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Abstract

We present a simplified version of the DFS-based Left-Right planarity
testing and embedding algorithm implemented in Pigale [1, 2], which has
been considered as the fastest implemented one [3]. We give here a full jus-
tification of the algorithm, based on a topological properties of Trémaux
trees.

1 Introduction

It is well known since the publications [4, 5] in 1973-74 by J. Hopcroft and R.E.
Tarjan that the time complexity of the problem of graph planarity testing is
linear in the number of edges. However, authors of text books and teachers
of graph theory know how hard it is to describe and completely justify such
algorithms, each one being more tricky than the other. To display a planar
embedding is usually a second hard step [6].

A satisfactory graph planarity algorithm should be efficient, clearly justified,
and easy to understand. Only a strong mathematical insight of the subject could
probably meet these three criteria.

R. Tarjan initiated the use of the Depth-First Search procedure (DFS) to
attack planarity testing, both DFS and planarity testing on biconnected graphs
being handled recursively. Several authors explained how to extract an embed-
ding during the recursion of such an algorithm. The authors produced in the
eighties the so-called Left-Right algorithm, a non-recursive version avoiding
the 2-connectivity assumption. The Left-Right algorithm appeared to be
extremely efficient for testing planarity and embedding planar graphs and has
been recognized as the fastest among the implemented ones by the comparative
tests performed by graph drawing specialists [3]. But even if a tentative math-
ematical explanation appeared in our papers on Trémaux characterization of
planarity [7, 8, 9], it was not enough to fully meet the second and third criteria.
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The code appears in the GPL-licenced software PIGALE [1, 2]. A new, sim-
plified, and faster version has been implemented at the occasion of this paper,
which is the one we will discuss here.

In Section 2, Trémaux trees are studied as a mathematical object per se. A
rooted tree that spans a graph is a Trémaux tree if each cotree edge is incident to
two comparable vertices (with respect to the tree order). It is why cotree edges
are then called back-edges. For a given Trémaux tree, the following structural
concepts are defined: the low of a vertex or of an edge, the low set of a vertex
or of an edge and the fringe of an edge.

Section 3 is devoted to the study of planarity. Planarity has been related to
Trémaux trees in [7] in a characterization based on the existence of a bicoloration
constrained by three special simple configurations. These configurations are
here unified into a single one. In this setting, it is proved that some additional
constraints may be imposed, which do not change the existence of a bipartition
but lead a simple planar embedding.

The planarity testing and embedding algorithm is then described in Sec-
tion 4. It is shown that linear time-complexity is reached by implicitly building
a spanning arborescence in the graph of constraints. It shall be noticed that
the data structures used by the algorithm are almost trivial ones, which may
explain its computational efficiency and the ease to follow the algorithm step
by step on an example.

In the sequel, by a “graph” we mean a “connected, loopless multigraph”,
unless we state it otherwise.

2 Trémaux Trees

Depth-first search (DFS) is a fundamental graph searching technique known
since the 19th century (see for instance Luca’s report on Trémaux’s work [10])
and popularized by Hopcroft and Tarjan [4, 11] in the seventies. The structure
of DFS enables efficient algorithms for many other graph problems [12]. Per-
forming a DFS on a graph defines a spanning tree with specific properties (also
known as a Trémaux tree) and an embedding of it as a rooted planar tree, the
edges going out of a vertex being circularly ordered according to the discover
order of the DFS).

A rooted spanning tree T of a graph G defines a partition of the edge set
of G into two classes, the set of tree edges E(T ) and the set of cotree-edges
E(G) \ E(T ). It also defines a partial order � on V (G): x � y if the tree path
linking y to the root of T includes x. The rooted tree T is a Trémaux tree if
every cotree edge is incident to two comparable vertices (with respect to �). A
Trémaux tree T defines an orientation of the edges of the graph: an edge {x, y}
(with x ≺ y) is oriented from x to y (upwards) if it is a tree edge and from y to
x (downwards) if it is a cotree edge. Cotree edges of a Trémaux tree are called
back edges. We will denote by ω+(v) the set of the edges incident to a vertex v

and going out of v. When T is a Trémaux tree, the partial order � is extended
to V (G) ∪ E(G) (or to G for short) as follows: for any edge e = (x, y) oriented
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from x to y, put x ≺ e and if x ≺ y (that is: if e is a tree-edge) also put e ≺ y.
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Figure 1: The partial order ≺ defined by a Trémaux tree of K3,3 (cover relation
correspond to bottom-up arrows as usual).

Notice that in the partial order ≺, all elements α and β of G have an unique
greatest lower bound (meet) α∧β. Moreover, the maximal chains of ≺ all have
the same structure: they begin with the root vertex of T , alternate between ver-
tices and edges, and include at most one back-edge (which is then the maximum
of the chain).

When α � β, the unique chain (of ≺) with minimum α and maximum β

which is maximal (with respect to set-inclusion) is denoted by [α ; β].
It will be helpful to introduce a notation for the minimal element of the

interval ]α ; β]:

Definition 2.1 For x ≺ e, where x ∈ V (G) and e ∈ E(G) we define

stem(x, e) = min ]x ; e] (1)

This means that f is the first edge in the unique chain of ≺ with minimum x

and maximum e.

Notice that in this definition, as in the remaining of the paper, intervals and
“min” will always be related to the partial order ≺ defined by the considered
Trémaux tree.

Definition 2.2 The function low : G → V (G) is defined by

low(α) = min
(
{α} ∪ {v ∈ V (G) : ∃(u, v) ∈ E(G) \ E(T ), (u, v) � α }

)
.

Notice that this function is well defined and that low(α) � α.
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In the literature, this function is usually only defined on V (G). Our extension
is such that for any edge e = (x, y):

low(e) =

{
min(x, low(y)) if e is a tree edge,
y if e is a back-edge.

Definition 2.3 The fringe Fringe(e) of an edge e = (x, y) is defined by:

Fringe(e) = {f ∈ E(G) \ E(T ) : f � e and low(f) ≺ x }

Definition 2.4 The low set L(α) of α ∈ V (G) ∪ E(G) is defined by:

L(α) = {f ∈ E(G) \ E(T ) : f � α and low(f) = low(α) }

Notice that L(e) = {e} if e is a back-edge.

Definition 2.5 Given a tree edge e ∈ E(T ), we
will call e = (x, y):

• a block edge

if x � low(y), that is if low(e) = x (this
means e is either an isthmus or the mini-
mum edge of a block of the graph);

• a thin edge

if low(y) ≺ x and there exists no back-edge
(u, v) with u � y and low(y) ≺ u ≺ x;

• a thick edge

if low(y) ≺ x and there exists a back-edge
(u, v) with u � y and low(y) ≺ u ≺ x.

Fig. 2. Block, thin and thick edges.

Block edges are dotted, thin

edges are light and thick edges

are fat.

Definition 2.6 A TT -precedence order ≺⋆ is a partial order on E(G) such
that, for any v ∈ V (G) and any e, f ∈ ω+(v):

• if low(e) ≺ low(f) then e ≺⋆ f ,

• if low(e) = low(f), f is a thick tree edge but e is not, then e ≺⋆ f .
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3 Trémaux Trees and Planarity

Planarity has been related to Trémaux trees by de Fraysseix and Rosenstiehl
in a series of articles [7, 8, 9]. One of these characterizations is based on a the
existence of a special bipartition of the low angles of the back-edges into left
ones and right ones. The constraints that the bipartition has to fulfill is encoded
into two relations, namely the T -alike and T -opposite relations.

vertex

tree edge

back-edge

non trivial tree chain (at least one edge)

possibly empty tree-chain
(starting with an edge, ending with a vertex)

subtree possibly reduced to a vertex

tree path possibly reduced to a vertex

Figure 3: Symbols used in the figures

We don’t give here the formal definition of T -alike and T -opposite relations
in terms of ≺, but simply recall the characterization given in [7]:

Theorem 1 Let G be a graph with Trémaux tree T . Then G is planar if and
only if there exists a partition of the back-edges of G into two classes so that any
two edges belong to a same class if they are T -alike and any two edges belong to
different classes if they are T -opposite.

Instead of working with this characterization, we introduce an equivalent
characterization based on a single configuration.

Definition 3.1 Let v be a vertex and let e1, e2 ∈ ω+(v).
The interlace set Interlaced(e1, e2) is defined by:

Interlaced(e1, e2) = {f ∈ Fringe(e1) : f ≻ low(e2) }

Definition 3.2 Given a graph G and a Trémaux tree T of G, a coloring λ :
E(G) \ E(T ) → {−1, 1} is an F-coloring if, for every vertex v and any edges
e1, e2 ∈ ω+(v), Interlaced(e1, e2) and Interlaced(e2, e1) are monochromatic and
colored differently.
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γ β α

δ γ

case (i) case (ii) case (iii)
α and β are T -alike α and β are T -opposite α and β are T -opposite

Figure 4: Definition of T -alike and T -opposite relations

It is easily checked that a coloring is an F -coloring if and only if two T -alike
back-edges are colored the same and two T -opposite back-edges are colored
differently.

In a planar drawing, an F -coloring is defined by the partition of the back-
edges on two sets, the edges f having their low incidence on the left (resp. the
right) of the tree edge stem(low(f), f). The following lemma is straightforward
and does not deserve a proof:

Lemma 1 Let G be a planar graph with Trémaux tree T . Then G has an F -
coloring. �

Definition 3.3 An F-coloring λ : E(G) \ E(T ) → {−1, 1} is strong if, for any
v ∈ V (G) the low set L(v) is monochromatic.

Lemma 2 If G has an F-coloring then it has a strong F-coloring.

The addition of the constraints that the sets L(v) are monochromatic may not
lead to a contradiction, as the only constraints involving f1 ∈ L(v) would also
involve any f2 ∈ L(v) and would require that f1 and f2 actually have the same
color. �

¿From the “low angles bicoloration” λ we define a “high angles bicoloration”
λ̂ on the whole edge set of the graph (on both tree edges and back-edges).
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Definition 3.4 Let λ : E(G) \ E(T ) → {−1, 1} be a strong F-coloring. We

define the coloring λ̂ : E(G) → {−1, 1} by:

λ̂(e) =

{
λ(e), if e is a back-edge
λ(f), if e is a tree edge and f ∈ Fringe(e) with maximal low(f)

Lemma 3 Let G be a graph, let T be a Trémaux tree of G, let λ be a strong
F -coloring and let λ̂ be the associated mapping. We define the circular order of
the edges at a vertex v as follows:

Let e1 ≻⋆ e2 ≻⋆ . . . ≻⋆ ep be the edges in ω+(v) with λ̂(ei) = −1 and let

ep+1 ≺⋆ ep+2 ≺⋆ . . . ≺⋆ eq be the edges in ω+(v) with λ̂(ei) = 1.
In the circular order around v one finds the incoming tree edge (if v 6= r)

and then L1, e1, R1, L2, e2, R2, . . . , Lq, eq, Rq where Li (resp. Ri) is the set of
incoming cotree edges f = (x, v) such that λ(f) = −1 (resp. λ(f) = 1) and
the tree-path linking r to x includes ei. For ei, ej ∈ Lk (resp. for ei, ej ∈ Rk),
one finds ei before (resp. after) ej in the circular order if stem(ei∧, ej , ei) ≺⋆

stem(ei ∧ ej, ej).
Then these circular orders define a planar embedding of G.

In a drawing where the tree edges cross no other edges, only two kind of
crossings could occur:

x

e

f

α β

x

ef

α β

Let x = e ∧ f, y = low(f), z = low(e), α = stem(x, e) and β = stem(x, f).
Without loss of generality we assume λ(f) = −1.

• The first case corresponds to two back-edges e, f with λ(e) = λ(f) and
low(e) ≤ low(f).

If low(α) = low(β) = low(e) = low(f) = u, then the contradiction
arises from the definition of the circular order at u. Otherwise, as f ∈
Interlaced(β, α), f is colored the same way as the back-edge in Fringe(β)

with maximal low-value. Hence λ̂(β) = λ(f) = −1. According to the def-

inition of the circular order at x, λ̂(α)) = −1 and α ≻⋆ β. According to
the thin-thick precedence of ≺⋆ it follows that the edge e′ ∈ Fringe(α)
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with maximal low-value is such that low(e′) ≻ low(β), that is: e′ ∈

Interlaced(α, β). Thus λ̂(α) = λ(e′) 6= λ(f), a contradiction.

• The second case corresponds to two back-edges e, f with λ(e) 6= λ(f). By
symmetry we may assume low(α) ≤ low(β) and λ(e) = 1.

Then low(β) ≻ low(x) as λ is a strong F -coloring. Thus f is colored
the same way as the back-edge in Fringe(β) with maximal low-value and

λ̂(β) = λ(f) = −1. According to the definition of the circular order at x,

λ̂(α)) = −1 and α ≻⋆ β. It follows that e ∈ L(x), a contradiction.

�

Theorem 2 Let G be a graph, let T be a Trémaux tree of G. The following
conditions are equivalent:

(i) G is planar,

(ii) G admits an F-coloring,

(iii) G admits a strong F -coloring.

Moreover, if G is planar, any strong F-coloring λ defines a planar embedding
of G in which a back-edge e has its lowest incidence to the left of the tree if
λ(e) = −1 and to the right of the tree if λ(e) = 1

This is a direct consequence of the previous lemmas. �

4 The Planarity Testing Algorithm

4.1 Outline

Let G be a graph of size m. The three steps are performed in O(m)-time. The
first step is composed of a preliminary DFS on G and the computation of the
low function and the status of the edges (block/thin/thick). The second step is
the computation of a TT -precedence order, which may be efficiently performed
using a bucket sort. We now examine the last step of the algorithm, which tests
the planarity of the graph.

We shall consider some data structure CS responsible for maintaining a set
of bicoloration constraints on a set of back-edges. We assign to each edge of the
graph e such a data structure CS(e). These structures are initialized as follows:
CS(e) is empty if e is a tree edge and includes e (with no bicoloration constraints)
if e is a back-edge. We say that all the back-edges have been processed and that
the tree edges are still unprocessed.

• While there exists a vertex v, different from the root, such that all the
edges in ω+(v) have been processed. Let e = (u, v) be the tree edge
entering v. Let e1 ≺⋆ e2 ≺⋆ . . . ≺⋆ ek be the edges in ω+(v) (k ≥ 1). We
do the following:
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– Initialize CS(e) with CS(e1).

– For i : 2 → k, Merge CS(ei) into CS(e), that is: add to CS(e) the
edges in CS(ei) and add the F -coloring constraints corresponding
to the pairs of edges ej , ei with j < i (notice that all the concerned
back-edges belong to CS(e)). If some constraint may not be satisfied,
the graph is declared non-planar.

– Remove from all of the CS(e) every back-edge with lower incidence
u.

– We declare that edge e has been processed.

• As all the edges have been processed, we declare that the graph is planar.

4.2 Data-structure, Complexity and Embedding Compu-

tation

First notice that the processing order of the tree edges is simple to compute,
using either a “topological sort technique” (by maintaining the unprocessed
outdegree of vertices) or by following the backtrack order of a DFS steered by
the TT-order. Also, we should notice that the structure CS(f) is only used
(after its computation) when computing CS(e) where f is the predecessor of f

in ≺. It follows that we may “destroy” CS(f) when computing CS(e) without
any risks.

The data structure for CS(e) is a stack of double top-to-bottom linked stacks.
This means that each element of CS(e) is a pair (S0, S1) of stacks. Each such
pair correspond to a complete bipartite constraint graph: all the edges in Si (i ∈
{0, 1}) have to be colored the same and they have to be colored differently from
the back-edges in Sj (for j 6= i). These will be all the constraints encoded by
the CS(e) (hence no constraint exists between back-edges belonging to different
stack pairs).

Some additional constraints will allow to get amortized constant time oper-
ations: Let (S0

1 , S1
1), (S0

2 , S1
2), . . . , (S0

k, S1
k) be the pairs stacked in some CS(e).

Then:

• The top back-edges of S0
i of S1

i have both a lower incidence which is strictly
smaller than the lower incidences of the bottoms of S0

i+1 and S1
i+1.

• the lower incidences of the back-edges belonging to some stack Sα
i are in

non-decreasing order.

Notice that, for any tree-edge e = (u, v), CS(e) will exactly include the back-
edges f = (x, y) such that x ≻ v and u ≻ y. Hence the set of edges in CS(e) is
Fringe(e).

Now consider the operations performed by the algorithm on the structures
CS(e):

• Merge of CS(ei) into CS(e): the structure CS(e) then contains the back-
edges in X(ei) =

⋃
j<i Fringe(ej) and their bicoloration constraints. By
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induction, the graph of these constraints is a disjoint union of complete
bipartite graphs encoded by the pairs of stacks. The F -coloring conditions
now express as:

– all the back-edges in CS(e) (i.e. in X(ei)) which have a lower inci-
dence strictly greater than low(ei) should have the same color,

– all the back-edges in CS(ei) which have a lower incidence strictly
greater than low(v) should have the same color,

– the two above sets of edges should be colored differently.

These constraints are added as follows:

– let a be the smallest lower incidence of the back-edges in CS(e) (ac-
cording to monotonicity we just have to look at the bottom back-
edges of the stacks of the bottom pair). Then a = low(v).

– let b be the smallest lower incidence of the back-edges in CS(ei) (as
above, this is computed in constant time). Then b = low(ei).

– if CS(e) = ((S0
1 , S1

1), (S0
2 , S1

2), . . . , (S0
k, S1

k)), let j be the biggest in-
teger ≤ k such that none of the back-edges in the top of S0

j and S1
j

have a lower incidence greater than b. Then it should be checked
that for j + 1 < j′ ≤ k, one of S0

j′ and S1
j′ is empty (for other-

wise, we have found a contradiction in the constraints proving that
G is not planar). By flipping pairs if necessary we assume S1

j′ is

empty. Moreover, only one of S0
j+1 and S1

j+1 contains back-edges
whose lower incidence is greater than b (for otherwise we have a con-
tradiction proving that G is not planar). Up to a flipping of the pair
of stack, we may assume this is S0

j . Then we fuse S0
j , . . . , S0

k into S0
j

and CS(e) = ((S0
1 , S1

1), (S0
2 , S1

2), . . . , (S0
j , S1

j )).

– similarly, if CS(ei) = ((T 0
1 , T 1

1 ), (T 0
2 , T 1

2 ), . . . , (T 0
p , T 1

p )), let q = 2 if
T 0

1 or T 1
1 has a bottom edge whose lower incidence is a and let q = 1

otherwise. Then it should be checked that for q ≤ q′ ≤ p, one of
S0

q′ and S1
q′ is empty (for otherwise, we have found a contradiction

in the constraints proving that G is not planar). By flipping pairs if
necessary we assume S0

q′ is empty. It should be noticed that if q = 2,

then one of T 0
1 and T 1

1 is empty. By flipping the pair if necessary, we
may assume this is T 0

1 . Then T 1
1 contains exactly the back-edges in

L(ei).

Then we fuse T 1
q , . . . , T 1

p into S1
j and, if q = 2, we add to the one of

S0
1 and S1

1 which is not empty the edges from T 0
1 .

As the number of pairs of stacks decreases at each “fuse”, as no new pair
of stacks is created and as the initial number of pairs of stacks is O(m),
the global time spent in this step by the algorithm is O(m).

• Deletion of the back-edges whose lower incidence is u: by monotonicity,
we only have to check the top of the stacks in the top pair of stacks. As
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every back-edge will be deleted exactly once by the algorithm, the global
time spent for deletions is O(m).

As the stacks used by the algorithm have their elements linked in a top-
bottom manner, it is easy to keep, while “deleting” back-edges, the link between
edges that have to get the same λ-value and to add a special type of links between
some edges which have to get different λ-value. This way, a spanning forest of
the constraint graph is maintained with a constant time cost per deletion, which
allows to propagate λ-values after the planarity testing phase. A λ-value for
each back-edge being computed, the embedding follows and is easily computed
in linear time.
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4.3 Example

We consider a sample planar graph with an arbitrary Trémaux tree (see Fig. 5).
The right of the figure display the information computed by the two first steps of
the algorithm: the status of the edges (block/thin/thick) and a TT -precedence
order ≺⋆, represented here as a circular order of the outgoing edges.

1 2

5

4

36

9

8
710

1

2

3

4

5

6

7

8

9

10
≺

⋆

0

Figure 5: A sample graph with a Trémaux tree T (on the left). The
block/thin/thick partition and a TT -precedence order ≺⋆ (on the right).

The algorithm first computes the CS’s of the back-edges. Then it proceeds
by iterating on the vertices whose outgoing edges are all processed. At each
such vertex v, the CS of the incoming tree edge is computed, using a Merge and
possibly a Deletion step (denoted by →). In the following table, the CS’s are
represented as sequences of double stacks.
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v = 9 : CS((8, 9)) = (9,6) , (9,7)

v = 10 : CS((8, 10)) = (10,6) , (10,7)

v = 5 : CS((4, 5)) = (5,1) , (5,2)

v = 8 : CS((7, 8)) =
(10,6)

(9,6)
, (9,7) (10,7)

→
(10,6)

(9,6)
(Deletion)

v = 7 : CS((6, 7)) = (7,3) ,
(10,6)

(9,6)

→ (7,3) (Deletion)

v = 6 : CS((4, 6)) =
(6,3)

(7,3)

v = 4 : CS((3, 4)) = (5,1) , (5,2) ,
(6,3)

(7,3)

→ (5,1) , (5,2) (Deletion)

v = 3 : CS((2, 3)) = (5,1) , (5,2)

→ (5,1) (Deletion)

v = 2 : CS((1, 2)) = (5,1)

→ ∅ (Deletion)
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