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Abstract. A p-version shell finite element based on the so-called shallow shell theory is for the first time employed to study 
vibrations of deep cylindrical shells. The finite element formulation for deep shells is presented and the linear natural 
frequencies of different shells, with various boundary conditions, are computed. These linear natural frequencies are compared 
with published results and with results obtained using a commercial software finite element package; good agreement is found. 
External forces are applied and the displacements in the geometrically non-linear regime computed with the p-model are found 
to be close to the ones computed using a commercial FE package. In all numerical tests the p-FE model requires far fewer 
degrees of freedom than the regular FE models. A numerical study on the dynamic behaviour of deep shells is finally carried out.
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1. Introduction

Shells vibrating with large amplitudes may present quite rich dynamics, which turns geometrically non-linear 
shell vibrations into a particularly interesting problem. Furthermore, there are several practical applications – 
notably, but not only, in aeronautics – where shells experience large amplitude vibrations.

The analysis of the vibration of shells may be carried out with great accuracy using the finite element method. 
However, the h-version of this method – which is the more common version and where refined models are obtained 
by increasing the number of elements over the domain – is constrained by a high computational cost (references [1, 
2], for example).

High order elements and especially elements of the p-version, where the accuracy of the approximation is 
improved by raising the number of shape functions within each element, generally require fewer degrees of 
freedom and demand a smaller computational effort than low order, simple elements [3–7]. This was verified for 
example in reference [3], where geometrically non-linear static problems on shells were addressed and a small 
number of higher-order finite elements were sufficient to achieve accurate results. The authors stated as well that 
the high order elements provided, over ordinary elements, a considerable reduction of the amount of data 
preparation and interpretation. In [4] a static analysis indicated that the extension of the p-version FEM, with 
hierarchical basis functions, to geometrically nonlinear analysis of laminated rectangular plates is very successful. 
Additionally, it was shown in [5,6] that the p-version is superior to the h-version in linear problems, particularly but 
not only if the problem is without singularities; in the latter case exponential convergence can be achieved.
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In what concerns the application of the p-version elements to linear vibrations, elements of this type were used in

reference [6] to compute the linear natural frequencies of open cylindrical shells and the values obtained were similar

to the ones from h-version finite element models with many more degrees of freedom. In [7] one p-version, finite

element was proposed to analyse geometrically non-linear free vibrations of shallow shells and free vibrations were

studied. This was a first application of the element and, acknowledging that this approximation may be important in

many cases, it was assumed that the oscillations are harmonic; it was verified that the mode shapes of shells change

with the vibration amplitude. The same element was used together with the shooting method in [8] to study periodic,

forced, non-linear vibrations of shallow shells. The number of degrees of freedom of the p-version FEM models

was, both in [7,8], quite modest.

A shallow shell is a shell whose smallest radius of curvature is larger than its greatest length measured along the

middle surface [9–13], so that the raise is small in comparison with the span. In this case, the displacement field is

only slightly more complex than the one of plates. In addition to the already mentioned references [7,8], there are a

number of studies on geometrically non-linear vibrations of shallow shells. For example, Abe et al. [14] examined

the first and second non-linear modes of clamped laminated shells. Two linear modes were used to analyse the

second mode; in the analyses of the first non-linear mode it was assumed that the mode shape does not change and

is always equal to the linear one. Shear deformation was considered, whilst membrane and rotary inertias were

neglected in most examples. The latter approach was justified by the fact that the membrane and rotary inertias

are not very important in the calculation of the first linear natural frequency of thin and thick plates. Amabili [15]

analysed the geometrically non-linear vibrations of cylindrical shallow shells, simply supported at the four edges and

subjected to harmonic excitations. Two non-linear strain-displacement relationships, from different shell theories,

were compared. Internal resonances were found and it was concluded that their study may require models with a

quite large number of degrees of freedom.

There are a number of works on large deflections of circular cylindrical shells. For example in reference [16]

chaotic vibrations of a cylindrical shell are studied. The governing equations of motion are derived on the basis of

single and double mode models. The authors conclude that the single mode method may lead to incorrect results.

For other studies on circular cylindrical shells, the reader is referred to [17].

Studies of the geometrically non-linear vibrations of open shells that are not shallow (these will be designated as

deep shells) are much more uncommon. There are some applications of multi-degree-of-freedom models based on

finite elements to study the dynamics of non-shallow shells, but these are generally restrained to short time spans

and to transient vibrations. In [18], a finite element method model for geometrically non-linear free vibrations of

thin, closed or open, shells was presented. Before carrying out the numerical calculations, the equations of motion

were transformed into modal coordinates and the non-diagonal terms of the transformed non-linear stiffness matrices

were discarded. Via this approximation, the non-linear equations of motion were decoupled and the study of each

non-linear mode amounted to solve a one degree of freedom problem. A fourth-order Runge-Kutta method was then

employed and both hardening and softening non-linearities were found. An implicit time-integration scheme that

combines algorithmic dissipation of higher modes, conservation of energy and angular momentum was applied to

study snap-through of a shell in [19]. In [20] a facet triangular shell element, designated as TRIC, was proposed for

linear and non-linear dynamic problems. Consistent and two lumped mass matrices were compared in test examples,

and it was concluded that the consistent mass matrix is the most effective. It was argued that the TRIC element and

the Newmark integration scheme can achieve converged and accurate solutions with time steps comparable to other

shell elements with more sophisticated integration schemes. It was also concluded that, in the examples investigated,

implicit integration is much less expensive than explicit.

It is more or less established that h-version finite elements can be used to model a curved shell by using a large

number of elements [20]. However, it is not evident and has not yet been demonstrated that the p-version FEM will

be efficient to follow a similar approach, because most (not all) advantages of the p-version rest on the fact that it

uses a small number of elements: if many elements are required to approach a curved surface these advantages will

be lost. To the best of our knowledge, there is no work that shows that assemblies of p-version shallow shell finite

elements allow analysing non-linear vibration of deep shells, with a reduced number of degrees of freedom.

In the present paper, a p-version, finite element with hierarchic basis functions (also called hierarchical finite

element method) is used to study vibrations of open, cylindrical shells with any relation between projected length

and curvature. The shells studied have rectangular planform and are constituted by isotropic, linear elastic and
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Fig. 1. Shell and shell element.

homogeneous materials. Comparisons with established finite element codes are made, showing that the p-version,

hierarchical, approach here proposed requires fewer degrees of freedom than the models based on h-version finite

elements. To solve the equations of motion in geometrically non-linear vibrations Newmark implicit integration

scheme is employed. The influence of the span to height relation and of the thickness of the shells on their dynamics

is discussed.

2. Finite element model

The p-version element here employed combines a shallow shell theory which may be found, for example, in

reference [9], with the first order shear deformation theory, which is usually attributed to Reissner [21], being Mindlin

[22] credited with its first application to vibrations. A recent book where this theory is very clearly presented, albeit

for laminates, is reference [10]. If the shell is shallow, that is if the its raise is small in comparison with its spans,

then the curvilinear coordinates employed in shell theories can be replaced by the Cartesian coordinates x and y, and

the Lamé parameters areA = B = 1 [9]. Hence, within each element, the displacement componentsu and v – along

the local x and y directions, respectively - are functions of the element’s middle surface membrane displacements

u0 and v0, and of the rotations of the normal to the middle surface about the local x and y axis. The latter are here

denoted by θ0
x and θ0

y and follow the right-hand rule (Fig. 1). w 0 represents the displacement of a particle along the

z direction and with respect to the initial curved configuration. The initial curved surface is represented by w i and

for a cylindrical element with curvature radius equal to R it is:

wi (x, y) = −
1

2

(

x2

R

)

(1)

It is assumed that the middle surface displacements u0, v0, w0 and the rotations θ0
x and θ0

y do not depend on z.

Deep shells will be analysed assembling several elements, but the commonly accepted limit of shallow shells

theory, a/R � 0.5 [13], is respected in each element. This theory of shallow shells is based upon the assumption that

the squares and products of ∂w i (x, y)
/

∂x and ∂wi (x, y)
/

∂y are small [11]. In the particular case of cylindrical

shells defined by Eq. (1) ∂wi (x, y)
/

∂y is, evidently, zero, so only the restriction
(

∂wi (x, y)
/

∂x
)2

≪ 1 remains.

The strain field is of the following form [10]

εx = ε0x − zκx εy = ε0y − zκy γxy = γ0
xy − zκxy γzx = γ0

zx γyz = γ0
yz (2)

where ε0
x, ε0y and γ0

xy are the membrane strain components at z = 0 defined by (Von K ármán relations):

ε0x = u0
,x +

w0

R
+

1

2

(

w0
,x

)2
, ε0y = v0

,y +
1

2

(

w0
,y

)2
, γ0

xy = u0
,y + v0

,x + w0
,xw

0
,y (3)

The comma represents partial derivation and κx, κy and κxy are the curvature changes, which are given by:
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κx = −
∂θ0

y

∂x
, κy =

∂θ0
x

∂y
, κxy = −

∂θ0
y

∂y
+
∂θ0

x

∂x
(4)

The transverse shear strains are considered to be constant along the element thickness and to be given by

γ0
zx = w0

,x + θ0
y, γ0

yz = w0
,y − θ0

x (5)

The term u0/R which could appear in γ0
zx will not be here considered, to be consistent with the assumption that R

is large [10] and because u0 will be small in the applications.

In each element, the middle surface displacements are expressed in the form:
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(6)

where qu (t), qv (t) are the vectors of generalised membrane displacements, qw (t) are the vectors of transverse

displacements, and qθx
(t), qθy

(t) and qθz
(t) are the vectors of generalised rotations.

The rotation about z, θz , was introduced to facilitate the transformation from local to global coordinates [23],

however, it is not present in the strain displacement relations or in the acceleration terms and its consideration would

result in the appearance of zero blocks in the stiffness and mass matrices. In order to avoid singularities in these

matrices, artificial stiffness and mass sub-matrices connected with θz are introduced. These artificial matrices are

computed by multiplying the sub-matrices associated with the rotation about θ y by parameters, the influence of

which is discussed in the applications. Either than that, the rotations about z are ignored in the formulation.

The matrix of shape functions

[N ] =















NuT

0 0 0 0

0 NvT

0 0 0

0 0 NwT

0 0

0 0 0 NθT
x 0

0 0 0 0 NθT
y















(7)

is constituted by the row vectors of bi-dimensional surface or membrane (N uT and NvT ), transverse (NwT ) and

rotational (NθT
x ,NθT

y ) shape functions. To facilitate the elaboration of the code and the assembling process the same

set and the same number of shape functions will be employed for generalised displacements related with u, v and

w, i.e., NuT = NvT = NwT . The sets and number of shape functions related with the rotations θ x and θy are also

equal, NθT
x = NθT

y , but the shape functions used for the rotations may be different from the ones employed for the

displacements.

The vectors of shape functions NuT = NvT = NwT are defined using products of functions from a set that will

be designated as the f set of functions. This is constituted by the four Hermite cubics and by the polynomials given

by the following formula

fr−4(ξ) =

INT (r/2)
∑

n=0

(−1)
n

(2r − 2n− 7)!!

2nn! (r − 2n− 1)!
ξr−2n−1, r > 4 (8)

where ξ is an adimensional coordinate. The vectors of shape functions N θT
x = NθT

y are either defined using the f
set of functions or, alternatively, another “g” set of functions constituted by two linear functions and by

gr−2(ξ) =

INT (r/2)
∑

n=0

(−1)
n

(2r − 2n− 5)!!

2nn! (r − 2n− 1)!
ξr−2n−1, r > 2 (9)

More details concerning the shape functions are given in reference [7].
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The constitutive equations for linear elastic isotropic materials are used, with E representing the Young modulus

and ν the Poisson ratio. The value λ = 5/6 [24] is employed for the shear correction factor.

The direct and membrane shear strain components are






εx

εy

γxy







=





1 0 0 −z 0 0
0 1 0 0 −z 0
0 0 1 0 0 −z



 ε =
[

I −zI
]

ε (10)

with

ε =

{

εp
o

εb
o

}

+

{

ε
p
L

0

}

(11)

The linear membrane and bending strains, ε
p
0 and εb

0, and the geometrically non-linear membrane strain, ε
p
L, maybe

written in vector form as

ε
p
0 =







NuT

,x 0

0 NuT

,y

NuT

,y NuT

,x







{

qu

qv

}

+







1
RNwT

qw

0
0







, εb
o =









−N
θT

y
,x 0

0 N
θT

x
,y

−N
θT

y
,y N

θT
x

,x









{

qθy

qθx

}

(12)

ε
p
L =











1
2q

T
wNw

,xN
wT

,x qw
1
2q

T
wNw

,yN
wT

,y qw

qT
wNw

,xN
wT

,y qw











The transverse shear strains are given by

{

γzx

γyz

}

=

[

NwT

,x 0 NθT
y

NwT

,y −NθT
x 0

]







qw

qθx

qθy







(13)

For an element of uniform thicknessh, the membrane stress resultants {Tx, Ty, Txy} and couples {Mx, My, Mxy},

all per unit length, are defined by

{Tx, Ty, Txy} =

∫ h
2

−
h
2

{σx, σy , τxy} dz (14)

{Mx, My, Mxy} =

∫ h
2

−
h
2

{σx, σy, τxy} zdz (15)

The shear stress resultants per unit length are

{Qx, Qy} =

∫ h
2

−
h
2

{τxz, τyz} dz (16)

Using Hooke’s generalised law and Eqs (14), (15) and (16), one arrives at the constitutive relations of the shallow

shell finite element:
{

T

M

}

=

[

A 0
0 D

]

ε (17)

{

Qx

Qy

}

= [C] γ (18)

Matrices A, D and C may be found in [7].

The element matrices are derived by the principle of virtual work that may be written as: δW in = δWex + δWj ,

i.e., the virtual work of the elastic restoring forces, or internal forces (δW in), should be equal to the sum of the virtual
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works of the external (δWex) and inertia forces (δWj). Inertia forces are defined using the well known principle of

d’Alembert.

The virtual work of the internal forces is

δWin =

∫

Ω

(

{

δεp
0

δεb
0

}T

+

{

δεp
L

0

}T
)

[

A 0
0 D

]({

ε
p
0

εb
0

}

+

{

ε
p
L

0

})

dΩ +

∫

Ω

δγTCγdΩ (19)

From the products involving linear strains and their variation, the constant stiffness matrices are defined. Because

these constant matrices originate linear terms in the equations of motion, they are commonly designated as linear

stiffness matrices. The membrane and the bending linear stiffness matrices are represented by K
p
1 and Kb

1; the

matrices due to coupling between the transverse response and the membrane displacements are K
sp
1 and K

ps
1 ; the

shear stiffness matrix is K
γ
1 . These matrices are given in [7]. As explained before, an artificial matrix connected

with θz was introduced, by means of a parameter kθz . Thus, the complete element linear stiffness matrix has the

following form

Kel =



















K
p11
1 K

p12
1 KPS13

1 0 0 0

K
p21
1 K

p22
1 KPS23

1 0 0 0

KSP31
1 KSP32

1 Kss33
1 + K

γ33
1 K

γ34
1 K

γ35
1 0

0 0 K
γ43
1 Kb44

1 + K
γ44
1 Kb45

1 0

0 0 K
γ53
1 Kb54

1 Kb55
1 + K

γ55
1 0

0 0 0 0 0 kθz

(

Kb55
1 +Kγ55

1

)



















(20)

The dimension of this square elemental matrix is pel = 3p2
o + 3p2

θ; the superscript numbers indicate the position of

each sub-matrix in Eq. (20).

The matrices that give rise to quadratic non-linear terms in the equations of motion, matrices K 2 and K3, result

from terms containing either δεp
L or ε

p
L, and the matrix that originates cubic non-linear terms, matrix K 4, results

from terms that contain products of δεp
L by ε

p
L [7].

The virtual work of the inertia forces is:

δWj = −

∫ h
2

−
h
2

∫

Ω

ρ (δu ü+ δv v̈ + δw ẅ) dΩ dz (21)

where ρ represents the mass per unit volume and Ω represents the finite element area. It is noted that rotary inertia

is included in expression Eq. (21) because u = u0 + zθ0
y and v = v0 − z θ0

x. Hence, the consistent mass matrix of

each element would be given by

M = ρh















∫

Ω
uuT

dΩ 0 0 0 0

0
∫

Ω
uuT

dΩ 0 0 0

0 0
∫

Ω
wwT

dΩ 0 0

0 0 0 h2

12

∫

Ω
θy θT

y dΩ 0

0 0 0 0 h2

12

∫

Ω
θxθT

x dΩ















(22)

However, an artificial mass matrix for the rotations about z was in addition introduced and the elemental mass matrix

has the following form

Mel =

















M11
p 0 0 0 0 0

0 M22
p 0 0 0 0

0 0 M33
b 0 0 0

0 0 0 M44
Rx 0 0

0 0 0 0 M55
Ry 0

0 0 0 0 0 mθzM
55
Ry

















(23)

Mp and Mb are the membrane and transverse inertia matrices, and MRy and MRx are due to the rotary inertia.

Common simplifications of the mass matrix, like neglecting the rotary or the membrane inertia, or resorting to mass

lumping, will not be adopted here.
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Fig. 2. Sketch of angles between tangents to the element and the global axis, represented by xG and zG.

All the above matrices are derived in the local adimensional coordinates ξ and η. Before assembling them,

the matrices are transformed into global coordinates by introducing the physical dimensions of each element and

“rotating” the matrices. For example the element global stiffness matrix is computed as:

KelGlobal
= TS1S0

KelTS0S1
(24)

where TS1S0
transforms local to global coordinates. In the case represented in Fig. 2, T S1S0

is defined as:

TS1S0
=





COS 0 −SIN

0 I 0
SIN 0 COS



 (25)

where matrix COS and SIN have the following form

COSp2
o×p2

o
=







cosφipo×po
0 0

0 cosθi(p2
o−2×po)×(p2

o−2×po)
0

0 0 cosφi+1po×po






(26)

SINp2
o×p2

o
=







sin φipo×po
0 0

0 sin θi(p2
o−2×po)×(p2

o−2×po)
0

0 0 sin φi+1po×po






(27)

Each sub-matrix in Eqs (26) and (27) is a diagonal matrix. The symbol φ i indicates the angle of the tangent to

the i side (Fig. 2), and affects shape functions that contain only Hermite cubics or products of Hermite cubics by

Legendre polynomials. The symbol θ i represents the angle of the shell element planform and affects functions that

contain only Legendre polynomials. In this way shallow shell elements can be used to approximate a deep shell.

The generalised coordinates internal to each element, which are due to the p enrichment, do not couple with any

other coordinates, since these internal coordinates multiply by displacement shape functions that disappear along the

element boundaries and nodes. Continuity between elements is achieved by matching the generalised coordinates

that affect not only common nodes, i.e., the coordinates that are linked with products of Hermite cubics, but also

common edges, which are associated with products of Hermite cubics by Legendre polynomials (example shown in

Fig. 3). Thus, the larger the number of shape functions employed, the higher the degree of deformation that may

occur not only inside each element but also at the elements boundaries. Continuity, as understood in the finite element

method, is of type C0, that is, it is only enforced on the generalised displacements, which include the independent

rotations.

The elemental vector of external forces in local coordinates is also derived applying the principle of virtual

work [8], this vector is then transformed into global coordinates and assembled to the vectors of other elements.
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Fig. 3. Example of shape function defined by a product of a Hermite cubic by a higher order polynomial.

After assemblage, the time domain equations of motion in generalised global coordinates are obtained; they are

of the following form:

Mq̈G + Cq̇G + KlqG + Knl (qG)qG = P (28)

In the former equation Kl and Knl(qG) stand for the constant stiffness matrix and for the stiffness matrix that

originates non-linear terms, respectively; M and C represent the assembled mass and damping matrices. The

damping matrix here used is proportional to the linear stiffness [24]. The vectors P and q G are the vectors of external

forces and generalised displacements in global coordinates.

The non-linear equations of motion are solved in the time domain by an implicit Newmark method [24,25], which

allows one to correct the non-linear stiffness matrix until the equation
(

a0M + a1C + Kl + Knl
(

qGti+∆t

))

qGti+∆t
= Pti+∆t + M

(

a0qGti
+ a2q̇Gti

+ a3q̈Gti

)

+
(29)

C
(

a1qGti
+ a4q̇Gti

+ a5q̈Gti

)

is satisfied below a desired error condition. The Newmark parameters δ = 0.5, γ = 0.25 were used and the constants

a0–a5 are given in [25].

In each time step, an inner cycle is necessary to update the non-linear terms until convergence is achieved. This

requires transforming back from global to local coordinates, generating the non-linear matrices of each element

in local coordinates, returning to global coordinates and re-assembling the matrix. Naturally, this process is time

consuming, but it benefits from the fact that the p-element model is not too large. Moreover, the time spent in the

assembly stage is reduced because the number of elements is much smaller in the p-version than in the h-version and

several coordinates are internal to the elements in the p-version. Finally, the fact that the p-version models generally

have less degrees of freedom than h-version models, should mean that less computer memory and less computational

time is required to solve the system of equation that arises in each step of the implicit iterative procedure.

3. Numerical applications

3.1. Linear natural frequencies

In order to carry out a convergence study and to verify the accuracy of the approach presented, the linear natural

frequencies of vibration of different shells will be now computed and compared with published values. The dimension

and material properties of the shells considered in most of this section and in the study of non-linear vibrations that

follows are the following: a = b = 0.3 m, E = 7 1010 N/m2, ρ = 2778 kg/m3, ν = 0.3. In order to compare with

reference [26], other material parameters are employed in one particular occasion. As represented in Fig. 1, a and b

are the width and length of the projection of the shell on a plane. E represents the Young modulus, ρ the mass per

8



Table 1
First four frequency parameters of a completely free cylindrical shell (a/h = 100, a/b = 1, a/R = 0.5)

Number of Number of shape functions (p-version) Mode number DOF

elements or reference 1 2 3 4

One po = 8 f functions; pθ = 11 g functions 13.487 22.065 34.804 48.643 434

One po = 13 (f ); pθ = 16(g) 13.466 22.063 34.767 48.596 1019

Four po = 5 (f ); pθ = 5 (g) 13.410 21.650 34.636 49.425 510

Four po = 6 (f ); pθ = 6 (g) 13.358 21.645 34.342 49.301 756

Four po = 8 (f ); pθ = 10 (g) 13.339 21.628 34.284 48.763 1806

Four po = 8, pθ = 10 (f ) 13.339 21.628 34.284 48.763 1806

Four po = 16, pθ = 18 (f ) 13.321 21.626 34.253 48.720 6654

100 × 100 Ref. [6] Ansys 13.403 21.473 34.148 48.913 61 206

1 Ref. [6] HFEM, po = pi = 10 13.403 21.473 34.147 48.908 300

− Ref. [13] 13.508 22.073 34.868 48.703 75

Table 2

First five frequency parameters of a FCFC cylindrical shell (a/h = 100, a/b = 1, a/R = 0.5)

Number of shape functions Mode number DOF

or reference 1 2 3 4 5

po = pθ = 10 (f functions) 36.901 39.679 82.203 84.095 84.793 2100

po = pθ = 14 (f functions) 36.879 39.645 82.184 84.030 84.734 4284

Reference [27] 36.952 39.745 82.244 84.975 85.026 –

Table 3

First five frequencies (in Hz) of a CFCF cylindrical shell a = 0.25 m, b = 0.4 m, h = 0.001 m

Number of number of shape Mode number DOF

elements functions or ref. 1 2 3 4 5

Four po = pθ = 6 216.55 397.88 407.19 562.32 715.91 684

Six po = pθ = 6 215.84 396.59 405.89 561.09 713.28 1044

h-version FEM, Abaqus Ref. [26] 215.09 398.75 406.43 562.66 721.73 16 144

unit volume and v is the Poisson ratio. The letter h represents the thickness, which is often h = 0.01 a, but different

values will be assumed occasionally.

Table 1 gives the natural frequency parameter – defined as Ω = ωb 2
√

ρh/D, where D is the flexural rigidity

equal to Eh3
/(

12
(

1 − ν2
))

– of a shell with free boundaries and where a/R = 0.5. The values are compared

with results from Bardell et al. [6], who used both a commercial finite element software and a thin shell p-version

element, and from Leissa and Narita (Table 1 of reference [13]), who employed the Rayleigh-Ritz method and thin

shell theory. The lower six eigenvalues computed with the present approach are not shown in the table, but they are

very close to zero, value they should have in the case of free boundaries. Our results agree with the ones published in

the former references. It is worth noting that exactly the same values are calculated using f and g functions for the

rotations. In the computation of linear natural frequencies, the parameter k θz was generally made equal to 10−7 and

mθz equal to 10−2. However, it was verified that a change in these values results in minor alterations in the natural

frequencies. The shell is shallow and one element provides rather accurate results with a small number degrees of

freedom. Nevertheless, the good results computed with four elements provide a first validation of the accuracy of

the assembling procedure implemented.1

Table 2 gives the first natural frequencies of a cylindrical shell, also with a/R = 0.5, but with the two straight

edges (x = −a/2 and x = a/2) free (F) and the two curved edges (y = −b/2 and y = b/2) clamped (C). Four

elements were used in the two p-version models employed, which differ in the number of functions used per element.

The results are quite close to the ones of reference [27].

Table 3 shows values calculated using the p-version model and the FEM package Abaqus [26]; in this case the

straight edges (x = −a/2 and x = a/2) are clamped and the curved edges (y = −b/2 and y = b/2) are free. The

1The occasional variation in the number of p-elements would allow us to designate the finite element method here employed as an hp-finite

element method.
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Table 4
First five frequency parameters of a CFCF cylindrical shell a/b = 1, a/R = 1.25, a/h = 100

Number of Number of shape unctions Mode number DOF

elements for ref. 1 2 3 4 5

Four po = pθ = 5 (f functions) 50.477 93.667 99.228 126.77 169.43 450

Four po = 6, (f functions), pθ = 6 (g) 50.357 93.283 98.477 125.84 168.24 684

Four po = pθ = 6 (f functions) 50.449 93.452 98.696 126.07 168.61 684

Eight po = pθ = 7 (f ) 49.984 92.627 98.012 125.65 167.05 1974

Eight po = 8 (f), pθ = 8 (g) 49.982 92.623 97.820 125.47 167.04 2640

Nine po = 7 (f), pθ = 7 (g) 49.958 92.581 97.966 125.62 166.96 2226

Ten po = 7 (f ), pθ = 7 (g) 49.939 92.548 97.932 125.60 166.90 2478

Mesh 30 × 30 h-version FEM 48.759 91.162 96.175 124.24 165.33 –

Table 5

First five frequency parameters of a CFCF cylindrical shell a/b = 1, a/R = 1.5, a/h = 100

Number of number of shape functions Mode number DOF

elements or ref. 1 2 3 4 5

Four po = pθ = 6 (f functions) 45.067 85.313 89.978 126.32 153.42 684

Four po = pθ = 12 (f functions) 44.958 85.112 89.700 125.97 153.00 3096

Four po = 12 (f) pθ = 12 (g) 44.958 85.112 89.700 125.97 153.00 3096

Six po = 8 (f),pθ = 8 (g) 44.578 84.432 89.037 125.34 151.79 1968

Eight po = 8 (g),pθ = 8 (f) 44.438 84.182 88.783 125.10 151.34 2640

Ten po = 7 (f),pθ = 7 (g) 44.377 84.072 88.861 125.22 151.14 2478

Twelve po = 7 (f),pθ = 7 (g) 44.342 84.009 88.797 125.16 151.02 2982

Twenty po = 7 (f),pθ = 7 (g) 44.291 83.919 88.704 125.07 150.86 5040

Mesh 30 × 30 h-versionFEM 42.737 82.086 86.436 122.98 148.88 –

geometric properties are the following: a = 0.25 m, b = 0.4 m, h = 0.001 m. The curvature radius is equal to the

projected length, R = a, hence this shell is not shallow. The material properties are still typical of aluminium, but

they areE = 7 1010 N/m2, ρ = 2657 kg/m3 and v = 0.3 in order to make a direct comparison with results from [26].

As seen in Table 3, the values of the natural frequencies computed using the different models are very similar and

the dimension of the p-version models is far smaller than the one of the h-version model.

The Abaqus shell element employed in reference [26] is element S8R5, which was chosen after a convergence

study where it required less degrees of freedom than other Abaqus elements for shells. Element S8R5 is a thin shell

element [28] and therefore should not be used when the transverse shear deformation is important. This element has

eight nodes at the boundary and an internally generated midbody node, all nodes with five degrees of freedom, three

displacements and two rotations. According to the Abaqus manual [28], reduced integration is employed, whilst in

the p-version finite element here used complete integration is carried out. Although damping is only introduced in

the next section, we also report here another difference between Abaqus and the p-model. We will define the stiffness

proportional damping matrix as C = αKl; Abaqus uses the same definition in linear models but not exactly the

same when the system is non-linear (reference [28]). These differences between the p-element and element S8R5

will lead to close but not equal results.

Returning to shells with straight edges clamped and curved edges free, but now with a/R = 1.25 and a/R = 1.5,

Tables 4 and 5 show some of the results of convergence studies that were carried out and comparisons with results

calculated using the commercial FEM package Abaqus. Note that the length a of the line segment with the direction

of the x axis, that results from the projection of each shell on the plane Oxy, is the same for all shells. The Abaqus

h-version finite element used was again the S8R5 and the mesh is constituted by 30 per 30 elements. Concerning

the agreement between different models, the case a/R = 1.5 is inferior to the other numerical tests: nevertheless

the difference between the p-version and the Abaqus frequencies attains only the maximum value of 3.6%.

The frequency parameters computed by the p-version model change more with the number of elements as the

shells become deeper. This occurs because the larger the number of elements employed, the better the geometry is

approached. In any case, four elements provide rather reasonable approximations for the shells here studied. No

difference resulted from using g instead of f functions for the rotations.
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Fig. 4. Section of shell, y = 0, and points (1, 2 and 3) where displacements and velocities are computed.
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Fig. 5. Displacements of point 2 in the z direction computed with the p-version model (—) and with Abaqus (- -).

3.2. Non-linear forced vibrations

To cause vibrations with large displacement, a localised vertical force sinusoidal in time is applied transversely

to the shells at their apex, that is at point (0, 0, 0), as represented in Fig. 4. Four equal elements are employed,

with shape functions of the f type and po = pθ = 7; this model was chosen after convergence studies in linear and

non-linear vibrations. The equations of motion are solved by Newmark’s method. In all the following examples the

dimensions a and b are equal to 0.3 m and the material properties are E = 7 10 10 N/m2, ρ = 2778 kg/m3 and ν =
0.3, which are typical properties of aluminium. The shells are clamped at their straight sides and free at their curved

sides. For several curvature radii, the central points of the shells belong to nodal lines of their first modes and are

points where the second modes experience large displacements; therefore, the excitation frequency ω e will be equal

to the second linear natural frequency of each shell.

Next, the results of the p-version model are compared with the ones computed using a Abaqus model with a 30

per 30 mesh. The geometric properties of the shell respect the relations a/R = 1.25 and b/h = 100. In the p-version

model, viscous damping proportional to the stiffness of the form C = α Kl, with a proportionality factor α = 10 −5,

was used and the same factor α was introduced in the Abaqus code. The excitation amplitude is 5000 N.
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Fig. 6. Time plots of oscillations of Shells �a/R = 0.5; — a/R = 1; ∆a/R = 1.5, at the following points and directions: (a) Point 2, direction

z; (b) Point 1, direction x; (c) Point 1, direction z.

The curves shown in Fig. 5 follow the same trend but do not exactly coincide. Because in numerical integration

the solution at time t depends on the solution at time t− ∆t, the difference between the Abaqus and the p-version

model grows as time increases. Nevertheless, taking into account the differences in the models that were briefly

explained when element S8R5 of Abaqus was introduced in this text, a rather satisfactory agreement is achieved.

In the following numerical examples, the p-model is used to study the variation of the response with the curvature

of the shell. The shells are excited by a vertical force with amplitudeA = 2500 N. A stiffness proportional damping

model is employed with a damping factor equal to 10−4.

The displacements and velocities are computed at Points 1, 2 and 3 represented in Fig. 4. The coordinates of Point

2 are the same for the three shells: (x, y, z) = (0, 0, 0); the local, adimensional coordinates of Points 1 and 3, are

12



-4

-3

-2

-1

0

1

2

3

4

5

6

-0.8 -0.3 0.2 0.7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.2 -0.1 0 0.1 0.2

-1.25

-0.75

-0.25

0.25

0.75

1.25

-0.2 -0.1 0 0.1 0.2

ewT

h

w
h

a

b ewT

h

w
h

c
euT

h

u
h
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also the same for the three shells, but their global, physical coordinates naturally depend on the curvature radius of

each shell.

The displacements and velocities are significantly influenced by the curvature of the shell, as shown in Figs 6 and

in Fig. 7. The central point, Point 2, of the deepest shell, with the lowest curvature radius a/R = 1.5, experiences

the lowest displacement and the smallest velocity. However, at Point 1 the inverse occurs and the shallow shell –

a/R = 0.5 – experiences lower displacement and velocity than the other shells. All the oscillations are periodic and

visibly the shallow shell is the one where the response further deviates from a harmonic motion.

In order to gain some insight on how the response of deep shells changes with the thickness, different thicknesses
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Table 6
Maximum displacements and velocities of shells with different thicknesses

Shell h/a = 0.05 h/a = 0.01 h/a = 0.005 h/a = 0.001

Point 2 Maximum displacement w(m) 8.38 × 10−5 1.13 × 10−3 2.05 × 10−3 1.05 × 10−3

Maximum velocity ẇ (m/s) 1.12 6.83 9.07 6.29 × 10−1

Point 1 Maximum displacement w (m) 1.78 × 10−5 4.07 × 10−04 7.81 × 10−04 4.24 × 10−4

Maximum velocity ẇ (m/s) 2.56 × 10−1 2.17 3.43 3.62 × 10−1

Point 1 Maximum displacement u (m) 1.08 × 10−6 2.12 × 10−04 4.68 × 10−04 2.32 × 10−4

Maximum velocity u̇ (m/s) 1.56 × 10−2 1.07 1.46 1.63 × 10−1
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Fig. 8. Time plots of oscillations of Shells �h/a = 0.05, — h/a = 0.01, ∆/a = 0.005, o h/a = 0.001, at the following points and directions:

(a) Point 2, direction z; (b) Point 1, direction x; (c) Point 1, direction z.

were considered. In these numerical tests, the radius of all shells are equal to the projected length, i.e. R = a, and

the thicknesses are: h/a = 0.05, h/a = 0.01, h/a = 0.005 and h/a = 0.001. The excitation force has similar

characteristics to the one of the previous examples, except in what the amplitude is concerned. In the case of shells
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(a) Point 2, direction z; (b) Point 1, direction x; (c) Point 1, direction z.

h/a = 0.05, h/a = 0.01 and h/a = 0.005, the amplitude of excitation is 2500 h/0.03 N, i. e., the amplitude of the

excitation is directly proportional to the thickness. In the very thin shell, h/a = 0.001, which is analysed as a limit

case, the former rule was not followed and the amplitude of the excitation is 5 N. The reason for this choice is that

an amplitude equal to 2500 h/0.03 would cause too large displacements in this shell and the present linear elastic

model might fail to provide a reasonable approximation to reality.

The maximum amplitudes of positive displacement and velocity achieved in each shell are given in Table 6. As the

thickness is decreased from h/a = 0.05, to h/a = 0.01 and h/a = 0.005 the displacement and velocity amplitudes

increase, in spite of the fact that the amplitude of excitation is decreasing proportionally to the thickness. In the case
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of the very thin shell h/a = 0.001 this trend is altered only because a very small force was employed.

Figures 8 and 9 give the displacement time histories and the phase plots in two points. As we just saw, the

maximum displacements and velocities of the diverse shells are of very different magnitudes, and, in order to

facilitate the comparison, the displacement and velocities in these figures were divided by their maximum values.

The thicker shell, where h/a = 0.05, experiences a harmonic motion with a very small amplitude of vibration;

for example, in the middle point the transverse displacement oscillates between +1.21 10 −3h and −1.21 10−3h.

Accordingly, the phase plot of this oscillation is an ellipse. As the thickness of the shells decreases, the amplitude of

displacement inwards becomes greater than the one outwards and higher harmonics appear in the oscillations, that is

non-linear effects become more important. This is particularly true in shells h/a = 0.005 and h/a = 0.001, where

the displacements are larger in comparison with the shell thickness and, therefore, where the oscillations are more

pronouncedly non-linear.

4. Conclusions

An approach that employs a p-version shallow shell finite element was suggested to model shells of any depth and

to study their geometrically non-linear vibrations. Linear natural frequencies and displacements in geometrically

non-linear regime originated by external forces were computed using the p-version model and compared with

published results or obtained using the finite element software Abaqus and good agreement was found. The main

advantage of the method here proposed in comparison with other finite element approaches is that, as demonstrated,

it requires far fewer degrees of freedom.

Sinusoidal forces were employed to investigate the variation of the response of the shells with their curvature. In

the conditions of this study, the response of the different shells was always periodic. It was found that shallower

shells achieve larger displacements at the central point and are the shells where the response further deviates from a

harmonic motion. Therefore, linear models will find a greater domain of applicability in deep shells. The variation

of the response of deep shells with the thickness was also analysed. In this case, it is highly noticeable that even if the

force is proportional to the thickness, the displacements increase very much as the thickness decreases. Therefore,

thinner deep shells are more prone to experience non-linear oscillations then thicker ones. In any case, all the

responses computed were periodic, whatever the shell thickness
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