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Abstract— We propose a method for component-based software
and system development, where the interoperability betwee
the different components is given special consideration. Ae
method uses existing notations and languages with their ass
ciated tools: context diagrams for analyzing and structurhg
the problem, composite structure diagrams for describing he
overall system in terms of components and interfaces, sequee
diagrams to describe the behavior of each component, and the
formal method B for specifying the interfaces of the different
components and for proving their interoperability. The method
proposes to integrate these different notations; at the enaf
the process, the interoperability is guaranted by the use othe
B method with its underlying concept of refinement, and its .
powerful tool support, the B prover.

Keywords: Component based approach, interoperability, fomal
method

|. INTRODUCTION

are encapsulated, and their services are accessible anly yi
interfaces and their operations. To really exploit the ide
of component orientation, it must be possible to acquire
components developed by third parties and assemble then®
in such a way that the desired behavior of the system to be
implemented is achieved. These considerations lead to the
following requirements on how to describe components in
such a way that they can be assembled into systems in a*
systematic way:

« The specification of a component must contain sufficient *
information to decide whether or not to acquire it for
integration in a new system. This requirement concerns
the access to the component’s source code that may not
be granted in order to protect the component producer’s
interests. Moreover, component consumers should not
be obliged to read the source code of a component to
decide if it is useful for their purposes or not. Hence,
the source code should not be considered to belong to
the component specification.

« It does not suffice to describe thpovided interfaces
of a given component. Often, components need other
components to provide their full functionality. Hence,
also therequiredinterfaces must be part of a componeng1
specification.

« For different components to interoperate, they mu
agree on the format of the data to be exchanged bl
tween them. Hence, each interface of a component mu

be equipped with arnnterface data modetiescribing

the format of the data accepted and produced by the
component.

It does not suffice to give only the signature of interface
operations (e.g., operatidioo takes two integers and
yields an integer as its result) as is common in current
interface description languages. It is also necessary to
describe what effect an interface operation has (e.g.,
operationfoo takes two integers and yields their sum as
a result).

The interface operations provided or required by some
component usually cannot be called in an arbitrary
order. Instead, certain communication protocols must be
adhered to. These protocols also must be provided in a
comprehensive component description.

components or components to be constructed, and to check
f'two components can be connected via given interfaces or
ot. In particular, we use the following languages:

Jackson’s context diagrams [15] serve to analyze and
structure the problem in terms of domains and shared
phenomena (which will be organized into interfaces
later).

UML 2.0 [22] composite structure diagrams serve to
express the overall architecture of the system.

UML 2.0 sequence diagrams serve to express the visible
behavior of components. They show communication
sequences with other connected components.

The formal method B [1] serves to specify interfaces.
An interface specification consists of a data model and
the specification of the different operations provided or
required by the interface. Since the B concepts of a
machine and of refinement fit well with components
and their interoperability, we use a B tool for prov-
ing component interoperability. (Using for example the
object constraint language OCL [24], and generating
verification conditions from scratch would be much
more tedious.)

the following, we present an overview of the B method in
ection Il. We then describe our method in Section Il and
é'[lustrate it with the case study of an access control system
Section IV. In Section V, we discuss related work. The
per finishes with some concluding remarks in Section VI.



Il. THE FORMAL METHODB I1l. AMETHOD FORCOMPONENTBASED

The B method [1] is a formal software development method DEVELOPMENT

based on set theory. Because of its rigor and powerful to@ur goal is to provide a method for component-based
support, it is often used to develop software for criticaboftware and system development that pays special attentio
systems. The B method supports an incremental developméatthe question how the interoperability between different
process, using refinement. A development begins with the deemponents can be guaranteed. Components are specified as
finition of an abstract specification, which can be refineg steblack boxes, so that component consumers can deploy them
by step until an implementation is reached. The refinement @fithout knowing their internal details. Hence, component
models is a key feature for incrementally developing modeisterface specifications play an important role, as intaréa

from textual descriptions, preserving correctness in stgfn.  are the only access points to a component. Our method
Thus, B follows the proof-based development paradigm [19tonsists of the following steps.

The method has been successfully applied in the develop- .
ment of several complex real-life applications, such as the Set up a context diagram

METEOR project [4]. It is one of the few formal methodsContext diagrams as introduced by Jackson [15] serve to
which has robust and commercially available support toonalyze and structure a given development problem. They
for the entire development life-cycle from specificatiomaio  consist of rectangles that are connected by lines (for an
to code generation [5]. example, see Fig. 2). The rectangles derdmimains and a

B specifications consist of abstract machines, which a@onnecting line between two (or more) domains indicateis tha
very close to notions well-known in programming undethere areshared phenomerizetween the connected domains.
the names of modules, classes or abstract data types. E&tared phenomena may be events, operation calls, messages,
abstract machine consists of a set of variables, invariaBfnd the like. They are observable by at least two domains,
properties of those variables, and operations. The state lgit controlled by only one domain. For example, if a user
the machine, i.e. the set of variable values, is modifiable byushes a turnstile, this is a phenomenon shared by the user
operations, which must preserve its invariant. An example @nd the turnstile, which is controlled by the user. For each

a B machine is given Fig. 1. The invariant clause charactegonnecting line, the corresponding shared phenomena are
izes the sensible states that are permitted for the machirgdven in a context diagram.

The machine should never arrive at a state in which some

part of the invariant clause is false. Lights | a [contoter] e @
b d
MACHINE {
T_P_C card Turnstile Turnstile
SETS i Reader Entry Exit
Turnstile States= {locked unlocked
VARIABLES f g h
state [ User
INVARIANT
statec Turnstile States
INITIALISATION Clfenter i1 )
state:= locked a: Cl{green_on, green_off, red_on, red_off} e DB'en er_|, leave_l|
. ; Yauthorized}
OPERATIONS > g:é?gceg:aiﬂgércte:ietz?&ict:[(iﬂ? f: CRI{eject_card, retract_card}
unlockc = ¢: Cblock, unblock} U! {insert_card, take_card}
PRE state= locked TE{entered} g: U{push} TE! {locked, unlocked}
d: TXNleft} h: Ulpush}
THEN state:= unlocked i Li{see_green, see_red}
END;
lock c = Fig. 2. Context diagram for the access control system
PRE state= unlocked
EHEN state:= locked In the original version of context diagrams, each such di-
END agram contains exactly onmaachine domaindenoted by a
_ - rectangle with a double vertical stripe. This is the domhat t
Fig. 1. An example of a B Specification has to be constructed to solve the problem. All other domains

. . Lo aregiven domainshat already exidt Their properties (called
The B method provides structuring primitives that allow ongomain knowledgehave to be taken into account in the
to compose machines in various ways. Large systems can Bgyplem solving process.
specified in a modular way and in an object-based manngy our method, domains correspond to components or actors,
[18], [17]. Proofs of invariance and refinement are parind connecting lines and their shared phenomena correspond
of each development. The proof obligations are generatgg interfaces between components or components and actors.
automatically by support tools such as AtelierB [19] onp contrast to Jackson, we allow several or even zero machine
Bafree [11], an academic version of AtelierB. Checkingjomains in a context diagram. If a component has to be
matic or interactive proofs) [2], is an efficient and praatic
way to detect errors introduced during development. 1There are alsodesigned domainswhich are data structures to be

developed. We do not use designed domains in this work; héneg will
not be mentioned further.



component exists, it is expressed as a given domain. Thus, is the data base in Fig. 2. Although it controls the phe-
context diagrams with no machine domain express the fact nomenonauthorized it only has a provided interface,
that a system shall be assembled from existing components where theauthorizedphenomenon is the return value of
only, and that we have to check the interoperability of a data base query issued by the controller component.
these components. If a context diagram contains at least onge software or system architecture is expressed as a
machine domain, we have more flexibility in the developmenymL 2.0 composite structure diagram. Such diagrams con-
process. For example, we might change the interfaces oft@in named rectangles, callguarts These parts are the
component to be constructed if this is necessary in order gmponents of the system. Parts may hpogs denoted by
interoperate with the given components. small rectangles, and ports may have interfaces assotited
Hence, the domains contained in our context diagrams ma@yem. Interfaces may be required or provided. Provided-inte
play one of the following roles: faces are denoted using the “lollipop” notation, and reeglir

« A machine domain corresponds to a software compadnterfaces using the “socket” notation. For an example, see

nent to be constructed, (e.@pntroller in Fig. 2). Fig. 3.
« A given domain can be

— an existing software component to be used (e.g

Data Basein Fig. 2)
— an existing hardware component to be used (e.g.,
Turnstile Entryin Fig. 2)
— an actor communicating with the system (eldser
in Fig. 2)
Note that for existing components we need not distinguish
between hardware and software components, as both are
described in the same way. Thus, our method not only
covers component-basesbftware development, but also

component-basesyste_nﬂevelopment,. . Fig. 3. Architecture of the global access control system
A second generalization of Jackson’s context diagrams con-

cerns the control of shared phenomena. In Jackson’s methgghe procedure for setting up the architectural diagram for
this |_nformat|on is only added in a later step. In contrast, Wi system is as follows. Each connecting line between
add it to the context diagram. The notatioh{pusty means 4 domains of the context diagram must be transformed
that the User component controls the shared phenomencf one or two connections between two components. Such
push . : a connection consists of a provided interface for one of
Setting up a (generalized) context diagram, we SUUCIUIRe components and a corresponding required interface of
the given development problem by identifying the differentpe other component. For a bi-directional communication,
actors and the components that are available or must Bg, 1eed two connections (e.g., betweRnnstile Entryand
constructed. Specifying the shared phenomena between Rgniolier in Fig. 3); for a one-directional communication,
components is a preparation for the next step of the methqgle only need one connection (e.g., betw@ata Baseand
where all provided and required interfaces must be idedtifie -5 ntroller in Fig. 3). The decision on provided and required
B. Construct the system- or software architecture interfaces must be taken according to the rules given above.
Finally, we delete all domains corresponding to actors from
e diagram.

Based on the context diagram developed in the first step
the method, we now decide on the provided and require
interfaces of all the identified components. For this pueposC. Specify components

we have to inspect the shared phenomena expressed in ;i each component of the architecture, a specification must
context diagram, and consider the following rules: be set up containing:

« A shared phenomenon observable but not controlled by | sequence diagrams describing the visible behavior of
componentC corresponds to an operation or signal in - 'specified component; the sequence diagrams must

a providedinterface ofC, becaus& must in some way contain all operations or signals of all interfaces and all
be notified of the occurrence of the shared phenomenon. i ar components the specified component is connected
« Conversely, a phenomenon controlied by compoi@nt with. Messages received by the specified component
will often correspond to an operation or signal in @  from jts environment must correspond to an operation
required interface ofC, because controlling a phenom- or signal of some provided interface, while messages

enon often corresponds to sending a signal or message gant out by the specified component must correspond
to another component (thus invoking an operation of & {4 an gperation or signal of some required interface.

provided interface of the receiver component). « A B machine for each provided and each required
However, there are exceptions to this rule. They concem  jniarface. For all interfaces that connect the specified
passivecomponents that are mere data structures. Such component with the same outside component, the in-
components do not send messages to their environment o face data models (IDM, see Section I) must be the

without an external_ stimulus: Hence, the phenomena same, and the IDM must be encoded in the B machine
controlled by passive domains correspond to return by specifying:

values of operations of a provided interface. An example



— the types used in the interface controlled. Persons (called users) who are authorizedtsr en

— adata state as far as necessary to express the effetis building have access cards with some identificatioredtor
of operations on it. There are two turnstiles, one at the entrance to the

— invariants on that data state building, and one at the exit. At the entrance, there is also a

When a component manipulates data, it is possible ®ard reader as well as a red and a green light.
use a UML class diagram to express the interface dafauser who wants to enter the building inserts his or her card
model for reasons of readability. This class diagram caifito the card reader. The information on the card is read, and

then automatically be transformed into a B specificatiof data base is queried to decide if the user is granted access
[18]. or not. If access is granted, the green light is turned on for
Each machine specifies the operations belonging &Pme time, the card is ejected, and the entry turnstile —lwhic
its corresponding interface. An operation specificatiots normally blocked — is unblocked. The entry turnstile is
consists of its signature (i.e., the types of its input anée-blocked either after the user has entered or after some
Output parameters), its precondition expressing und@lmeout. If the user does not take the card within some time
which circumstances the Operation may be invoked, adﬂnit, the card is retracted and kept. If access is denied, a

its postcondition expressing the effect of the operatioried light is turned on for some time, and the entry turnstile
Both pre- and postcondition will refer to the interfaceremains blocked. The card is ejected. Again, if the user does

data model. not take the card within some time limit, the card is retrdcte

The behavioral specification and the operation specifinatio and kept. . -

must be coherent. To ensure coherence, the sequence did€ Number of persons present in the building must be
grams should be annotated with states, which are also u nted. Therefore, _there is also an exit turnstile which is
to express the pre- and postconditions of the B operatior%‘;ver bIocke(_j, _bUt just serves to observe when a person
In this way, we make sure that the communication sequenc&&Vves the building.

required by the sequence diagrams do not violate any prg: Context diagram

conditions of interface operations.

Such a specification contains all the information that i
needed to decide if a given component can be used in
given context or not.

é context diagram for this access control system is shown
in, Fig. 2. We have one component to be developed, namely
ontroller, and one domain corresponding to an actor,
namely User. The other domains correspond to existing

D. Prove interoperability components.

In component-based development, the components must B8 an example, we consider the interfacesand g: the
connected in an appropriate way. To guarantee imerop&x_)ntroller can give commands to the entry turnstile to block

ability of components, we must consider each connectidlf UnPlock it. Conversely, the entry turnstile sends a digna
of a provided and a required interface contained in thenteredto the controller. This signal is sent as a reaction of

architecture and try to show that — after some syntacti2 Pushevent caused by the user (interfage Since the user

transformations — the provided interface is a B refinement &0 ©bserve if the turnstile is locked or not, the interface
the required interface. This means that the provided iaterf cOntains two phenomeriackedand unlockedcontrolled by
constitutes an implementation of the required interfaoe, a N entry turnstile.

we can conclude that the two components can be connectgd Architecture of the system

as shown in the architectural diagram. The process of POOVIML o o rchitecture of the system is given in Fig. 3. We have

interoperability between components is described in [9]. . . - X

If we cannot demonstrate the interoperability of an intehde.used the following naming conventions for interfaces. Each

connection of the architectural diagram, we either can trl)pterfa(?e name has. the form.X_Z, where

to change the specification of a component to be developed® X iS an abbreviation of the name of the component the

(corresponding to a machine domain in the context diagram), interface b%Io”ngs to, e.g., its f'“rSt” letter;

or we can try to develop an adapter. In both cases, the® Y IS either “P” for provided or “R” for required;

architectural diagram and the component specificationis wil * Z S the abbreviation of the name of the component the

have to be adjusted accordingly. given component is connected to.

If the latter approach is not possible either, we have to cofts an example,C_P_TE is the provided interface of

clude that the components cannot be connected as intendé@® Controller component which is connected to the
Turnstile Entrycomponent.

In the case where all components are given, the result dfote that theUser is no longer contained in the diagram,

our method is a proof that the system can be assembled & that the data base only has a provided interface, because

specified in the architectural diagram. In the case wheresorit IS a passive component (even though it controls the

components do not yet exist but must be constructed, o@henomenorauthorized. In all other interfaces, controlled

method yields detailed specifications of all the componenghe€nomena correspond to operations in required interfaces

to be developed. and observed phenomena correspond to operations in pro-
vided interfaces.

IV. CASE STUDY. ACCESSCONTROL SYSTEM
We illustrate our method with the case study of a simple
access control system. The access to a building is to be
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C. Component Specifications

We want to use two copies of the same turnstile component

available on the market to be installed as an entry and an exit Fig. 6. Sequence diagram for the controller component ygntr
turnstile, respectively. For reasons of space, we onlygores

the specification of that turnstile component, and partéef t

controller specification. The turnstile component has two states, nanetked and
1) Specification of the turnstile componerfhe available unlocked and its initial state idocked It has no invariant
turnstile component has the following interfaces: property. The externally visible behavior, i.e., its usage

protocol, is given in Fig. 4. The first sequence diagram

expresses that initially the turnstile is locked. Afterdteives

an unlockc command from the controller, it changes its

state tounlocked In that state, an arbitrary number péish

revents can be received from the user. When the turnstile

component receives lack.c command from the controller,

it re-enters the stattbcked The second sequence diagram
presses the fact that in stdteked no pushevents can

be received from the user. Theeg construct has been

used to express this forbidden scenario. Note that the given

turnstile component is specified using different names for

o T_P_C, its provided interface to a controller component
with two operationdock ¢ andunlockc;
« T_R.C, its requested interface to the controller compo
nent, with an operatiopushed
o T_P_U, its provided interface to an external user, wit
an operatiorpush
There is no required interface to the user because the u
finds out if the turnstile is locked by trying to push it and
not be being sent a message from the turnstile.

MACHINE the states and the operations than the ones used in Fig. 2,
T_RC because it cannot be assumed that component consumers and
SETS component producers choose the same names independently
Turnstile States= {locked unlocked of each other
VARIABLES )
state We now give B specifications for two of the tree interfaces.
INVARIANT ' The interface data models of interfaces that connect the sam
statee Turnstile_ States
INITIALISATION two components must be the same. Hefic® CandT_RC
state:= locked have the same IDM, including the state of the turnstile with
OPERATIONS the two possible valuespckedandunlocked and the initial
pushed= statelocked The interface specifications are shown in Figs.
PRE state= unlocked 1 and 5. The operatiosck_c andunlock ¢ change the state
THEN skip END - .
END of the turnstile, whereas the operatipashedcorresponds to
sending a signal to the controller and does not change the
Fig. 5. Specification of_R.C state of the turnstile. As specified in the sequence diagram,



it can only be invoked if the turnstile is in statmlocked MACg_II:I:J_I_EI_X

2) Specification of the controller componert the same sgTs
way, we have to specify the controller component. Since Exit StatesTurnstile= {blocked unblocked
the controller is connected with five other components, it¥ARIABLES
behavioral specification is much more complex than thg x_state
behavioral specification of the turnstile. Fig. 6 shows the VARIANT i
. : : . x_statee Exit StatesTurnstile
behavior of the controller when a user enters the buildingn|TIALISATION
It captures exactly the behavior sketched in the informal x state:= unblocked
description of the access control system. Figure 7 shows tRERATIONS

; left =
behavior of the controller component when a user leaves the PRE x state— unblocked

building. THEN skiPp  END
END
[sd Controller_ 2 J Fig. 9. Specification ofC_P_TX
l Tumstile Exit ] l Controller ] l DB
'

i left

; lock. This renaming is necessary because the definition of
L lemvel refinement in B requires that the refining machine defines

; ; operations with the same names as the refined machine. The
linking invariant state = locked < e_state = blocked
relates the states of the different machines.

Fig. 7. Sequence diagram for the controller component)(exit REFINEMENT
. e . New T_P_C

As an example of an interface specification, we give thg-riNES
B specification of the required interface of the controller CRTE
with the entry turnstile,C_R_TE in Fig. 8. It looks quite SETS_
similar to the specification of the interfade P_C, and in Turnstile States= {locked unlocked
fact, we will show that the two interfaces can be ConneCteQ/ARIABLES
The specification of interface of the controller with thetexi state
turnstile is given in Fig. 9. Note that here we require that th \\ aARIANT
turnstile is always unblocked, as specified in the behaviora

e . statec Turnstile_StatesA
specification, see Fig. 7.

(state= locked« e _state= blocked

MACHINE INITIALISATION
CRTE state:= locked
SETS OPERATIONS
Entry_StatesTurnstile= {blocked unblocked unlock=/* unlockc */
VAR:QS;ES PRE state= locked
INVARIANT TI:|E’IC\I state:*: unlocked END;
e statec Entry_StatesTurnstile lock = /* lockc */
INITIALISATION PRE state= unlocked
e_state:= blocked THEN state:= locked END
OPERATIONS END
unlock =
PRE e state= blocked Fig. 10. Specification oNewr_P_C
THEN e_state:= unblocked END;
lock = . L .
PRE e state= unblocked We might now try to perform a similar refinement proof
THEN e_state:= blocked END for the interfacesT_R.C and C_P_TX, i.e., to show that
END the controller and the exit turnstile can be connected as

intended, see Fig. 11. However, this proof fails, because th
initializations of the two machines are incompatible.

The problem is that the given turnstile component comes in
D. Proving Interoperability statelocked but to be usable as an exit turnstile in the access

We now must prove that the controller can be connectegPntrol system, it must be in statmlocked Hence, we must
with two of the given turnstile components as specified iffhange the specification of the controller. The controllasm
Fig. 3. For this purpose, we must carry out three refinemeft @ new interfac€ R TX which it can used to initialize
proofs. As an example, we show that a transformed versidR€ turnstile component. As an initialization operatiome t

of the interfaceT_P.C is a refinement of the interface operationunlockc provided by the turnstile component can
C_R_TE, see Fig. 10. The refinement machiNewT P_.C b€ used. Figures 12 and 13 show the new interface of the
is a transformation of the machifeP_C (Fig. 1), where controller and its interoperability with the interfadeP_C
unlockc is renamed tounlock and lock ¢ is renamed to ©Of the turnstile component.

Fig. 8. Specification oC_R_TE



REFINEMENT
New C_P_TX
REFINES
T_-RC
SETS

Exit StatesTurnstile= {blocked unblocked

VARIABLES
X_state
INVARIANT
x_statec Exit_StatesTurnstile A
(x_state= blocked<> state= locked
INITIALISATION
x_state:= unblocked
OPERATIONS
pushed= /* left */
PRE x_state= unblocked
THEN skip END
END

Fig. 11. Specification oNews_P_TX

MACHINE
C_RTX
SETS
Exit StatesTurnstile= {not.init, init}
VARIABLES
X_state
INVARIANT
x_statec Exit_StatesTurnstile
INITIALISATION
x_state:= not.init
OPERATIONS
initialize =
PRE x_state= not.init
THEN x_state:= init END
END

Fig. 12. Specification 0€_R_TX

These changes have to be propagated to the other specifi

tions as follows:

o The initialization of the machineC_P_TX must be
changed, so that it also allows an initial stéteked

REFINEMENT
Init_T_P_C
REFINES
C_RTX
SETS
Turnstile States= {locked unlocked
VARIABLES
state
INVARIANT
statee Turnstile.StatesA
(state= locked < x_state= not.init)
INITIALISATION
state:= locked
OPERATIONS
initialize =/* unlock.c */
PRE state= locked
THEN state:= unlocked END
END

Fig. 13. RefinemenitT_P_C of C_R.TX

sd Controller_Init J

l Tumnstile Exit ] l Controller
T T

'
not_init :
T

H initialize H
<

!

Fig. 14. Sequence diagram for initialization of the exitnttile

Several proposals for component specification have already
been made. They have in common that they have no counter-
part of our interface data model and that they do not consider
interoperability issues, but only the specification of #ng
components. A working group of the German “Gesellschaft
fur Informatik” (GI) has defined a specification structure fo
business components [21]. That structure comprises seven
levels, namely marketing, task, terminology, quality, ho
ﬁgfion, behavioral, and interface. Our specification $tmec
covers the layers terminology, coordination, behavicxal]
interface by proposing concrete ways of specifying each of
those levels. The other layers of the Gl proposal have to do

o A_connection between the controllgr and the_ exit turnyith non-functional aspects of components.
stile must be added to the architectural diagram. Be,gnard et al. [6] propose to define contracts for compo-

connects the interfaca R TX and TPC.

nents. They distinguish four levels of contracts: syntacti

« The initialization of the exit turnstile must be achieved,ghavioral synchronization, and quality of service. Hoeve
by the controller. The corresponding sequence diagraffey g not introduce data models for their interfaces. ldenc

is shown in Fig. 14.

it cannot easily be checked if two components can be

Thus, we have shown how our method supports developersdgmbined.
assembling systems from components, always guaranteeiNge component specification approach of Lau and Ornaghi
that the different components are able to interoperateen th16] is closer to ours, because there, each component has

intended way.

V. RELATED WORK

a contextthat corresponds to our interface data model. A
context is an algebraic specification, consisting of a signa
ture, axioms, and constraints. In contrast, we deem it more

In an earlier paper, we have investigated the role of comyypropriate to allow for an object-oriented specificatidn o

ponent models in component specification [14]. The specfhe data model of a component interface. This makes it
fication of a component model makes it possible to obtaigpssible to take side effects of operations into accountand
more concise specifications of individual components. i# th ;se inheritance, concepts that are frequently used inipeact
paper, we investigate the necessary ingredients a compongfeesman and Daniels [8] propose a process to specify
specification must have in order to be useful for assembly %Bmponent-based software. This process starts with an in-
a software system out of components. These ingredients 8ima| requirements description and produces an architect
independent of concrete component models. showing the components to be developed or reused, their in-



terfaces and their dependencies. For each interface aperat becomes a program synthesis problem. This problem be-
a specification is developed, consisting of a precondition,comes more complex for weaker versions of specification
postcondition and possibly an invariant. matching. We are currently working on alternative versions
Our specification of component interfaces is inspired bgf compatibility and their mappings to refinement in B, and

Cheesman and Daniels’ work because that work cleartp give patterns for the corresponding adapters.

shows that for each interface, a data model is necessary.
However, Cheesman and Daniels do not consider the case
that already existing components with possibly differeatad  []
models have to be combined, and hence they do not defiqg]
a notion of interoperability.

Canal et al. [7] use a subset of the polyadicalculus to

deal with component interoperability only at the protocol 3]
level. Ther-calculus is well suited for describing component
interactions. The limitation of this approach is the low-
level description of the used language and its minimalistic[4]
semantics.

Bastide et al. [3] use Petri nets to specify the behavior of
CORBA objects, including operation semantics and proto-[s]
cols. The difference with our approach is that we take into
account the invariants of the interface specifications.
Zaremski and Wing [25] propose an interesting approach 1!
compare two software components. It is determined whethe)
one component can be substituted for another. They use
formal specifications to model the behavior of componentsg
and the Larch prover to prove the specification matching o
components. (9]
Others [12], [23] have also proposed to enrich component
interface specifications by providing information at sigme,
semantic and protocol levels. Despite these enhancemeis]
we believe that in addition, a data model is necessary to
perform a formal verification of interface compatibility. [11]
The idea to define component interfaces using B has bel#l
introduced in an earlier paper [10]. The use of the B
refinement to prove that two components are compatible g]
the signature and semantics levels has been explored in [?1]4]

VI. CONCLUSION

We have presented a method for component-based software
and system development. In this method, components arel
considered as black boxes. They are only described I
their visible behavior and by their interfaces. This apploa
makes it possible to describe hardware and software com-
ponents as well as existing components and components1g
be constructed in the same way. Interoperability between
component is defined rigorously and can be checked with
tool support. Furthermore, methodological guidance i®w@iv [1g]
to developers, as our method consists of four well-defined
steps. Thus, the ideas underlying the concept of compone t§]
based development can be fully exploited, and the way
constructing systems becomes more similar to other en%i—
neering disciplines. 20]
To construct a working system out of components, adaptegs;
have to be defined that implement the transformation of
required interface data into provided interface data acé vi 2
versa. In some cases, we can relax compatibility conditiornss)
and use more liberal versions of specification matching, e.g
plug-in-post matching [25]. In this case, an adapter mu?£4]
check if the precondition of the provided operation holds.
If not, it has to take appropriate actions other than calling5]
the provided operation. Thus, the construction of adapters
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