be k-linear. If F : E → B and F ′ : E ′ → B are functors
between k-categories, then F and F ′ are called isomorphic if there exists a commutative diagram:

E
∼ //

F

��

E ′

F ′

��
B

∼ // B

where horizontal arrows are isomorphims and where the bottom horizontal arrow restricts to the identity
map on Ob(B).
A locally bounded k-category is a k-category C verifying the following conditions:

. distinct objects in C are not isomorphic,

. for any x ∈ Ob(C) the k-vector spaces
⊕

y∈Ob(C) yCx and
⊕

y∈Ob(C) xCy are finite dimensional,

. for any x ∈ Ob(C), the k-algebra xCx is local.

For example, let A be a basic and finite dimensional k-algebra (basic means that A is the direct sum of
pairwise non-isomorphic indecomposable projective A-modules) and let {e1, . . . , en} be a complete set of
pairwise orthogonal primitive idempotents. Then A can be viewed as a locally bounded k-category as
follows: e1, . . . , en are the objects of A, the space of morphisms from ei to ej is equal to ejAei for any i, j
and the composition of morphisms is induced by the product in A. Notice that different choices for the
primitive idempotents e1, . . . , en give rise to isomorphic k-categories. In this text we shall always consider
such an algebra A as a locally bounded k-category.

Modules over k-categories. If C is a k-category, a (left) C-module is a k-linear functor M : C →
MOD(k) where MOD(k) is the category of k-vector spaces. A morphism of C-modules M → N is a
k-linear natural transformation of functors. The category of C-modules is denoted by MOD(C).

Notice that if C = C1

∐
C2 where C1 and C2 are full subcategories of C, then there is a natural embedding

MOD(Ci) →֒ MOD(C) for each i. In particular, if M ∈ MOD(C), then: M ∈ MOD(C1) if and only if
M(x) = 0 for any x ∈ Ob(C2).

A C-module M is called locally finite dimensional (resp. finite dimensional) if and only if M(x) is
finite dimensional for any x ∈ Ob(C) (resp. if

⊕
x∈Ob(C)M(x) is finite dimensional). The category of

locally finite dimensional (resp. finite dimensional) C-modules is denoted by Mod(C) (resp. mod(C)).
Notice that if C = A as above, then Mod(C) = mod(C).

We shall write IND(C) (resp. Ind(C), resp. ind(C)) for the full subcategory of MOD(C) (resp. of
Mod(C), resp. of mod(C)) of indecomposable C-modules. If C =

∐
i∈I Ci where the Ci’s are the connected

components of C then for any M ∈ IND(C) there exists a unique i ∈ I such that M ∈ IND(Ci). Finally,
if M = N1

⊕
. . .

⊕
Nt with Ni ∈ ind(C) for any i, then we set d(M) := t and M is called basic if and

only if M1, . . . ,Mt are pairwise non isomorphic.

Tilting modules. Let A be a finite dimensional and basic k-algebra. A tilting A-module (see [9],
[14] and [19]) is a module T ∈ mod(A) verifying the following conditions:

(T1) T has finite projective dimension (i.e. pdA(T ) <∞),

(T2) ExtiA(T, T ) = 0 for any i > 0 (i.e. T is selforthogonal),

(T3) there is an exact sequence in mod(A): 0 → A → T1 → . . .→ Tr → 0 with T1, . . . , Tr ∈ add(T ) (i.e.
T1, . . . , Tr are direct sums of direct summands of T ).

A module which satisfies the conditions (T1) and (T2) above is called an exceptionnal module. When
T is a tilting A-module, we are usually interested in the k-algebra EndA(T ). We refer the reader to [9],
[13], [14] and [19] for a deeper study of EndA(T ).
Let TA be the set of basic tilting A-modules up to isomorphism. Then TA is endowed with a partial order
introduced in [21] and defined as follows. If T ∈ TA, the right perpendicular category T⊥ of T is defined
by (see [6]):

T⊥ = {X ∈ mod(A) | (∀i > 1) ExtiA(T,X) = 0}

If T ′ ∈ TA is another basic tilting module, we write T 6 T ′ provided that T⊥ ⊆ T
′⊥. In particular, we

have T 6 A for any T ∈ TA. In [15], D. Happel and L. Unger have proved that the Hasse diagram
−→
KA of
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TA is as follows. The vertices in
−→
KA are the elements in TA and there is an arrow T → T ′ in

−→
KA if and

only if: T = X
⊕
T with X ∈ ind(A), T ′ = Y

⊕
T with Y ∈ ind(A) and there exists an exact sequence

0 → X → M̃ → Y → 0 in mod(A) with M̃ ∈ add(T ). For more details on
−→
KA, we refer the reader to [15]

and [16].

Galois coverings of k-categories. Let G be a group. A free G-category is a k-category E endowed
with a morphism of groups G→ Aut(E) such that the induced action of G on Ob(E) is free. In this case,
there exists a (unique) quotient E → E/G of E by G in the category of k-categories. With this property,
a Galois covering of B with group G is by definition a functor F : E → B endowed with a group morphism
G→ Aut(F ) = {g ∈ Aut(E) | F ◦ g = F} and verifying the following facts:

. the group morphism G→ Aut(F ) →֒ Aut(E) endows E with a structure of free G-category,

. the functor E/G
F
−→ B induced by F is an isomorphism.

This definition implies that the group morphism G→ Aut(F ) is one-to-one (actually one can show that
this is an isomorphism when E is connected). Moreover for any x ∈ Ob(B) the set F−1(x) is non empty,
it is called the fiber of F at x and verifies: if x̂ ∈ F−1(x), then F−1(x) = G.x̂.

If F : E → B is a Galois covering with group G and with B connected then E need not be connected. In
such a case, if E =

∐
i∈I

Ei where the Ei’s are the connected components of E , then for each i, the following

functor:
Fi : Ei →֒ E → B

is a Galois covering with group:

Gi := {g ∈ G | g(Ob(Ei)) ∩Ob(Ei) 6= ∅} = {g ∈ G | g(Ob(Ei)) = Ob(Ei)}

Moreover, if i, j ∈ I then the groups Gi and Gj are conjugated in G and there exists a commutative
diagram:

Ei
∼ //

Fi ��?
??

??
??

Ej

Fj����
��

��
�

B

where the horizontal arrow is an isomorphism. This implies in particular that G acts transitively on the
set {Ei | i ∈ I} of the connected components of E . Notice that all these facts may be false if B is not
connected.

For short, a Galois covering with finite group is called a finite Galois covering. Two Galois coverings
of B are called isomorphic if and only if they are isomophic as functors between k-categories (see above,
this implies that the groups of the Galois coverings are isomorphic). Finally, we shall say for short that
a Galois covering E → B is connected if and only if E is connected and locally bounded (this implies that
B is connected and locally bounded, see [12, 1.2]).

Simply connected locally bounded k-categories. Let B be a locally bounded k-category. Then
B is called simply connected if and only if there is no proper connected Galois covering of B (proper
means with non trivial group). This definition is equivalent to the original one (see [18] for the triangular
case and [17, Prop. 4.1] for the non-triangular case) which was introduced in [1]: B is simply connected
if and only if π1(QB, I) = 1 for any admissible presentation kQB/I ≃ B of B (see [18] for the definition
of π1(QB, I)).

Smash-product categories. In [11], C. Cibils and E. N. Marcos have introduced a useful way to
describe Galois coverings using smash-products of G-graded categories. A G-graded category is a k-
category B endowed with a vector space decomposition yBx =

⊕
g∈G yB

g
x (for any x, y ∈ Ob(B)) such

that xB
g
y . yB

h
x ⊆ zB

gh
x for any x, y, z ∈ Ob(B), g, h ∈ G. If B is G-graded, the smash-product category

B♯G is defined as follows:

. Ob(B♯G) = Ob(B) ×G,

. (y,t)(B♯G)(x,s) = yB
ts−1

x for any (x, s), (y, t) ∈ Ob(B♯G),

. the composition of morphisms in B♯G is induced by the one in B.

Notice that the natural projection Ob(B♯G) ։ Ob(B) and the natural injections (y,t)(B♯G)(x,s) →֒ yB
ts−1

x

define a functor B♯G→ B. The following facts have been proved in [11]:
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. B♯G → B is a Galois covering with group G (the action of G on B♯G is given by: g.(x, s) =

(x, sg−1) and g.u = u ∈ yB
ts−1

x = g.(y,t)(B♯G)g.(x,s) for any (x, s), (y, t) ∈ Ob(B♯G) and any
u ∈ (y,t)(B♯G)(x,s)),

. if E → B is a Galois covering with group G, there exists a G-grading on B such that E → B and
B♯G→ B are isomophic.

Basic notions on covering techniques. Let F : E → B be a Galois covering with group G and
with E ,B locally bounded. The covering techniques have been introduced by K. Bongartz, P. Gabriel and
C. Riedtmann (see [8] and [20]) and they establish a link between MOD(E) and MOD(B). We recall
here some features of these techniques. First of all, the action of G on E gives rise to an action of G
on MOD(E): if M ∈ MOD(E) and g ∈ G, then gM := F ◦ g−1 ∈ MOD(E). Moreover, F defines two
additive functors Fλ : MOD(E) → MOD(B) (the push-down functor) and F. : MOD(B) → MOD(E)
(the pull-up functor) as follows:

. for M ∈MOD(B), we set F.M := M ◦ F ∈MOD(E),

. for M ∈MOD(E), we set Fλ ∈MOD(B) to be the unique module verifying:

. FλM(x) =
⊕

x̂∈F−1(x)M(x̂) for any x ∈ Ob(E),

. FλM(F (u)) =
⊕

g∈G g.u :
⊕

g∈GM(gx̂) →
⊕

g∈GM(gŷ) for any u ∈ ŷEx̂.

We list below some properties of F. and Fλ that will be used in the sequel (for more details we refer the
reader to [8]):

. Fλ and F. are exact and send projective modules to projective modules,

. Fλ(E) ≃
⊕

g∈G B and F.(B) ≃ E ,

. F.Fλ ≃
⊕

g∈G
gIdMOD(E) and FλF. ≃

⊕
g∈G IdMOD(B),

. Fλ(mod(E)) ⊆ mod(B), Fλ(Mod(E)) ⊆Mod(B), F.(Mod(B)) ⊆Mod(B),

. D ◦ F. = F. ◦D and D ◦ Fλ|mod(E) ≃ Fλ ◦D|mod(E) where D = Homk(?, k) is the usual duality,

. Fλ is left adjoint to F.,

. D ◦Fλ ◦D is right adjoint to F. (in particular, there is a functorial isomorphism HomE(F.M,N) ≃
HomB(M,Fλ(N)) for any M ∈MOD(B) and any N ∈ mod(E)).

These properties give the following result which will be used many times in this text:

Lemma 1.1. If M ∈ MOD(E) (resp. M ∈ MOD(B)) has finite projective dimension, then so does
Fλ(M) (resp. F.(M)).

Let M ∈MOD(E), N ∈MOD(B) and j > 1. There is an isomorphism of vector spaces:

ExtjB(Fλ(M), N) ≃ ExtjE(M,F.N)

Moreover, if M ∈ mod(E) then there is an isomorphism of vector spaces:

ExtjE(F.N,M) ≃ ExtjB(N,Fλ(N))

Proof: The first assertion is due to the fact that F. and Fλ are exact and send projective modules
to projective modules. For the same reasons, F. and Fλ induce F. : D(MOD(B)) → D(MOD(E)) and
Fλ : D(MOD(E)) → D(MOD(B)) respectively and the adjunctions (Fλ, F.) and (F., Fλ) at the level
of module categories give rise to adjunctions at the level of derived categories. Since ExtjE(X,Y ) =
HomD(MOD(E))(Y,X[j]) we get the announced isomorphisms. �

Remark that an isomorphism of k-categories is a particular case of Galois covering. When F is an
isomophism, F. and Fλ have additionnal properties as shows the following lemma.

Lemma 1.2. Assume that F : E → B is an isomorphism. Then F.Fλ = IdMOD(E) and FλF. = IdMOD(B).
Moreover, if E = B (i.e. F ∈ Aut(B)) and if F restricts to the identity map on Ob(B), then F.(X) ≃ X
for any X ∈MOD(B).

Proof: The equalities F.Fλ = IdMOD(E) and FλF. = IdMOD(B) are direct consequences of the definition
of F. and Fλ. Now let us assume that E = B and that F (x) = x for any x ∈ Ob(B).

For x ∈ Ob(B), let Px = ?Bx be the indecomposable projective module associated to x. Then we
have an isomorphism of B-modules:

θx : Px −→ F.Px
u ∈ Px(y) = yBx 7−→ F (u) ∈ yBx = F.Px(y)
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If y ∈ Ob(B) and if f : Py → Px is a morphism of B-modules, then f is defined by u0 := f(1y) ∈ yBx,
i.e. f(u) = uu0 for any u. So F.f : F.Py → F.Px verifies F.f(u) = uF (u0) for any u. Thus we have a
commutative diagram (in MOD(B)) where vertical arrows are isomorphisms:

Py
f //

θy

��

Px

θx

��
F.Py

F.f // F.Px

This proves that the functors IdPROJ(B) : PROJ(B) → PROJ(B) and F.|PROJ(B) : PROJ(B) → PROJ(B)
are isomorphic (here PROJ(B) is the full subcategory of MOD(B) of projective B-modules). Let
X ∈ MOD(B). So X ≃ Ker(f) where f : P → Q is a morphism between projective B-modules. The
isomorphism IdPROJ(B) ≃ F.|PROJ(B) implies that Ker(f) ≃ Ker(F.f). Since F. is exact we also have
Ker(F.f) ≃ F.(Ker(f)). Therefore, X and F.(X) are isomorphic. �

Modules of the first kind and graded modules. Let F : E → B be a Galois covering with group
G. A B-module M is called of the first kind w.r.t. F if and only if for any indecomposable direct summand
N of M there exists N̂ ∈ MOD(E) such that N ≃ Fλ(N̂). We will denote by ind1(B) (resp. mod1(B))
the full subcategory of ind(B) (resp. of mod(B)) of modules of the first kind w.r.t. F . We define similarly
the categories MOD1,Mod1, IND1, Ind1. Notice the following properties of IND1(B):

. if M ∈ IND1(B) and N ∈MOD(E) verify M ≃ Fλ(N), then N ∈ IND(E),

. if M ∈ IND1(B) and N,N ′ ∈MOD(E) verify M ≃ Fλ(N) ≃ Fλ(N
′), then there exists g ∈ G such

that N ′ ≃ gN .

If B is connected and if E =
∐
i∈I Ei, where the Ei’s are the connected components of E , then an

indecomposable B-module M is of the first kind w.r.t. F if and only if it is of the first kind w.r.t.
Fi : Ei →֒ E → B for any i ∈ I . More precisely, we have the following well know lemma where we keep
the established notations.

Lemma 1.3. Let M ∈ IND(E). If M̂ ∈ IND(E) is such that Fλ(M̂) ≃M , then there is a unique i ∈ I

such that M̂ ∈ IND(Ei). In such a case, we have M ≃ (Fi)λ(M̂). Moreover, if j ∈ I then there exists

g ∈ G such that g(Ei) = Ej, and for any such g we have: gM̂ ∈ IND(Ej) and (Fj)λ(
gM̂) ≃M .

When B is a G-graded category and F : E = B♯G → B is the natural projection, the modules of
the first kind have a useful description in terms of G-graded B-modules. A G-graded B-module is by
definition a B-module M endowed with k-vector space decompositions M(x) =

⊕
g∈GM(x)g (for any

x ∈ Ob(B)) such that yB
g
x.M(x)h ⊆ M(y)gh for any x, y ∈ Ob(B), g, h ∈ G. If M,N ∈ MOD(B) are

G-graded, a homogeneous morphism M → N of degree g ∈ G is a morphism f : M → N in MOD(B)

verifying f(M(x)h) ⊆ M(x)hg
−1

for any x ∈ Ob(B) and any h ∈ G. Notice that if f : M → N is
a morphism in MOD(B) between G-graded B-modules, then f is the sum of d > 0 (with d unique)
homogeneous morphisms of pairwise different degrees. With these definitions, we have the following well
known property:

Proposition 1.4. Let M ∈ MOD(B). Then M is of the first kind w.r.t. F if and only if M admits a

G-grading. In such a case, we have M = Fλ(M̃) with M̃ ∈MOD(B♯G) as follows:

. M̃(x, s) = M(x)s for any (x, s) ∈ Ob(B♯G),

. M̃(u) : M̃(x, s) → M̃(y, t) is the mapping induced by M(u) : M(x) →M(y), for any u ∈ (y,t)(B♯G)(x,s) =

yB
ts−1

x .

If M,N ∈ MOD(B) are G-graded B-modules then f 7→ Fλ(f) defines an isomorphism from the space of

morphisms gM̃ → hÑ in MOD(B♯G) to the space of homogeneous morphisms M → N of degree h−1g.

Thoughout this text A will denote a finite dimensional basic and connected k-algebra and n will denote
the rank of its Grothendieck group K0(A).

2 Galois coverings associated with modules of the first kind

Throughout this section, F : C → A will be a Galois covering with group G, T = T1

⊕
. . .

⊕
Tn ∈ mod(A)

(with Ti ∈ ind(A)) will be a basic A-module of the first kind w.r.t. F and λi : Fλ(T̂i) → Ti will
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be an isomorphism with T̂i ∈ ind(C), for every i ∈ {1, . . . , n}. Recall that EndA(T ) is naturally a
locally bounded k-category with objects T1, . . . , Tn and with space of morphisms from Ti to Tj equal to
HomA(Ti, Tj). With this data we wish to construct a Galois covering with group G of EndA(T ) and
verifying: the isomorphism class of this Galois covering shall depend only on the isomorphism class of F
(and not on F, λ1, . . . , λn).

The above data defines the k-category EndC(
⊕

g,i
gT̂i) as follows:

. the set of objects is { gT̂i | g ∈ G, i ∈ {1, . . . , n}} (gT̂i and g′ T̂j are considered as different objects
if (i, g) 6= (j, g′)),

. the space of morphisms from gT̂i to hT̂j is equal to HomC( gT̂i,
hT̂j),

. the composition is induced by the composition of morphisms in MOD(C).

Remark 2.1. 1. The C-modules
⊕

g,i
gT̂i and F.T are isomorphic.

2. If G is a finite group, then C is a finite dimensional k-algebra. In particular, EndC(
⊕

g,i
gT̂i) and

EndC(F.T ) are isomorphic as k-algebras.

The isomorphisms λ1, . . . , λn define the following functor:

FT̂ ,λ EndC(
⊕

g,i
gT̂i) −→ EndA(T )

gT̂i 7−→ Ti

gT̂i
u
−→ hT̂j 7−→ Ti

λj Fλ(u) λ−1

i−−−−−−−−−→ Tj

We are going to prove that FT̂ ,λ is a Galois covering. Therefore it is natural to ask wether End(
⊕

i,g
gT̂i)

is connected or not. The following lemma partially answers this question.

Lemma 2.2. If C is not connected, then EndC(
⊕

i,g
gT̂i) is not connected.

Proof : For simplicity let us set E := EndC(
⊕

i,g
gT̂i). Assume that C is not connected and let C =

∐
x∈I Cx where the Cx’s are the connected components of C. Let i ∈ {1, . . . , n}, since T̂i ∈ ind(C), there

exists a unique xi ∈ I such that T̂i ∈ ind(Cxi). Let us set:

Gx0
= {g ∈ G | g(Cx0

) = Cx0
}

Since G acts transitively on {Cx | x ∈ I}, for every i ∈ {1, . . . , n} there exists gi ∈ G such that gi(Cx0
) =

Cxi (in particular g1 ∈ Gx0
). Therefore:

(∀i ∈ {1, . . . , n}) g
−1

i T̂i ∈ mod(Cx0
)

Let us set O to be the following set of objects of E :

O := { gT̂i | i ∈ {1, . . . , n} and ggi ∈ Gx0
} ⊆ Ob(E)

Remark that O satisfies the following:

. O 6= ∅ for T̂1 ∈ O.

. Since C is not connected and since G acts transitively on {Cx | x ∈ I} we have Gx0
( G. Let

g ∈ G\Gx0
, then gg1 6∈ Gx0

(recall that g1 ∈ Gx0
) and gT̂1 6∈ O. Hence O ( Ob(C).

. For any gT̂i ∈ Ob(E), we have gT̂i ∈ O if and only if gT̂i ∈ ind(Cx0
). As a consequence, there is no

non zero morphism in E between an object in O and an object in Ob(E)\O.

These three facts prove that E is not connected. �

The following example shows that if F is a smash-product, then so does FT̂ ,λ.

Example 2.3. Assume that A is G-graded, that C = A♯G and that F : C = A♯G → A is the natural
projection. Then T1, . . . , Tn are G-graded A-modules. Fix a G-grading on T1, . . . , Tn. These gradings
define T̃1, . . . , T̃n ∈ mod(A♯G) verifying Fλ(T̃i) = Ti for each i (see Proposition 1.4). Let us set λi =

IdTi : Fλ(T̃i) → Ti. According to the above construction, the data T̃1, . . . , T̃n, λ1 = IdT1
, . . . , λn = IdTn

define the functor:

FT̃ ,Id : EndC(
⊕

g,i

gT̃i) → EndA(T )
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On the other hand, the G-gradings on T1, . . . , Tn induce a G-grading on EndA(T ) (where HomA(Ti, Tj)
g

is the vector space of homogeneous morphisms Ti → Tj of degree g). With this setting, the reader may
eaysily check that the following diagram commutes:

EndC(
⊕

g,i
gT̃i)

∼ //

F
T̃ ,Id ''OOOOOOOOOOO

EndA(T )♯G

xxqqqqqqqqqqq

EndA(T )

where the horizontal arrow is the following isomorphism (see Proposition 1.4):

EndC(
⊕

g,i
gT̃i) −→ EndA(T )♯G

gT̃i 7−→ (Ti, g
−1)

gT̃i
u
−→ hT̃j 7−→ (Ti, g

−1)
Fλ(u)
−−−−→ (Tj , h

−1)

Hence, in this particular case, the functor FT̃ ,Id is a Galois covering with group G.

Now let us prove that the isomorphism class of FT̂ ,λ depends neither on the choice of T̂1, . . . , T̂n, λ1, . . . , λn
nor on the choice of F in its isomorphism class. This will be done through the two following lemmas.

Lemma 2.4. For each i ∈ {1, . . . , n}, let µi : Fλ(T i) → Ti be an isomorphism with T i ∈ ind(C). Then
FT̂ ,λ and FT,µ are isomorphic.

Proof: We need to exhibit a commutative square:

EndC(
⊕

i,g
gT i)

ϕ //

F
T ,µ

��

EndC(
⊕

i,g
gT̂i)

F
T̂ ,λ

��
EndA(T )

ψ // EndA(T )

(⋆)

where ϕ,ψ are isomorphism and where ψ(x) = x for any x ∈ Ob(EndA(T )) = {T1, . . . , Tn}. Let i ∈

{1, . . . , n}. We have Fλ(T i) ≃ Ti ≃ Fλ(T̂i), so there exists an isomorphism θi : T i
∼
−→ gi T̂i with gi ∈ G.

Let us define ϕ by:

ϕ : EndC(
⊕

i,g
gT i) −→ EndC(

⊕
i,g

gT̂i)
gT i 7−→ ggi T̂i

gT i
u
−→ hT j 7−→ ggi T̂i

hθj u gθ
−1

i−−−−−−−−−→ hgj T̂j

Then ϕ is an isomorphism of k-categories. Notice that θi defines an isomorphism Fλ(θi) : Fλ(T i) →

Fλ(T̂i). So we can define ψ by:

ψ : EndA(T ) −→ EndA(T )
Ti 7−→ Ti

Ti
u
−→ Tj 7−→ ψ(u)

where ψ(u) is the composition:

Ti
λ
−1

i−−−→ Fλ(T̂i)
Fλ(θi)

−1

−−−−−−→ Fλ(T i)
µi−→ Ti

u
−→ Tj

µ
−1

j
−−−→ Fλ(T j)

Fλ(θj )
−−−−→ Fλ(T̂j)

λj
−→ Tj

So ψ is also an isomorphism of k-categories which restricts to the identity map on Ob(EndA(T )). More-
over ϕ and ψ make (⋆) commutative. �

Lemma 2.5. Let F ′ : C′ → A be a Galois covering with group G and isomorphic to F . Then T is of the
first kind w.r.t. F ′. For each i ∈ {1, . . . , n} let µi : F

′
λ(T i) → Ti be an isomorphism with T i ∈ ind(C′).

Then F ′
T ,µ

and FT̂ ,λ are isomorphic.
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Proof: Let us fix an isomorphism between F and F ′:

C′
ϕ //

F ′

��

C

F

��
A

ψ // A

Let us set ν : Aut(C′) → Aut(C) to be the isomorphism of groups (recall that Aut(C′) = G and Aut(C) =
G):

ν Aut(C′) → Aut(C)
g 7→ ϕ ◦ g ◦ ϕ−1

Recall that any g ∈ Aut(C) = G (resp. g ∈ Aut(C′) = G) defines an automorphism g of MOD(C) (resp.
of MOD(C′)). Therefore we have an equality of functors MOD(C′) →MOD(A):

(∀g ∈ Aut(C′)) ϕλ ◦ g = ν(g) ◦ ϕλ

Let us show that T is of the first kind w.r.t. F ′. In this purpose, let us fix, for each i, an isomorphism
θi : ψ.Ti → Ti (see Lemma 1.2) and let us set T i = ϕ.(T̂i). In particular: ϕλ(T i) = T̂i (see Lemma 1.2).
Since ψ.ψλ = IdMOD(A) (loc. cit.) and ψF ′ = Fϕ, we infer that:

F ′
λ(T i) = ψ.ψλF

′
λ(Ti) = ψ.Fλϕλ(T i) = ψ.Fλ(T̂i)

Therefore, we get for each i an isomorphism µi : F
′
λ(T i) → Ti equal to the composition:

µi : F
′
λ(T̂i) = ψ.Fλ(T i)

ψ.(λi)−−−−→ ψ.(Ti)
θi−→ Ti

This proves that T is of the first kind w.r.t. F ′ and this also defines the functor F ′
T ,µ

: EndC′(
⊕

g,i
gT i) →

EndA(T ). Thanks to Lemma 2.4 we only need to prove that F ′
T ,µ

and FT̂ ,λ are isomorphic in order to
prove the lemma.

First, we have the following functor induced by ϕλ:

ϕ : EndC′(
⊕

i,g
gT i) −→ EndC(

⊕
i,g

gT̂i)
gT i 7−→ ν(g)T̂i = ϕλ(

gT i)
gT i

u
−→ hT j 7−→ ν(g)T̂i

ϕλ(u)
−−−−→ ν(h)T̂j

Since ν : G→ G is an isomorphism and because of the equalities ϕλϕ. = IdMOD(C) and ϕ.ϕλ = IdMOD(C)

(see Lemma 1.2), the functor ϕ is an isomorphism.
Secondly, we have the following functor induced by ψλ:

ψ : EndA(T ) −→ EndA(T )
Ti 7−→ Ti

Ti
u
−→ Tj 7−→ Ti

ψλ(θjuθ
−1

i
)

−−−−−−−−→ Tj

Since ψλψ. = ψ.ψλ = IdMOD(A), the functor ψ is a well defined isomorphism and restricts to the identity
map on Ob(EndA(T )). Therefore, we have a diagram whose horizontal arrows are isomorphisms and
whose bottom horizontal arrow restricts to the identity map on the set of objects:

EndC′(
⊕

i,g
gT i)

ϕ //

F ′

T ,µ

��

EndC(
⊕

i,g
gT̂i)

F
T̂ ,λ

��
EndA(T )

ψ // EndA(T )

This diagram is commutative, indeed, for any gT i
u
−→ hT j we have:

ψF ′
T ,µ

(u) = ψ(µjF
′
λ(u)µ

−1
i ) = ψλ(θ

−1
j µjF

′
λ(u)µ

−1
i θi)

= ψλ(θ
−1
j θjψ.(λj)F

′
λ(u)ψ.(λi)

−1θ−1
i θi)

= λj (ψλF
′
λ)(u) λ

−1
i because ψλψ. = IdMOD(C)

= λj (Fλϕλ)(u) λ
−1
i because Fϕ = ψF ′

= FT̂ ,λ(ϕλ(u)) = FT̂ ,λϕ(u)

This proves that F ′
T ,µ

and FT̂ ,λ are isomorphic. �
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Remark 2.6. The preceding lemma shows that if T is of the first kind w.r.t. F then T is of the first kind
with respect to any Galois covering F ′ isomorphic to F . Hence, one may talk about a module which is of
the first kind w.r.t. an isomorphism class of Galois coverings of A.

Example 2.3, Lemma 2.4, Lemma 2.5 and the fact that ⊕i,g
gT̂i ≃ F.T justify the following definition:

Definition 2.7. The isomorphism class of F and the basic A-module T = T1

⊕
. . .

⊕
Tn of the first kind

w.r.t. F (with Ti ∈ ind(A)) uniquely define an isomorphism class of Galois covering of EndA(T ) which
admits FT̂ ,λ as a representative. This isomorphism class will be denoted by FT : EndC(F.T ) → EndA(T ).

Starting from T and F we have constructed FT . Therefore one may try to perform the same construc-
tion starting from T and FT in order to get (FT )T . The end of this section is devoted to the comparison of
(FT )T and A. Until the end of the section we shall write B for EndA(T ). Remark that for any x ∈ Ob(A)
the vector space T (x) is a B-submodule of T and that T =

⊕
x∈Ob(A) T (x) is a decomposition into a direct

sum of B-modules. In particular, if T (x) is indecomposable for every x ∈ Ob(A) (which happens if T is
a basic tilting A-module, see [19, Thm.1.5]) then EndB(T ) is naturally a k-category with set of objects
equal to {T (x) | x ∈ Ob(A)} and with space of morphisms from T (x) to T (y) equal to HomB(T (x), T (y)).
Thus, we have a well defined functor between k-categories:

ρ : A −→ EndB(T )
x ∈ Ob(A) 7−→ T (x) ∈ Ob(EndB(T ))
a ∈ yAx 7−→ (t 7→ at) ∈ T (y)EndB(T )T (x)

Recall from [19, Thm.1.5] that ρ is an isomorphism of k-categories if T is a basic tilting A-module. These
facts motivate the following lemma where we keep the setting of the beginning of this section.

Lemma 2.8. Assume that for every x ∈ Ob(A), the B-module T (x) is indecomposable and that T =⊕
x∈Ob(A) T (x) is a basic B-module (i.e. the T (x)’s are pairwise non isomorphic). Then T is of the first

kind w.r.t. FT (see Remark 2.6). Moreover, if ρ : A → EndB(T ) (as defined above) is an isomorphism
of k-categories, then the isomorphism class of F coincides with ρ−1 ◦ (FT )T . As a consequence, if C is
connected, then EndC(F.T ) is connected.

Proof: For simplicity, we shall consider FT as a Galois covering rather than as an isomorphism class of
Galois coverings. Thanks to Example 2.3, to Lemma 2.4 and to Lemma 2.5 we may assume that:

. A is G-graded, C = A♯G and F : A♯G→ A is the natural projection,

. T1, . . . , Tn are G-graded A-modules,

. FT is the natural projection B♯G → B, where the G-grading on B is given by the homogeneous
morphisms Ti → Tj between G-graded A-modules.

In order to prove that T is a B-module of the first kind w.r.t. to FT it thus suffices to exhibit a G-grading
on the B-module T (x), for every x ∈ Ob(A). Let x ∈ Ob(A). Let us set, for g ∈ G:

T (x)g := T1(x)
g−1 ⊕

. . .
⊕

Tn(x)
g−1

Using the fact that T (x) = T1(x)
⊕
. . .

⊕
Tn(x), it is easily verified that:

T (x) =
⊕

g∈G

T (x)g (i)

On the other hand, if f ∈ TjB
g
Ti

, then f ∈ HomA(Ti, Tj) is homogeneous of degree g, so:

(∀h ∈ G) f(Ti(x)
h) ⊆ Ti(x)

hg−1

Therefore:
(∀h ∈ G) f.T (x)h ⊆ T (x)gh (ii)

From (i) and (ii) we deduce that T (x) is a G-graded B-module for any x ∈ Ob(A). In other words, T is
of the first kind w.r.t. FT (here we implicitely use the assumtpion T (x) ∈ ind(B)).

Now let us assume that ρ : A → EndB(T ) is an isomorphism of k-categories and let us prove that
F and ρ−1 ◦ (FT )T are isomorphic. Recall that since the T (x)’s are G-graded B-modules, EndB(T ) is
also endowed with a structure of G-graded k-category as follows: T (y)EndB(T )g

T (x) is the vector space of

homogeneous morphisms f : T (x) → T (x) of B-modules and of degree g, i.e. verifying:

(∀h ∈ G) f(T (x)h) ⊆ T (y)hg−1 , i.e. f(T (x)h) ⊆ T (y)gh (iii)
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Therefore, using Example 2.3, Lemma 2.4 and Lemma 2.5 we may assume that (FT )T is the natural
projection:

(FT )T : EndB(T )♯G→ EndB(T )

On the other hand, if a ∈ yA
g
x, then a.T (x)h ⊆ T (y)gh for any h ∈ G. Thanks to (iii), this means that

ρ(a) ∈ T (y)EndB(T )g
T (x). Thus:

ρ : A→ EndB(T ) is an isomorphism of G-graded k-categories

Therefore, the following commutative diagram is an isomorphism between F and ρ−1 ◦ (FT )T :

A♯G
ρ♯G //

F

��

EndB(T )♯G

ρ−1◦(FT )T

��
A

IdA // A

where ρ♯G is the isomorphism defined by:

A♯G 7−→ EndB(T )♯G
(x, g) 7−→ (T (x), g)

u ∈ (y,t)A♯G(x,s) = yA
ts−1

x 7−→ ρ(u) ∈ T (y)EndB(T )ts
−1

T (x) = (T (y),t)EndB(T )♯G(T (x),s)

This proves that F and ρ−1 ◦ (FT )T are isomorphic. The last assertion of the lemma is a consequence of
Lemma 2.2. �

3 Comparison of TA and TA′ when A′ → A is a finite Galois covering

Throughout this section, A′ will be a basic finite dimensional k-algebra and F : A′ → A will be a Galois
covering with (finite) group G. The aim of this section is to compare the posets TA and TA′ . In this
purpose, we begin with the following proposition:

Proposition 3.1. Let T ∈ TA, then F.T ∈ TA′ . Moreover T is of the first kind w.r.t. F . Finally, if X
is an indecomposable summand of T and if T̂ ∈ mod(A′) verifies Fλ(X̂) ≃ X then GX̂ = 1.

Proof: From Lemma 1.1 applied to T , we have pdA′(F.T ) <∞ together with:

(∀i > 1) ExtiA′(F.T, F.T ) ≃ ExtiA(FλF.T, T ) ≃ ExtiA(
⊕

g∈G

T, T ) ≃
⊕

g∈G

ExtiA(T, T ) = 0

Thus F.T is an exceptionnal A′-module. Moreover, we have an exact sequence in mod(A):

0 → A→ T1 → . . .→ Tr → 0

where Ti ∈ add(T ) for every i. Applying F. to this exact sequence gives an exact sequence in mod(A′):

0 → F.A ≃ A′ → F.T1 → . . .→ F.Tr → 0

where F.Ti ∈ add(F.T ) for every i. Hence F.T is a tilting A′-module.
Now let us prove that F.T is basic and that T ∈ mod1(A). Since T ∈ TA, we have T = T1

⊕
. . .

⊕
Tn

with Ti ∈ ind(A) for each i and Ti 6≃ Tj if i 6= j. For each i, let us write F.Ti =
⊕mi

l=1Xi,l with Xi,l ∈
ind(A′). Hence F.T =

⊕
l,iXi,l is a tilting A′-module and is the direct sum of

∑n
i=1mi indecomposable

A′-modules, so (see [19, Thm 1.19]):

n∑

i=1

mi > rkK0(A
′) = n.|G| (i)

Moreover, we have for each i:
⊕

g∈G

Ti = FλF.(Ti) =

mi⊕

l=1

Fλ(Xi,l) (ii)

where the last term (resp. the first term) of the equality is the direct sum of at least mi (resp. exactly
|G|) indecomposable A-modules, so:

(∀i ∈ {1, . . . , n}) |G| > mi (iii)

From (i), (ii) and (iii) we deduce that:

11



(iv) mi = |G| for each i,

(v) Fλ(Xi,l) ≃ Ti for each i, l (in particular, for any i, Ti is of the first kind w.r.t. F ),

Hence F.T =
⊕

l,iXi,l is a tilting A′-module and is the direct sum of
∑
imi = n.|G| = rkK0(A

′)

indecomposable A′-modules. This shows that (see [19, Thm 1.19]) F.T is basic (and therefore F.T ∈ TA′),
and (v) shows that T ∈ mod1(A).

Finally, let X ∈ ind(A) be a direct summand of T and let X̂ ∈ ind(A′) verify Fλ(X̂) ≃ X. Thus, we

have F.(X) ≃
⊕

g∈G
gX̂ . Moreover, F.X is a direct summand of F.T which is basic. So

⊕
g∈G

gX̂ is
basic, i.e. GX̂ = 1. �

Remark 3.2. . Proposition 3.1 proves that F. sends tilting A-modules to tilting A′-modules.
. In general, given X ∈ ind(A′) (with G non necessarily finite), the property GX = 1 (like in Proposi-
tion 3.1) implies that Fλ(X) is indecomposable (see [12, 3.5]).

The following example shows that Fλ does not always preserve tilting modules.

Example 3.3. Let A be the path algebra of the quiver Q equal to:

2

��>
>>

>>
>>

1

@@�������
// 3

Let A′ be the path algebra of the quiver Q′ equal to:

1

����
��

��
��

// 3′

2

��=
==

==
==

= 2′

__???????

3 1′oo

??�������

The mapping i, i′ 7→ i (i ∈ {1, 2, 3}) uniquely defines a Galois covering A′ → A with group Z/2Z. For x a
vertex of Q or Q′, let Px be the associated indecomposable projective module and let τA (resp. τA′) be the
Auslander-Reiten translation (see [7]) of A (resp. of A′). Let T = P1

⊕
P2

⊕
P3

⊕
P1′

⊕
P2′

⊕
τ−1
A′ (P3′)

be the APR-tilting A′-module associated with the sink 3′ of Q′ (see [5]). Then:

. P3

⊕
τ−1
A′ (P3′) is a selforthogonal A′-module.

. Fλ(P3

⊕
τ−1
A′ (P3′)) = P3

⊕
τ−1
A (P3) is not selforthogonal because of the almost split sequence in

mod(A):

0 → P3 → P1

⊕
P2 → τ−1

A (P3) → 0

This shows that Fλ(T ) is not selforthogonal and therefore not tilting.

Although Fλ does not always transform a tilting A′-module into a tilting A-module, it is possible to
characterise those tilting A′-modules T such that Fλ(T ) is tilting. We establish this characterisation in
the following proposition.

Proposition 3.4. 1) If T ∈ TA then GF.T = G.
2) Let X ∈ TA′ verify GX = G. Let T ∈ mod(A) be a basic A-module such that add(T ) = add(F.X).
Then T ∈ TA and X ≃ F.T .
3) Let X ∈ TA′ , then Fλ(X) is tilting if and only if GX = G.

Proof: 1) is a consequence of the definition of F.. Let us prove 2). From Lemma 1.1 we get pdA(Fλ(X)) 6

pdA(T ) <∞. Since X is selforthogonal and G is finite, Lemma 1.1 implies that:

(∀i > 1) ExtiA(Fλ(X), Fλ(X)) ≃ ExtiA′(X,F.Fλ(X)) ≃ ExtiA′(X,
⊕

g∈G

gX) ≃
⊕

g∈G

ExtiA′(X, gX) = 0

So Fλ(X) and T are selforthogonal. This shows that T is an exceptionnal and basic A-module. Hence, in
order to prove that T ∈ TA, it suffices to prove that d(T ) > n (see [19, Thm 1.19], recall that d(T ) is the
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number of indecomposables whose direct sum is T ). The equalities add(T ) = add(Fλ(X)) and GX = G
imply that:

add(F.T ) = add(F.Fλ(X)) = add(
⊕

g∈G

gX) = add(X) (i)

Since X is basic, we infer that X is a direct summand of F.T . In particular, we have:

d(F.T ) > d(X) = n.|G| (ii)

the last equatity of (ii) is due to the fact that X ∈ TA′ . Using (ii) we get:

d(T ) =
1

|G|
d(

⊕

g∈G

T ) =
1

|G|
d(FλF.(T )) >

1

|G|
d(F.T ) >

1

|G|
n|G| = n

Hence T is an exceptionnal basic A-module satisfying d(T ) > n. So T ∈ TA and d(T ) = n. Now let us
prove that F.T ≃ X. From Proposition 3.1 we know that F.T is basic. Since X is basic as well and since
add(X) = add(F.T ) (see (i) above) we infer that X ≃ F.T . This proves 2).

Let us prove 3). If GX = G, then add(Fλ(X)) = add(T ) with T ∈ TA (see 2)), so Fλ(X) is tilting.
Conversely, suppose that Fλ(X) is tilting. Then we get from Lemma 1.1 (recall that G is finite):

(∀i > 1) 0 = ExtiA(Fλ(X), Fλ(X)) ≃ ExtiA′(X,F.Fλ(X)) ≃
⊕

g∈G

ExtiA′(X, gX)

So:

(∀i > 1) (∀g ∈ G)

{
ExtiA′(X, gX) = 0

ExtiA′( gX,X) ≃ ExtiA′(X, g
−1

X) = 0

Since gX ∈ TA′ for any g ∈ G we infer that gX ≃ X for any g ∈ G. �

Before stating the theorem comparing TA and TA′ , we remark that the action of G on mod(A′)
naturally defines an action on the poset TA′ (the action is compatible with the order: X > X ′ ⇒ gX >
gX ′).

Theorem 3.5. The mapping:
ι : TA −→ TA′

T 7−→ F.T

is a well defined injective morphism of posets. It’s image is equal to:

T G
A′ = {T ∈ TA′ | (∀g ∈ G) gX ≃ X}

Proof: Thanks to Proposition 3.1 and Proposition 3.4 we only need to prove that ι is injective and
increasing. If T, T ′ ∈ TA′ are such that F.T ≃ F.T ′ then

⊕
g∈G T ≃ FλF.(T ) ≃ FλF.(T

′) ≃
⊕

g∈G T
′ and

therefore T ≃ T ′ (recall that T and T ′ are basic). So ι is injective. Now assume that T 6 T ′ in TA. Let
X ∈ (F.T )⊥, then Lemma 1.1 implies that:

(∀i > 1) 0 = ExtiA′(F.T,X) ≃ ExtiA(T, Fλ(X))

So Fλ(X) ∈ T⊥ ⊆ T ′⊥. Using once more Lemma 1.1 we infer that:

(∀i > 1) 0 = ExtiA(T ′, Fλ(X)) ≃ ExtiA′(F.T ′,X)

So X ∈ (F.T ′)⊥. This shows that ι is a morphism of posets. �

In Proposition 3.1 we have proved that any basic tilting A-module is of the first kind w.r.t. F .
Therefore, Definition 2.7 and Remark 2.1 give a Galois covering FT : EndA′(F.T ) → EndA(T ) with
group G. In view of the proof of Theorem 1 we now verify that this Galois covering is connected.

Proposition 3.6. Let T be a basic tilting A-module. Then the Galois covering FT : EndA′(F.T ) →
EndA(T ) is connected.

Proof: Let us write T = T1

⊕
. . .

⊕
Tn (with Ti ∈ ind(A)). For each i let us fix T̂i ∈ ind(A′) verifying

Fλ(T̂i) ≃ Ti. In order to prove that the Galois covering FT is connected we thus need to prove that

the k-category EndA′(
⊕

g∈G
gT̂i) is locally bounded and connected. From Proposition 3.1 we know that

F.T ≃
⊕

g∈G
gT̂i is a basic tilting A′-module. So EndA′(

⊕
g∈G

gT̂i) is a finite dimensional basic and
connected k-algebra, i.e. a locally bounded and connected. �
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4 Comparison of
−→
KA and

−→
KEndA(T ) for a tilting A-module T

Throughout this section, T will be a basic tilting A-module. Let B = EndA(T ), in particular, T is
a basic tilting B-module (see [19, Thm 1.5]). The aim of the present section is to establish a link

between
−→
KA and

−→
KB . This link will be used in the comparison of the Galois coverings of A and B.

For simplicity, if X ∈ mod(A) (resp. u ∈ HomA(X,Y )) we shall write XT (resp. uT ) for the B-module
(resp. the morphism of B-modules) HomA(X,T ) (resp. HomA(u, T ) : HomA(Y, T ) → HomA(X,T )).
Also, whenever f is a morphism of modules, we shall write f∗ (resp. f∗) for the mapping g 7→ fg (resp.
g 7→ gf). We begin with a useful lemma.

Lemma 4.1. Let X ∈ mod(A) and let T ′ ∈
−→
KA be a predecessor of T (i.e. there is a path in

−→
KA starting

at T ′ and ending at T ). Then, for any direct summand Y of T ′, the natural morphism:

θX,Y : HomA(X,Y ) −→ HomB(YT ,XT )
u 7−→ uT

is an isomorphism. In particular: Y ∈ ind(A) ⇔ YT ∈ ind(B).

Proof: Remark that for Y1, Y2 ∈ mod(A) we have θX,Y1⊕Y2
=

[
θX,Y1

0
0 θX,Y2

]
. Thus, θX,Y is an

isomorphism for any direct summand Y of T ′ if and only if θX,T ′ is an isomorphism.

By assumption on T ′, there exists a path in
−→
KA starting at T ′ and ending at T . Let us prove by induction

on the length l of this path that θX,T ′ is an isomorphism.
If l = 0 then T = T ′. So θX,T ′ = θX,T is equal to:

HomA(X,T ) = XT −→ HomB(TT ,XT ) = HomB(B,XT )
u 7−→ (f 7→ fu)

So θX,T ′ is an isomorphism (with inverse ϕ 7→ ϕ(1B)). This proves the lemma when l = 0.
Now assume that n > 0 and assume that θX,T ′′ is an isomorphism whenever T ′′ is the source of a

path in
−→
KA ending at T and with length equal to l− 1. We have a path T ′ → T ′′ → . . .→ T of length l

in
−→
KA. Therefore:

θX,Y is an isomorphism for any direct summand Y of T ′′ (i)

Moreover, thanks to the arrow T ′ → T ′′ in
−→
KA, we have:

(ii) T ′ = T
⊕
Y ′ with Y ′ ∈ ind(A),

(iii) T ′′ = T
⊕
Y ′′ with Y ′′ ∈ ind(A),

(iv) a non split exact sequence 0 → Y ′ → T̃ → Y ′′ → 0 with T̃ ∈ add(T ).

Thanks to (i), (ii) and (iii) we only need to prove that θX,Y ′ is an isomorphism. Remark that by
assumption on T ′ and T ′′ we have T ∈ T⊥ ⊆ T ′′⊥. This implies in particular that Ext1A(Y ′′, T ) = 0.
Therefore, (iv) yields an exact sequence in mod(A):

0 → Y ′′
T → T̃T → Y ′

T → 0

This gives rise to the exact sequence:

0 → HomB(Y ′
T ,XT ) → HomB(T̃T ,XT ) → HomB(Y ′′

T ,XT )

On the other hand, (iv) yields the following exact sequence:

0 → HomA(X,Y ′) → HomA(X, T̃ ) → HomA(X,Y ′′)

Therefore, we have a commutative diagram:

0 // HomA(X,Y ′) //

θX,Y ′

��

HomA(X, T̃ ) //

θ
X,T̃

��

HomA(X,Y ′′)

θX,Y ′′

��
0 // HomA(Y ′

T ,XT ) // HomA(T̃T ,XT ) // HomA(Y ′′
T ,XT )

where the rows are exact and where θX,T̃ and θX,Y ′′ are isomorphisms (because of (i), (iii) and (iv)).
This shows that θX,Y ′ is an isomorphism. So θX,T ′ is an isomorphism and the induction is finished. This
proves the first assertion of the lemma. The second assertion is due to the functoriality of θX,Y . �
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Remark 4.2. 1. Lemma 4.1 holds for any Y ∈ add(T ′).

2. Assume that A is hereditary. Then Lemma 4.1 still holds if one replaces the hypothesis ”T ′ is
a predecessor of T” by ”T ′

> T” (i.e. T⊥ ⊆ T ′⊥). The proof is then a classical application of
left-add(T ) approximations (in the above proof, one replaces the exact sequence ε by a coresolution,
which necessarily a short exact sequence, of T ′ in add(T )).

The following proposition is the base of the link between
−→
KA and

−→
KB: it explains how to associate

suitable tilting B-modules with tilting A-modules.

Proposition 4.3. Let X → Y be an arrow in
−→
KA where X and Y are predecessors of T . Then:

XT ∈
−→
KB ⇔ YT ∈

−→
KA

When the two conditions of the above equivalence are satisfied, there is an arrow YT → XT in
−→
KB.

Proof: Let us assume that YT ∈
−→
KB and let us show that XT ∈

−→
KB and that there is an arrow YT → XT

in
−→
KB (the proof of the remaining implication is then obtained by exchanging the roles of X and Y ).

The arrow X → Y in
−→
KA gives the following data:

. X = M
⊕
X with M ∈ ind(A),

. Y = N
⊕
X with N ∈ ind(A),

. ε : 0 →M
i
−→ X ′ p

−→ N → 0 is a non split exact sequence in mod(A) with X ′ ∈ add(X).

The tilting A-module Y is a predecessor of T . Hence T ∈ T⊥ ⊆ Y ⊥ and therefore Ext1A(N,T ) = 0. We
infer that HomA(ε, T ) gives an exact sequence in mod(B):

0 → NT
pT−−→ X ′

T

iT−→MT → 0 (εT )

Notice that we also have:

. XT = MT

⊕
XT ,

. YT = NT
⊕
XT ,

. X ′
T ∈ add(XT ).

Hence, in order to prove that XT ∈
−→
KB and that there is an arrow YT → XT in

−→
KB , we only need to

prove the following facts:

1) εT does not split,

2) MT ∈ ind(B) and NT ∈ ind(B),

3) pdB(XT ) <∞,

4) XT is selforthogonal,

5) d(XT ) = n and XT is basic.

1) Let us prove that εT does not split. If εT splits, then iT is a retraction:

(∃λ ∈ HomB(MT ,X
′
T )) IdMT = iT ◦ λ

Since M is a direct summand of Y ∈
−→
KA and since Y is a predecessor of T , Lemma 4.1 implies that

λ = πT with π ∈ HomA(X ′,M). Thus we have (π ◦ i)T = (IdM )T . Using again Lemma 4.1 we deduce
that π ◦ i = IdM which is impossible because ε does not split. So εT does not split.

2) Lemma 4.1 implies that MT , NT ∈ ind(B).

3) Since we assumed that YT ∈
−→
KB, we have pdB(XT ) < ∞, pdB(X ′

T ) < ∞ and pdB(NT ) < ∞.
Hence εT gives pdB(MT ) <∞. So pdB(XT ) <∞.

4) Let us prove that XT is selforthogonal. In this purpose, we use the following lemma.

Lemma 4.4. The following morphisms induced by pT : NT → X ′
T are surjective:

(pT )∗ HomB(X ′
T ,XT ) −→ HomB(NT ,XT )

f 7−→ f ◦ pT

(pT )∗ HomB(X ′
T ,MT ) −→ HomB(NT ,MT )

f 7−→ f ◦ pT
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Proof: We only prove that the first morphism is surjective, the second morphism is dealt with the same

way after replacing X by M . Since X = M
⊕
X ∈

−→
KA, we have Ext1A(X,M) = 0. Hence HomA(X, ε)

gives rise to a surjective morphism induced by p:

p∗ : HomA(X,X ′) ։ HomA(X,N)
f 7−→ p ◦ f

Let us apply Lemma 4.1 and Remark 4.2 to X ′ ∈ add(Y ) and N ∈ add(Y ). We get the following
commutative diagram where vertical arrows are isomorphisms:

HomA(X,X ′)
p∗ //

θ
X,X′

��

HomA(X,N)

θ
X,N

��
HomB(X ′

T ,XT )
(pT )∗ // HomB(NT , XT )

Since p∗ is surjective, we infer that so is (pT )∗. So the lemma is proved. �

Now we can prove that XT = XT

⊕
MT is selforthogonal. Since XT ∈ add(YT ) and YT ∈

−→
KB, we

get:
(∀i > 1) ExtiB(XT ,XT ) = 0 (i)

For each i > 1, HomB(XT , εT ) gives the following exact sequence:

ExtiB(XT , X
′
T ) → ExtiB(XT ,MT ) → Exti+1

B (XT , NT )

Since XT ,X
′
T , NT ∈ add(YT ) and YT ∈

−→
KB, we get:

(∀i > 1) ExtiB(XT ,MT ) = 0 (ii)

On the other hand, HomB(εT ,XT ) gives the following exact sequences:

.HomB(X ′
T ,XT )

(pT )∗

−−−−→ HomB(NT ,XT ) → Ext1B(MT ,XT ) → Ext1B(X ′
T ,XT )

.ExtiB(NT ,XT ) → Exti+1
B (MT ,XT ) → Exti+1

B (X ′
T ,XT ) for i > 1

These exact sequences together with Lemma 4.4 and the selforthogonality of YT imply that:

(∀i > 1) ExtiB(MT ,XT ) = 0 (iii)

In order to get the selforthogonality of XT = MT

⊕
XT it only remains to prove that MT is selforthogonal

(because of (i), (ii) and (iii)). Notice that HomB(NT , εT ) gives the following exact sequence for each
i > 1:

ExtiB(NT , X
′
T ) → ExtiB(NT ,MT ) → Exti+1

B (NT , NT )

Using YT ∈
−→
KB and X ′

T , NT ∈ add(YT ) we deduce that:

(∀i > 1) ExtiB(NT ,MT ) = 0 (iv)

Finally HomB(εT ,MT ) gives the following exact sequences:

.HomB(X ′
T ,MT )

(pT )∗

−−−−→ HomB(NT ,MT ) → Ext1B(MT ,MT ) → Ext1B(X ′
T ,MT )

.ExtiB(NT ,MT ) → Exti+1
B (MT ,MT ) → Exti+1

B (X ′
T ,MT ) for i > 1

These exact sequences together with Lemma 4.4, (ii) and (iv) imply that (recall that X ′
T ∈ add(XT )):

(∀i > 1) ExtiB(MT ,MT ) = 0 (v)

From (i), (ii), (iii) and (v) we deduce that XT = MT

⊕
XT is selforthogonal.

5) To finish, let us prove that XT is basic and that d(XT ) = n. Since YT = NT
⊕
XT ∈

−→
KB we infer

that XT is basic. Therefore, if XT = MT

⊕
XT is not basic, then MT ∈ add(XT ) ⊆ Y ⊥

T which implies
that Ext1B(MT , NT ) = 0. This last property contradicts the fact that εT does not split. This proves that

XT is basic. Moreover, YT ∈
−→
KB and NT ∈ ind(B) imply that:

d(XT ) = d(YT ) − d(NT ) = n− 1
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Since MT ∈ ind(B) we deduce that:

d(XT ) = d(MT ) + d(XT ) = n

This finishes the proof of the proposition. �

Remark 4.5. As in Remark 4.2 concerning Lemma 4.1, when A is hereditary, Proposition 4.3 has

the following generalisation: Let X ∈
−→
KA be such that X > T , then XT ∈

−→
KB. The proof of this

generalisation is obtained by replaing the use of the exact sequence ε by a coresolution of X in add(T ).

Proposition 4.3 gives the following proposition which will be used in the comparison of the Galois
coverings of A and B. We omit the proof which is immediate using Proposition 4.3.

Proposition 4.6. Let X ∈
−→
KA be such that there exists a path in

−→
KA starting at X and ending at T .

Then XT ∈
−→
KB and there exists in

−→
KB a path starting at B and ending at XT . In particular, XT and

B lie in the same connected component of
−→
KB.

Proposition 4.3 also allows us to prove the main result of this section. Recall that for a quiver Q, we
write Qop for the opposite quiver (obtained from Q by reversing the arrows).

Theorem 4.7. Let
−→
KA(T ) (resp.

−→
KB(T )) be the full convex subquiver of

−→
KA (resp.

−→
KB) generated by

{A, T} (resp. {B,T}). Then we have an isomorphism of quivers:

α :
−→
KA(T ) 7−→

−→
KB(T )op

X 7−→ XT = HomA(X,T )

Under this correspondance, A ∈
−→
KA(T ) (resp. T ∈

−→
KA(T )) is associated with T ∈

−→
KB(T ) (resp.

B ∈
−→
KB(T )).

Proof: Thanks to Proposition 4.3, the mapping α is a well defined morphism of quivers. Thus, it
only remains to exhibit an inverse morphism. From [19, Thm 1.5] we know that T is a basic tilting
EndB(T )-module and that we have an isomorphism of k-algebras:

A −→ EndB(T )
a 7−→ (t 7→ at)

Henceforth, we shall consider A-modules as EndB(T )-modules and vice-versa using the above isomor-
phism. In particular, we have an identification of quivers:

−→
KA(T )

∼
−→

−→
KEndB(T )(T )

X 7→ X

Therefore, we also have a well defined morphism of quivers:

α′ :
−→
KB(T )op →

−→
KA(T )

X 7→ XT = HomB(X,T )

Let us prove that α′α is an isomorphism. Let X ∈
−→
KA(T ). Then X is a predecessor of T . Therefore,

Lemma 4.1 implies that:

HomB(HomA(X,T ), T ) ≃ HomB(HomA(X,T ),HomA(A,T )) ≃ HomA(A,X) ≃ X

This proves that α′α is an isomorphism of quivers. With the same arguments one also shows that αα′ is

an isomorphism. So does α :
−→
KA(T ) →

−→
KB(T )op. �

Remark 4.8. Assume that A is hereditary, then Theorem 4.7 has the following generalisation, thanks

to Remark 4.5: Let QA (resp. QB) be the full subquiver of
−→
KA (resp.

−→
KB) made of the tilting modules

X > T . Then X 7→ XT induces an isomorphism of quivers QA
∼
−→ QopB .
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5 Tilting modules of the first kind w.r.t. infinite Galois coverings

Let F : C → A be a Galois covering with group G and with C locally bounded. The aim of this section is

to give sufficient conditions for T ∈
−→
KA to satisfy the following conditions (compare with Proposition 3.1

in the case G is finite):

. T is of the first kind w.r.t. F ,

. for each indecomposable summand N of T , any N̂ ∈ mod(C) such that Fλ(N̂) ≃ N has trivial
stabiliser: GN̂ = G.

We begin with the following proposition.

Proposition 5.1. Let T → T ′ be an arrow in
−→
KA. Then:

T ∈ mod1(A) ⇔ T ′ ∈ mod1(A)

Proof: Let us assume that T ∈ mod1(A). Since T → T ′ is an arrow in
−→
KA, we have the following data:

. T = X
⊕
T with X ∈ ind(A),

. T ′ = Y
⊕
T with Y ∈ ind(A),

. ε : 0 → X →M → Y → 0 a non split exact sequence in mod(A) with M ∈ add(T ).

Let us write:

. M = M1

⊕
. . .

⊕
Mt with Mi ∈ ind(A) for each i,

. u =



u1

...
ut


 : X → M = M1

⊕
. . .

⊕
Mt,

. v =
[
v1 · · · vt

]
: M = M1

⊕
. . .

⊕
Mt → Y .

Since T ′ = Y
⊕
T , since T = X

⊕
T and since T ∈ mod1(A), we only need to prove that Y ∈ mod1(A)

in order to get T ′ ∈ mod1(A). Without loss of generality, we may assume the following:

. A is G-graded, C = A♯G and F : C = A♯G→ A is the natural projection,

. X,M1, . . . ,Mt are G-graded A-modules.

In order to prove that Y ∈ mod1(A), we will need the following lemma.

Lemma 5.2. Assume that A is G-graded and let:

0 → X
u
−→ M

v
−→ Y → 0 (ε)

be an exact sequence in mod(A) verifying the following hypotheses:

. X ∈ ind(A) is G-graded and Y ∈ ind(A),

. M = M1

⊕
. . .

⊕
Mt where Mi ∈ ind(A) is G-graded for every i,

. Ext1A(Y,M) = 0.

Then (ε) is isomorphic to an exact sequence in mod(A):

0 → X




u′
1

...
u′
t




−−−−→M1

⊕
. . .

⊕
MT → Y → 0

where each u′
i : X →Mi is a homogeneous morphism (of some degree).

Proof of Lemma 5.2: Let us write u =



u1

...
ut


 with ui : X → Mi for each i. We may assume that

u1 : X →M1 is not homogeneous. Thus:

u1 = h1 + . . .+ hd

where d > 2 and h1, . . . , hd : X → M1 are non zero homogeneous morphisms of pairwise different degree
(recall that d is uniquely determined by u1). In order to prove the lemma, it suffices to prove the following
property which we denote by (P):
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“ (ε) is isomorphic to an exact sequence of the form:

0 → X




u′
1

u2

...
ut




−−−−→M1

⊕
. . .

⊕
Mt → Y → 0 (ε′)

where u′
1 is the sum of at most d− 1 non zero homogeneous morphisms X →M1 of pairwise different

degree. “

For simplicity we adopt the following notations:

. M = M2

⊕
· · ·

⊕
Mt (so M = M1

⊕
M),

. u =



u2

...
ut


 : X → M (so u =

[
u1

u

]
: X →M1

⊕
M),

. h = h2 + . . .+ hd : X →M1 (so u1 = h1 + h).

From HomA(ε,M1) we get the exact sequence:

HomA(M1

⊕
M,M1)

u∗

−−→ HomA(X,M1) → Ext1A(Y,M1) = 0

So there exists [λ, µ] : M1

⊕
M →M1 such that h1 = [λ, µ]u. Hence:

h1 = λu1 + µu = λh1 + λh+ µu (i)

Let us distinguish two cases wether λ ∈ EndA(M1) is invertible or nilpotent (recall that M1 ∈ ind(A)):
• If λ is invertible then:

θ :=

[
λ µ
0 IdM

]
: M1

⊕
M → M1

⊕
M

is invertible. Using (i) we deduce an isomorphism of exact sequences:

0 // X


u1

u




// M1

⊕
M //

θ

��

Y //

∼

��

0 (ε)

0 // X


h1

u




// M1

⊕
M // Y // 0 (ε′)

Since h1 : X →M1 is homogeneous, (ε′) fits property (P). So (P) is satisfied in this case.
• If λ ∈ EndA(M1) is nilpotent, let p > 0 be such that λp = 0. Using (i) we get the following equalities:

h1 = λ2h1 + (λ2 + λ)h+ (λ+ IdM1
)µu

...
...

...

h1 = λth1 + (λt + λt−1 + . . .+ λ)h+ (λt−1 + . . .+ λ+ IdM1
)µu

...
...

...

h1 = λph1 + (λp + λp−1 + . . .+ λ)h+ (λp−1 + . . .+ λ+ IdM1
)µu

Since λp = 0 and u1 = h1 + h we infer that:

u1 = λ′h+ λ′µu

where λ′ := IdM1
+ λ+ . . .+ λp−1 ∈ EndA(M1) is invertible. So we have an isomorphism:

θ :=

[
λ′ λ′µ
0 IdM

]
: M1

⊕
M →M1

⊕
M
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and consequently we have an isomorphism of exact sequences:

0 // X

∼

��


h
u




// M1

⊕
M

θ

��

// Y //

∼

��

0 (ε′)

0 // X


u1

u




// M1

⊕
M // Y // 0 (ε)

where h = h2 + . . .+ hp is the sum of p− 1 homogeneous morphisms of pairwise different degrees. So (P)
is satisfied in this case. This finishes the proof of the lemma. �

Now we can prove that Y ∈ mod1(A). Thanks to the preceding lemma we know that (ε) is isomorphic
to an exact sequence in mod(A):

0 → X




u′
1

...
u′
t




−−−−→M1

⊕
. . .Mt → Y → 0 (ε′)

where each u′
i : X →Mi is homogeneous of degree gi ∈ G. From Proposition 1.4 we get:

(∀i ∈ {1, . . . , n}) (∃ũ′
i ∈ HomC(X̃, g

−1

i M̃i)) u′
i = Fλ(ũ

′
i)

This gives (recall that Fλ is exact):

Y ≃ Coker






u′

1

...
u′
t





 = Coker






Fλ(ũ

′
1)

...
Fλ(ũ

′
t)





 ≃ Fλ


Coker



ũ′

1

...
ũ′
t







This proves that Y ∈ mod1(A). Therefore T ′ = Y
⊕
T ∈ mod1(A).

The proof of the implication T ′ ∈ mod1(A) ⇒ T ∈ mod1(A) is identical to the one we have just
written except that instead of using Lemma 5.2 we use a dual version:

Lemma 5.3. Assume that A is G-graded and let:

0 → X →M
v
−→ Y → 0 (ε)

be an exact sequence in mod(A) verifying the following hypotheses:

. Y ∈ ind(A) is G-graded and X ∈ ind(A),

. M = M1

⊕
. . .

⊕
Mt where Mi ∈ ind(A) is G-graded for every i,

. Ext1A(M,X) = 0.

Then (ε) is isomorphic to an exact sequence in mod(A):

0 → X →M1

⊕
. . .

⊕
MT → Y




v′1
...
v′t




−−−→ 0

where each v′i : X →Mi is a homogeneous morphism (of some degree).

This finishes the proof of Proposition 5.1. �

Remark 5.4. The proof of Proposition 5.1 shows that for an arrow T → T ′ in
−→
KA such that T, T ′ ∈

mod1(A) there exists an exact sequence in mod(C):

0 → X
ι
−→M

π
−→ Y → 0

with the following properties:
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. T = Fλ(X)
⊕
T and Fλ(X) ∈ ind(A),

. T ′ = Fλ(Y )
⊕
T and Fλ(Y ) ∈ ind(A),

. Fλ(M) ∈ add(T ).

Proposition 5.1 gives immediately the following result.

Proposition 5.5. Let F : C → A be a Galois covering with C locally bounded. If T, T ′ ∈
−→
KA lie in a

same connected component of
−→
KA then:

T ∈ mod1(A) ⇔ T ′ ∈ mod1(A)

In particular, any T ∈
−→
KA lying in the connected component of

−→
KA containing A is of the first kind w.r.t.

F .

Remark 5.6. The preceding proposition is similar to part of [12, Thm 3.6] where P. Gabriel proves
the following: if F : C → A is a Galois covering with group G, with C locally bounded and such that
G acts freely on ind(C), then for any connected component C of the Auslander-Reiten quiver of A, all
indecomposable modules of C lie in ind1(A) as soon as any one of them does.

Recall that
−→
KA has a Brauer-Thrall type property (see [15, Cor. 2.2]):

−→
KA is finite and connected if it

has a finite connected component. In particular,
−→
KA is finite and connected if A is of finite representation

type. Using Proposition 5.5, we get the following corollary.

Corollary 5.7. If
−→
KA is finite (e.g. A is of finite representation type), then any T ∈

−→
KA is of the first

kind w.r.t. F .

Now we turn to the second goal of this section: for T ∈ mod1(A) a basic tilting A-module, give

sufficient conditions for T to verify: if X ∈ ind(A) ∩ add(T ) and if X̂ ∈ ind(C) verifies Fλ(X̂) ≃ X then
GX̂ = 1. Notice that T verifies this property if and only if F.T is a basic C-module.

Proposition 5.8. Let T, T ′ ∈
−→
KA ∩mod1(A) lie in a same connected component of

−→
KA, then:

F.T is a basic C-module ⇔ F.T ′ is a basic C-module.

Proof : Without loss of generality, we may assume that there is an arrow T → T ′ in
−→
KA. Let us assume

that F.T is basic and let us prove that so is F.T ′. We will use Remark 5.4 from which the adopt the
notations, in particular, the exact sequence 0 → X

ι
−→ M

π
−→ Y → 0 in mod(C) will be denoted by (ε).

Because F.T is basic and because of the properties verified by (ε), we only need to prove that GY = 1.
Let ϕ : Y → gY be an isomorphism in mod(C) (with g ∈ G), and let us prove that g = 1. To do this we
will exhibit an isomorphism θ : X → gX. Notice that:

(∀h ∈ G)

{
hX, hM ∈ add(F.T )
hY, hM ∈ add(F.T ′)

(1)

Moreover, thanks to T ∈
−→
KA and to FλF.T =

⊕
h∈G T , we have:

(∀i > 1) ExtiC(F.T, F.T ) ≃ ExtiA(FλF.(T ), T ) ≃
∏

h∈G

ExtiA(T, T ) = 0

In particular:
Ext1C( gM,X) = Ext1C(M, gX) = 0 (i)

With HomC(M, gε), this last equality gives the exact sequence:

HomC(M, gM)
( gπ)∗
−−−−→ HomC(M, gY ) → Ext1C(M, gX) = 0

From this exact sequence, we deduce the existence of ψ ∈ HomC(M, gM) such that the following diagram
commutes:

M
π //

ψ

��

Y

ϕ

��
gM

gπ // gY
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This implies the existence of θ ∈ HomC(X, gX) making commutative the following diagram with exact
rows:

0 // X
ι //

θ

��

M
π //

ψ

��

Y

ϕ

��

// 0

0 // gX
gι // gM

gπ // gY // 0

(ii)

We claim that θ : X → gX is an isomorphism. The arguments that have been used to get (ii) may be
adapted (just replace the use of HomC(M, gε) and of ϕ : Y → gY by HomC( gM, ε) and ϕ−1 : gY → Y )
to get the following commutative diagram with exact rows:

0 // gX
gι //

θ′

��

gM
gπ //

ψ′

��

gY

ϕ−1

��

// 0

0 // X
ι // M

π // Y // 0

(iii)

In order to show that θ : X → gX is an isomorphism, let us show that θ′θ ∈ EndC(X) is an isomorphism.
Notice (ii) and (iii) give the following commutative diagram:

0 // X
ι //

θ′θ−idX

��

M
π //

ψ′ψ−IdM

��

Y

0

��

// 0

0 // X
ι // M

π // Y // 0

(iv)

In particular we have π(ψ′ψ − IdM ) = 0. Thus, ψ′ψ − IdM factorises through ι. So there exists
λ ∈ HomC(M,X) such that:

ψ′ψ − IdM = ιλ

This last property implies that:
ι(θ′θ − IdX) = ιλι

and since ι is one-to-one, we get θ′θ − idX = λι, i.e.:

θ′θ = IdX + λι

If λι ∈ EndC(X) was an isomorphism, then ι : X → M would be a section. This would imply that
Fλ(X) is a direct summand of Fλ(M). This last property is impossible because: T = Fλ(X)

⊕
T ,

Fλ(M) ∈ add(T ) and T is basic. This contradiction proves that λι ∈ EndC(X) is nilpotent. Therefore
θ′θ = IdX + λι ∈ EndC(X) is invertible. As a consequence, θ : X → gX is a section. Since X, gX ∈
ind(C), we deduce that θ : X → gX is an isomorphism. Since we assumed that F.T is basic, we get g = 1.
This finishes the proof of the implication:

F.T is basic ⇒ F.T ′ is basic.

under the assumption that T → T ′ is an arrow in
−→
KA. After exchanging the roles of T and T ′ in the

above arguments, we also prove that:

F.T is basic ⇐ F.T ′ is basic.

under the assumption that T → T ′ is an arrow in
−→
KA. This achieves the proof of the proposition. �

We end this section with a result which be useful to prove Theorem 1. Recall from Definition 2.7 that
to T ∈ mod(A) of the first kind w.r.t. F it is possible to associate a Galois covering FT of EndA(T ). The

following proposition gives sufficient conditions on T ∈ mod1(A) ∩
−→
KA for FT to be a connected Galois

covering.

Proposition 5.9. Let F : C → A be a Galois covering with group G and with C locally bounded. Let

T, T ′ ∈
−→
KA lie in a same connected component of

−→
KA. Assume that T, T ′ ∈ mod1(A). Then:

FT is a connected Galois covering ⇔ FT ′ is a a connected galois covering.

Proof : Without loss of generality, we may assume that there is an arrow T → T ′ in
−→
KA. Let us as-

sume that FT : EndC(F.T ) → EndA(T ) is a connected Galois covering, i.e. F.T is basic C-module and
EndC(F.T ) is connected. Thanks to Proposition 5.8 we already know that F.T ′ is a basic C-module. On
the other hand, since C is connected, Lemma 2.8 proves that EndC(F.T ′) is connected. �
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6 Comparison of the Galois coverings of A and EndA(T ) for T basic

tilting A-module

This section is devoted to the proof of Theorem 1. Let T ∈
−→
KA and let B = EndA(T ). In Section 3 and

Section 5 we have given sufficient conditions for T to be of the first kind w.r.t. a given Galois covering
of A. Moreover, when C → A is a Galois covering with group G (and with C locally bounded) and such
that T ∈ mod1(A), we have constructed (see Definition 2.7) an isomorphism class of Galois covering
FT : EndC(F.T ) → EndA(T ) with group G. Recall that we are mainly interested in Galois coverings
C′ → B where C′ is connected and locally bounded. For this reason, we introduce the following property
depending on A, T and a fixed group G:

P(A,T,G) =”For any connected Galois covering F : C → A with group G, we have: T is of the first kind
w.r.t. F and FT is a connected Galois covering”

Notice that P(A,A,G) is true for any G. The above definition of P(A,T,G) is relevant because of the
following proposition.

Proposition 6.1. Let G be a group. Assume that P(A,T,G) and P(B,T,G) are true. Then A and B
have the same connected Galois coverings with group G.

Proof : Let us denote by GalG(A) (resp. GalG(B)) the set of isomorphism classes of connected Galois
coverings of A (resp. of B) with group G. So we need to exhibit a bijective map GalG(A) → GalG(B).
For simplicity we shall consider FT both as a Galois covering and as an isomorphism class.

From Definition 2.7 and because P(A,T,G) is true, we have a well defined mapping:

ϕ : GalG(A) −→ GalG(B)
F 7−→ FT

(i)

Simlarly, P(B,T,G) is true so we have a wel defined mapping:

GalG(B) −→ GalG(EndB(T ))
F 7−→ FT

(ii)

Recall from [19, Thm. 1.5] that we have an isomorphism of k-categories:

ρ : A −→ EndB(T )
x ∈ Ob(A) 7−→ T (x) ∈ Ob(EndB(T ))
a ∈ yAx 7−→ (t 7→ at) ∈ T (y)EndB(T )T (x)

So (ii) gives the well defined mapping:

ψ : GalG(B) −→ GalG(A)
F 7−→ ρ−1 ◦ FT

(iii)

From Lemma 2.8 we know that ψϕ = IdGalG(A). Similarly, ϕψ = IdGalG(B) (the situation is symetrical
between A and B because B = EndA(T ) and because of the isomorphism ρ : A→ EndB(T )). This proves
that ϕ : GalG(A) → GalG(B) is a bijection. �

Thanks to Proposition 6.1 we are reduced to find sufficient conditions for P(A, T,G) and P(B,T,G)
to be simultaneously true. Proposition 3.1 and Proposition 3.6 give immediately the following sufficient
condition.

Proposition 6.2. Let G be a finite group. Then P(A,T,G) and P(B,T,G) are true.

When dealing with an infinite group G, we need more steps in order to know if P(A,T,G) and
P(B,T,G) are true. The following proposition is a direct consequence of: Proposition 5.5, Proposition 5.9
and the fact that P(A,A,G) is true.

Proposition 6.3. Let G be a group. Let T ′ ∈
−→
KA lying in the connected component of

−→
KA containing

T . Then:

P(A,T,G) is true ⇔ P(A,T ′, G) is true

In particular, if T lies in the connected component of
−→
KA containing A then P(A,T,G) is true.

Thanks to Proposition 6.3, we may look for conditions for T to lie in both connected components of
−→
KA and

−→
KB containing A and B respectively. Such a condition is given by the following proposition.
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Proposition 6.4. Let G be a group and assume that there exists a path in
−→
KA starting at A and ending

at T . Then T lies in the connected component of
−→
KA (resp.

−→
KB) containing A (resp. B). Consequentely,

P(A,T,G) and P(B,T,G) are true.

Proof : Theorem 4.7 implies that there exists a path in
−→
KB starting at HomA(T, T ) = B and ending at

HomA(A,T ) = T . Using Proposition 6.3 we get the desired conclusion. �

Now we can prove Theorem 1:
Proof of Theorem 1: 1) is a consequence of Proposition 6.1 and Proposition 6.2.

2) We may assume that there exists a path in
−→
KA starting at T ′ and ending at T . Using Lemma 4.1

and Proposition 4.6 we infer that:

(i) EndA(T ′) and EndB(HomA(T ′, T )) are isomorphic as k-algebras,

(ii) there exists a path in
−→
KB starting at HomA(T, T ) = B and ending at HomA(T ′, T ).

This implies (thanks to Proposition 6.4 and to Proposition 6.1) that EndA(T ′) and EndA(T ) = B have
the same connected Galois coverings with group G.

3) is a consequence of 2), of the fact that EndA(A) ≃ Aop and of the fact that A and Aop have the
same Galois coverings (F : C → A is a Galois covering if and only if F op : Cop → A is a Galois covering
and Cop is connected and locally bounded if and only if Cop is). �

Now we can use Theorem 1 to prove Corollary 1.
Proof of Corollary 1: 1) and 2) are consequences of Theorem 1 and of the fact that A is simply
connected if and only if it has no proper connected Galois covering (see [17, Cor. 4]).

3) is a consequence of 2).
4) If EndA(T ) is simply connected, then A = kQ has no proper connected Galois covering with finite

group (see Theorem 1). On the other hand, A admits a connected Galois covering with group π1(Q)
which is a free group (see [18]). So A admits connected Galois coverings with group arbitrary factor
groups of π1(Q). Note that if π1(Q) 6= 1, then π1(Q) admits non trivial finite factor groups. Therefore,
we necessarily have π1(Q) = 1 (i.e. A is simply connected). �

Final remark

The Hasse diagram
−→
KA of basic tilting A-modules describes the combinatoric relations between tilting

modules. When A is hereditary (i.e. A = kQ with Q a finite quiver with no oriented cycle) these
combinatorics are also described by the cluster category CQ of the quiver Q (see [10]). In particular, the

underlying graph of
−→
KA is embedded into the graph of tilting objects in CQ. Since the latter is always

connected (see [10, 3.5]) it is natural to ask if it is possible to remove all conditions concerning connected
components in Theorem 1 and Corollary 1 (in the hereditary case). As an example, it is indeed possible
to adapt the proof of Proposition 5.1 to the framework of the cluster category. Therefore, using the
connectedness of the graph of tilting objects in CQ one can prove that any tilting kQ-module is of the first
kind w.r.t. any connected Galois covering of kQ. These developpements will be detailed in a forecoming
version of the present text.
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