
HAL Id: hal-00097571
https://hal.science/hal-00097571

Submitted on 30 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Method for Component-Based Software and System
Development

Denis Hatebur, Maritta Heisel, Jeanine Souquières

To cite this version:
Denis Hatebur, Maritta Heisel, Jeanine Souquières. A Method for Component-Based Software and
System Development. 32nd Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), 2006, Croatia. �hal-00097571�

https://hal.science/hal-00097571
https://hal.archives-ouvertes.fr

A Method for Component-Based Software and System Development

Denis Hatebur1, Maritta Heisel1 and Jeanine Souquières2

1 Universität Duisburg-Essen, Institut für Medientechnik und Software Engineering
D-47048 Duisburg, Email: {denis.hatebur, maritta.heisel}@uni-duisburg-essen.de

2 LORIA – Université Nancy 2, Campus Scientifique BP 239
F-54506 Vandœuvre lès Nancy cedex, Email: Jeanine.Souquieres@loria.fr

Abstract— We propose a method for component-based software
and system development, where the interoperability between
the different components is given special consideration. The
method uses existing notations and languages with their asso-
ciated tools: context diagrams for analyzing and structuring
the problem, composite structure diagrams for describing the
overall system in terms of components and interfaces, sequence
diagrams to describe the behavior of each component, and the
formal method B for specifying the interfaces of the different
components and for proving their interoperability. The method
proposes to integrate these different notations; at the endof
the process, the interoperability is guaranted by the use ofthe
B method with its underlying concept of refinement, and its
powerful tool support, the B prover.

Keywords: Component based approach, interoperability, formal
method

I. I NTRODUCTION

The idea underlying the paradigm of component orientation
[13], [20] is to develop software systems not from scratch
but by assembling pre-fabricated parts, as is common in other
engineering disciplines. As in object orientation, components
are encapsulated, and their services are accessible only via
interfaces and their operations. To really exploit the idea
of component orientation, it must be possible to acquire
components developed by third parties and assemble them
in such a way that the desired behavior of the system to be
implemented is achieved. These considerations lead to the
following requirements on how to describe components in
such a way that they can be assembled into systems in a
systematic way:

• The specification of a component must contain sufficient
information to decide whether or not to acquire it for
integration in a new system. This requirement concerns
the access to the component’s source code that may not
be granted in order to protect the component producer’s
interests. Moreover, component consumers should not
be obliged to read the source code of a component to
decide if it is useful for their purposes or not. Hence,
the source code should not be considered to belong to
the component specification.

• It does not suffice to describe theprovided interfaces
of a given component. Often, components need other
components to provide their full functionality. Hence,
also therequiredinterfaces must be part of a component
specification.

• For different components to interoperate, they must
agree on the format of the data to be exchanged be-
tween them. Hence, each interface of a component must

be equipped with aninterface data modeldescribing
the format of the data accepted and produced by the
component.

• It does not suffice to give only the signature of interface
operations (e.g., operationfoo takes two integers and
yields an integer as its result) as is common in current
interface description languages. It is also necessary to
describe what effect an interface operation has (e.g.,
operationfoo takes two integers and yields their sum as
a result).

• The interface operations provided or required by some
component usually cannot be called in an arbitrary
order. Instead, certain communication protocols must be
adhered to. These protocols also must be provided in a
comprehensive component description.

The method for component-based software and system devel-
opment we present in this paper was designed to fulfill these
requirements. It is based on existing languages and notations
with their associated tools to appropriately describe existing
components or components to be constructed, and to check
if two components can be connected via given interfaces or
not. In particular, we use the following languages:

• Jackson’s context diagrams [15] serve to analyze and
structure the problem in terms of domains and shared
phenomena (which will be organized into interfaces
later).

• UML 2.0 [22] composite structure diagrams serve to
express the overall architecture of the system.

• UML 2.0 sequence diagrams serve to express the visible
behavior of components. They show communication
sequences with other connected components.

• The formal method B [1] serves to specify interfaces.
An interface specification consists of a data model and
the specification of the different operations provided or
required by the interface. Since the B concepts of a
machine and of refinement fit well with components
and their interoperability, we use a B tool for prov-
ing component interoperability. (Using for example the
object constraint language OCL [24], and generating
verification conditions from scratch would be much
more tedious.)

In the following, we present an overview of the B method in
Section II. We then describe our method in Section III and
illustrate it with the case study of an access control system
in Section IV. In Section V, we discuss related work. The
paper finishes with some concluding remarks in Section VI.

1

II. T HE FORMAL METHOD B

The B method [1] is a formal software development method
based on set theory. Because of its rigor and powerful tool
support, it is often used to develop software for critical
systems. The B method supports an incremental development
process, using refinement. A development begins with the de-
finition of an abstract specification, which can be refined step
by step until an implementation is reached. The refinement of
models is a key feature for incrementally developing models
from textual descriptions, preserving correctness in eachstep.
Thus, B follows the proof-based development paradigm [19].
The method has been successfully applied in the develop-
ment of several complex real-life applications, such as the
METEOR project [4]. It is one of the few formal methods
which has robust and commercially available support tools
for the entire development life-cycle from specification down
to code generation [5].
B specifications consist of abstract machines, which are
very close to notions well-known in programming under
the names of modules, classes or abstract data types. Each
abstract machine consists of a set of variables, invariant
properties of those variables, and operations. The state of
the machine, i.e. the set of variable values, is modifiable by
operations, which must preserve its invariant. An example of
a B machine is given Fig. 1. The invariant clause character-
izes the sensible states that are permitted for the machine.
The machine should never arrive at a state in which some
part of the invariant clause is false.

MACHINE
T P C

SETS
Turnstile States= {locked, unlocked}

VARIABLES
state

INVARIANT
state∈ Turnstile States

INITIALISATION
state:= locked

OPERATIONS
unlock c =̂

PRE state= locked
THEN state:= unlocked
END;

lock c =̂
PRE state= unlocked
THEN state:= locked
END

END

Fig. 1. An example of a B Specification

The B method provides structuring primitives that allow one
to compose machines in various ways. Large systems can be
specified in a modular way and in an object-based manner
[18], [17]. Proofs of invariance and refinement are part
of each development. The proof obligations are generated
automatically by support tools such as AtelierB [19] or
B4free [11], an academic version of AtelierB. Checking
proof obligations with B support tools (either through auto-
matic or interactive proofs) [2], is an efficient and practical
way to detect errors introduced during development.

III. A M ETHOD FORCOMPONENT-BASED

DEVELOPMENT

Our goal is to provide a method for component-based
software and system development that pays special attention
to the question how the interoperability between different
components can be guaranteed. Components are specified as
black boxes, so that component consumers can deploy them
without knowing their internal details. Hence, component
interface specifications play an important role, as interfaces
are the only access points to a component. Our method
consists of the following steps.

A. Set up a context diagram

Context diagrams as introduced by Jackson [15] serve to
analyze and structure a given development problem. They
consist of rectangles that are connected by lines (for an
example, see Fig. 2). The rectangles denotedomains, and a
connecting line between two (or more) domains indicates that
there areshared phenomenabetween the connected domains.
Shared phenomena may be events, operation calls, messages,
and the like. They are observable by at least two domains,
but controlled by only one domain. For example, if a user
pushes a turnstile, this is a phenomenon shared by the user
and the turnstile, which is controlled by the user. For each
connecting line, the corresponding shared phenomena are
given in a context diagram.

Lights
a e

b

i

c d

a: C!{green_on, green_off, red_on, red_off}
b: C!{eject_card_c, retract_card_c}

c: C!{block, unblock}

d: TX!{left}

CR!{card_inserted, card_taken}

TE!{entered}

Data Base

User

Turnstile
Entry

Card
Reader

Turnstile
Exit

gf

Controller

h

f: CR!{eject_card, retract_card}

i: L!{see_green, see_red}

U! {insert_card, take_card}
g: U!{push} TE! {locked, unlocked}
h: U!{push}

e: C!{enter_i, leave_i}
 DB!{authorized}

Fig. 2. Context diagram for the access control system

In the original version of context diagrams, each such di-
agram contains exactly onemachine domain, denoted by a
rectangle with a double vertical stripe. This is the domain that
has to be constructed to solve the problem. All other domains
aregiven domainsthat already exist1. Their properties (called
domain knowledge) have to be taken into account in the
problem solving process.
In our method, domains correspond to components or actors,
and connecting lines and their shared phenomena correspond
to interfaces between components or components and actors.
In contrast to Jackson, we allow several or even zero machine
domains in a context diagram. If a component has to be
constructed, it is expressed as a machine domain. If a

1There are alsodesigned domains, which are data structures to be
developed. We do not use designed domains in this work; hence, they will
not be mentioned further.

2

component exists, it is expressed as a given domain. Thus,
context diagrams with no machine domain express the fact
that a system shall be assembled from existing components
only, and that we have to check the interoperability of
these components. If a context diagram contains at least one
machine domain, we have more flexibility in the development
process. For example, we might change the interfaces of a
component to be constructed if this is necessary in order to
interoperate with the given components.
Hence, the domains contained in our context diagrams may
play one of the following roles:

• A machine domain corresponds to a software compo-
nent to be constructed, (e.g.,Controller in Fig. 2).

• A given domain can be
– an existing software component to be used (e.g.,

Data Basein Fig. 2)
– an existing hardware component to be used (e.g.,

Turnstile Entryin Fig. 2)
– an actor communicating with the system (e.g.,User

in Fig. 2)
Note that for existing components we need not distinguish
between hardware and software components, as both are
described in the same way. Thus, our method not only
covers component-basedsoftware development, but also
component-basedsystemdevelopment.
A second generalization of Jackson’s context diagrams con-
cerns the control of shared phenomena. In Jackson’s method,
this information is only added in a later step. In contrast, we
add it to the context diagram. The notationU!{push} means
that theUser component controls the shared phenomenon
push.
Setting up a (generalized) context diagram, we structure
the given development problem by identifying the different
actors and the components that are available or must be
constructed. Specifying the shared phenomena between the
components is a preparation for the next step of the method,
where all provided and required interfaces must be identified.

B. Construct the system- or software architecture

Based on the context diagram developed in the first step of
the method, we now decide on the provided and required
interfaces of all the identified components. For this purpose,
we have to inspect the shared phenomena expressed in the
context diagram, and consider the following rules:

• A shared phenomenon observable but not controlled by
componentC corresponds to an operation or signal in
a providedinterface ofC, becauseC must in some way
be notified of the occurrence of the shared phenomenon.

• Conversely, a phenomenon controlled by componentC
will often correspond to an operation or signal in a
required interface ofC, because controlling a phenom-
enon often corresponds to sending a signal or message
to another component (thus invoking an operation of a
provided interface of the receiver component).
However, there are exceptions to this rule. They concern
passivecomponents that are mere data structures. Such
components do not send messages to their environment
without an external stimulus. Hence, the phenomena
controlled by passive domains correspond to return
values of operations of a provided interface. An example

is the data base in Fig. 2. Although it controls the phe-
nomenonauthorized, it only has a provided interface,
where theauthorizedphenomenon is the return value of
a data base query issued by the controller component.

The software or system architecture is expressed as a
UML 2.0 composite structure diagram. Such diagrams con-
tain named rectangles, calledparts. These parts are the
components of the system. Parts may haveports, denoted by
small rectangles, and ports may have interfaces associatedto
them. Interfaces may be required or provided. Provided inter-
faces are denoted using the “lollipop” notation, and required
interfaces using the “socket” notation. For an example, see
Fig. 3.

Lights

Turnstile
Entry

Card Turnstile
Exit

Data BaseController

Reader

L_P_C C_R_L C_R−DB DB_P_C

CR_P_C

C_R_TE C_P_TX

TX_R_C

CR_P_U TE_P_U TX_P_U

CR_P_C

C_R_CR

TE_R_C TE_P_C

C_R_CR
C_P_TE

Fig. 3. Architecture of the global access control system

The procedure for setting up the architectural diagram for
the system is as follows. Each connecting line between
two domains of the context diagram must be transformed
into one or two connections between two components. Such
a connection consists of a provided interface for one of
the components and a corresponding required interface of
the other component. For a bi-directional communication,
we need two connections (e.g., betweenTurnstile Entryand
Controller in Fig. 3); for a one-directional communication,
we only need one connection (e.g., betweenData Baseand
Controller in Fig. 3). The decision on provided and required
interfaces must be taken according to the rules given above.
Finally, we delete all domains corresponding to actors from
the diagram.

C. Specify components

For each component of the architecture, a specification must
be set up containing:

• Sequence diagrams describing the visible behavior of
the specified component; the sequence diagrams must
contain all operations or signals of all interfaces and all
other components the specified component is connected
with. Messages received by the specified component
from its environment must correspond to an operation
or signal of some provided interface, while messages
sent out by the specified component must correspond
to an operation or signal of some required interface.

• A B machine for each provided and each required
interface. For all interfaces that connect the specified
component with the same outside component, the in-
terface data models (IDM, see Section I) must be the
same, and the IDM must be encoded in the B machine
by specifying:

3

– the types used in the interface
– a data state as far as necessary to express the effects

of operations
– invariants on that data state

When a component manipulates data, it is possible to
use a UML class diagram to express the interface data
model for reasons of readability. This class diagram can
then automatically be transformed into a B specification
[18].
Each machine specifies the operations belonging to
its corresponding interface. An operation specification
consists of its signature (i.e., the types of its input and
output parameters), its precondition expressing under
which circumstances the operation may be invoked, and
its postcondition expressing the effect of the operation.
Both pre- and postcondition will refer to the interface
data model.

The behavioral specification and the operation specifications
must be coherent. To ensure coherence, the sequence dia-
grams should be annotated with states, which are also used
to express the pre- and postconditions of the B operations.
In this way, we make sure that the communication sequences
required by the sequence diagrams do not violate any pre-
conditions of interface operations.
Such a specification contains all the information that is
needed to decide if a given component can be used in a
given context or not.

D. Prove interoperability

In component-based development, the components must be
connected in an appropriate way. To guarantee interoper-
ability of components, we must consider each connection
of a provided and a required interface contained in the
architecture and try to show that – after some syntactic
transformations – the provided interface is a B refinement of
the required interface. This means that the provided interface
constitutes an implementation of the required interface, and
we can conclude that the two components can be connected
as shown in the architectural diagram. The process of proving
interoperability between components is described in [9].
If we cannot demonstrate the interoperability of an intended
connection of the architectural diagram, we either can try
to change the specification of a component to be developed
(corresponding to a machine domain in the context diagram),
or we can try to develop an adapter. In both cases, the
architectural diagram and the component specifications will
have to be adjusted accordingly.
If the latter approach is not possible either, we have to con-
clude that the components cannot be connected as intended.

In the case where all components are given, the result of
our method is a proof that the system can be assembled as
specified in the architectural diagram. In the case where some
components do not yet exist but must be constructed, our
method yields detailed specifications of all the components
to be developed.

IV. CASE STUDY: ACCESSCONTROL SYSTEM

We illustrate our method with the case study of a simple
access control system. The access to a building is to be

controlled. Persons (called users) who are authorized to enter
the building have access cards with some identification stored
on it. There are two turnstiles, one at the entrance to the
building, and one at the exit. At the entrance, there is also a
card reader as well as a red and a green light.
A user who wants to enter the building inserts his or her card
into the card reader. The information on the card is read, and
a data base is queried to decide if the user is granted access
or not. If access is granted, the green light is turned on for
some time, the card is ejected, and the entry turnstile – which
is normally blocked – is unblocked. The entry turnstile is
re-blocked either after the user has entered or after some
timeout. If the user does not take the card within some time
limit, the card is retracted and kept. If access is denied, a
red light is turned on for some time, and the entry turnstile
remains blocked. The card is ejected. Again, if the user does
not take the card within some time limit, the card is retracted
and kept.
The number of persons present in the building must be
counted. Therefore, there is also an exit turnstile which is
never blocked, but just serves to observe when a person
leaves the building.

A. Context diagram

A context diagram for this access control system is shown
in Fig. 2. We have one component to be developed, namely
Controller, and one domain corresponding to an actor,
namely User. The other domains correspond to existing
components.
As an example, we consider the interfacesc and g: the
controller can give commands to the entry turnstile to block
or unblock it. Conversely, the entry turnstile sends a signal
enteredto the controller. This signal is sent as a reaction of
a pushevent caused by the user (interfaceg). Since the user
can observe if the turnstile is locked or not, the interface
contains two phenomenalockedandunlockedcontrolled by
the entry turnstile.

B. Architecture of the system

The architecture of the system is given in Fig. 3. We have
used the following naming conventions for interfaces. Each
interface name has the form XY Z, where

• X is an abbreviation of the name of the component the
interface belongs to, e.g., its first letter;

• Y is either “P” for provided or “R” for required;
• Z is the abbreviation of the name of the component the

given component is connected to.
As an example,C P TE is the provided interface of
the Controller component which is connected to the
Turnstile Entrycomponent.
Note that theUser is no longer contained in the diagram,
and that the data base only has a provided interface, because
it is a passive component (even though it controls the
phenomenonauthorized). In all other interfaces, controlled
phenomena correspond to operations in required interfaces,
and observed phenomena correspond to operations in pro-
vided interfaces.

4

Fig. 4. Behavioral specification of the turnstile component

C. Component Specifications

We want to use two copies of the same turnstile component
available on the market to be installed as an entry and an exit
turnstile, respectively. For reasons of space, we only present
the specification of that turnstile component, and parts of the
controller specification.
1) Specification of the turnstile component:The available
turnstile component has the following interfaces:

• T P C, its provided interface to a controller component,
with two operationslock c andunlock c;

• T R C, its requested interface to the controller compo-
nent, with an operationpushed;

• T P U, its provided interface to an external user, with
an operationpush.

There is no required interface to the user because the user
finds out if the turnstile is locked by trying to push it and
not be being sent a message from the turnstile.

MACHINE
T R C

SETS
Turnstile States= {locked, unlocked}

VARIABLES
state

INVARIANT
state∈ Turnstile States

INITIALISATION
state:= locked

OPERATIONS
pushed=̂

PRE state= unlocked
THEN SKIP END

END

Fig. 5. Specification ofT R C

Fig. 6. Sequence diagram for the controller component (entry)

The turnstile component has two states, namelylockedand
unlocked, and its initial state islocked. It has no invariant
property. The externally visible behavior, i.e., its usage
protocol, is given in Fig. 4. The first sequence diagram
expresses that initially the turnstile is locked. After it receives
an unlock c command from the controller, it changes its
state tounlocked. In that state, an arbitrary number ofpush
events can be received from the user. When the turnstile
component receives alock c command from the controller,
it re-enters the statelocked. The second sequence diagram
expresses the fact that in statelocked, no pushevents can
be received from the user. Theneg construct has been
used to express this forbidden scenario. Note that the given
turnstile component is specified using different names for
the states and the operations than the ones used in Fig. 2,
because it cannot be assumed that component consumers and
component producers choose the same names independently
of each other.

We now give B specifications for two of the tree interfaces.
The interface data models of interfaces that connect the same
two components must be the same. Hence,T P C andT R C
have the same IDM, including the state of the turnstile with
the two possible values,lockedandunlocked, and the initial
statelocked. The interface specifications are shown in Figs.
1 and 5. The operationslock c andunlock c change the state
of the turnstile, whereas the operationpushedcorresponds to
sending a signal to the controller and does not change the
state of the turnstile. As specified in the sequence diagram,

5

it can only be invoked if the turnstile is in stateunlocked.
2) Specification of the controller component:In the same
way, we have to specify the controller component. Since
the controller is connected with five other components, its
behavioral specification is much more complex than the
behavioral specification of the turnstile. Fig. 6 shows the
behavior of the controller when a user enters the building.
It captures exactly the behavior sketched in the informal
description of the access control system. Figure 7 shows the
behavior of the controller component when a user leaves the
building.

Fig. 7. Sequence diagram for the controller component (exit)

As an example of an interface specification, we give the
B specification of the required interface of the controller
with the entry turnstile,C R TE in Fig. 8. It looks quite
similar to the specification of the interfaceT P C, and in
fact, we will show that the two interfaces can be connected.
The specification of interface of the controller with the exit
turnstile is given in Fig. 9. Note that here we require that the
turnstile is always unblocked, as specified in the behavioral
specification, see Fig. 7.

MACHINE
C R TE

SETS
Entry StatesTurnstile= {blocked, unblocked}

VARIABLES
e state

INVARIANT
e state∈ Entry StatesTurnstile

INITIALISATION
e state:= blocked

OPERATIONS
unlock =̂

PRE e state= blocked
THEN e state:= unblocked END;

lock =̂
PRE e state= unblocked
THEN e state:= blocked END

END

Fig. 8. Specification ofC R TE

D. Proving Interoperability

We now must prove that the controller can be connected
with two of the given turnstile components as specified in
Fig. 3. For this purpose, we must carry out three refinement
proofs. As an example, we show that a transformed version
of the interfaceT P C is a refinement of the interface
C R TE, see Fig. 10. The refinement machineNewT P C
is a transformation of the machineT P C (Fig. 1), where
unlock c is renamed tounlock and lock c is renamed to

MACHINE
C P TX

SETS
Exit StatesTurnstile= {blocked, unblocked}

VARIABLES
x state

INVARIANT
x state∈ Exit StatesTurnstile

INITIALISATION
x state:= unblocked

OPERATIONS
left =̂

PRE x state= unblocked
THEN SKIP END

END

Fig. 9. Specification ofC P TX

lock. This renaming is necessary because the definition of
refinement in B requires that the refining machine defines
operations with the same names as the refined machine. The
linking invariant, state = locked ⇔ e state = blocked,
relates the states of the different machines.

REFINEMENT
New T P C

REFINES
C R TE

SETS
Turnstile States= {locked, unlocked}

VARIABLES
state

INVARIANT
state∈ Turnstile States∧
(state= locked⇔ e state= blocked)

INITIALISATION
state:= locked

OPERATIONS
unlock=̂/* unlock c */

PRE state= locked
THEN state:= unlocked END;

lock =̂ /* lock c */
PRE state= unlocked
THEN state:= locked END

END

Fig. 10. Specification ofNewT P C

We might now try to perform a similar refinement proof
for the interfacesT R C and C P TX, i.e., to show that
the controller and the exit turnstile can be connected as
intended, see Fig. 11. However, this proof fails, because the
initializations of the two machines are incompatible.
The problem is that the given turnstile component comes in
statelocked, but to be usable as an exit turnstile in the access
control system, it must be in stateunlocked. Hence, we must
change the specification of the controller. The controller must
get a new interfaceC R TX which it can used to initialize
the turnstile component. As an initialization operation, the
operationunlock c provided by the turnstile component can
be used. Figures 12 and 13 show the new interface of the
controller and its interoperability with the interfaceT P C
of the turnstile component.

6

REFINEMENT
New C P TX

REFINES
T R C

SETS
Exit StatesTurnstile= {blocked, unblocked}

VARIABLES
x state

INVARIANT
x state∈ Exit StatesTurnstile∧
(x state= blocked⇔ state= locked)

INITIALISATION
x state:= unblocked

OPERATIONS
pushed=̂ /* left */

PRE x state= unblocked
THEN SKIP END

END

Fig. 11. Specification ofNewC P TX

MACHINE
C R TX

SETS
Exit StatesTurnstile= {not init, init}

VARIABLES
x state

INVARIANT
x state∈ Exit StatesTurnstile

INITIALISATION
x state:= not init

OPERATIONS
initialize =̂

PRE x state= not init
THEN x state:= init END

END

Fig. 12. Specification ofC R TX

These changes have to be propagated to the other specifica-
tions as follows:

• The initialization of the machineC P TX must be
changed, so that it also allows an initial statelocked.

• A connection between the controller and the exit turn-
stile must be added to the architectural diagram. It
connects the interfacesC R TX andTPC.

• The initialization of the exit turnstile must be achieved
by the controller. The corresponding sequence diagram
is shown in Fig. 14.

Thus, we have shown how our method supports developers in
assembling systems from components, always guaranteeing
that the different components are able to interoperate in the
intended way.

V. RELATED WORK

In an earlier paper, we have investigated the role of com-
ponent models in component specification [14]. The speci-
fication of a component model makes it possible to obtain
more concise specifications of individual components. In this
paper, we investigate the necessary ingredients a component
specification must have in order to be useful for assembly of
a software system out of components. These ingredients are
independent of concrete component models.

REFINEMENT
Init T P C

REFINES
C R TX

SETS
Turnstile States= {locked, unlocked}

VARIABLES
state

INVARIANT
state∈ Turnstile States∧
(state= locked⇔ x state= not init)

INITIALISATION
state:= locked

OPERATIONS
initialize =̂/* unlock c */

PRE state= locked
THEN state:= unlocked END

END

Fig. 13. RefinementInitT P C of C R TX

Fig. 14. Sequence diagram for initialization of the exit turnstile

Several proposals for component specification have already
been made. They have in common that they have no counter-
part of our interface data model and that they do not consider
interoperability issues, but only the specification of single
components. A working group of the German “Gesellschaft
für Informatik” (GI) has defined a specification structure for
business components [21]. That structure comprises seven
levels, namely marketing, task, terminology, quality, coordi-
nation, behavioral, and interface. Our specification structure
covers the layers terminology, coordination, behavioral,and
interface by proposing concrete ways of specifying each of
those levels. The other layers of the GI proposal have to do
with non-functional aspects of components.
Beugnard et al. [6] propose to define contracts for compo-
nents. They distinguish four levels of contracts: syntactic,
behavioral, synchronization, and quality of service. However,
they do not introduce data models for their interfaces. Hence,
it cannot easily be checked if two components can be
combined.
The component specification approach of Lau and Ornaghi
[16] is closer to ours, because there, each component has
a context that corresponds to our interface data model. A
context is an algebraic specification, consisting of a signa-
ture, axioms, and constraints. In contrast, we deem it more
appropriate to allow for an object-oriented specification of
the data model of a component interface. This makes it
possible to take side effects of operations into account andto
use inheritance, concepts that are frequently used in practice.
Cheesman and Daniels [8] propose a process to specify
component-based software. This process starts with an in-
formal requirements description and produces an architecture
showing the components to be developed or reused, their in-

7

terfaces and their dependencies. For each interface operation,
a specification is developed, consisting of a precondition,a
postcondition and possibly an invariant.
Our specification of component interfaces is inspired by
Cheesman and Daniels’ work because that work clearly
shows that for each interface, a data model is necessary.
However, Cheesman and Daniels do not consider the case
that already existing components with possibly different data
models have to be combined, and hence they do not define
a notion of interoperability.
Canal et al. [7] use a subset of the polyadicπ-calculus to
deal with component interoperability only at the protocol
level. Theπ-calculus is well suited for describing component
interactions. The limitation of this approach is the low-
level description of the used language and its minimalistic
semantics.
Bastide et al. [3] use Petri nets to specify the behavior of
CORBA objects, including operation semantics and proto-
cols. The difference with our approach is that we take into
account the invariants of the interface specifications.
Zaremski and Wing [25] propose an interesting approach to
compare two software components. It is determined whether
one component can be substituted for another. They use
formal specifications to model the behavior of components
and the Larch prover to prove the specification matching of
components.
Others [12], [23] have also proposed to enrich component
interface specifications by providing information at signature,
semantic and protocol levels. Despite these enhancements,
we believe that in addition, a data model is necessary to
perform a formal verification of interface compatibility.
The idea to define component interfaces using B has been
introduced in an earlier paper [10]. The use of the B
refinement to prove that two components are compatible at
the signature and semantics levels has been explored in [9].

VI. CONCLUSION

We have presented a method for component-based software
and system development. In this method, components are
considered as black boxes. They are only described by
their visible behavior and by their interfaces. This approach
makes it possible to describe hardware and software com-
ponents as well as existing components and components to
be constructed in the same way. Interoperability between
component is defined rigorously and can be checked with
tool support. Furthermore, methodological guidance is given
to developers, as our method consists of four well-defined
steps. Thus, the ideas underlying the concept of component-
based development can be fully exploited, and the way of
constructing systems becomes more similar to other engi-
neering disciplines.
To construct a working system out of components, adapters
have to be defined that implement the transformation of
required interface data into provided interface data and vice
versa. In some cases, we can relax compatibility conditions
and use more liberal versions of specification matching, e.g.
plug-in-post matching [25]. In this case, an adapter must
check if the precondition of the provided operation holds.
If not, it has to take appropriate actions other than calling
the provided operation. Thus, the construction of adapters

becomes a program synthesis problem. This problem be-
comes more complex for weaker versions of specification
matching. We are currently working on alternative versions
of compatibility and their mappings to refinement in B, and
to give patterns for the corresponding adapters.

REFERENCES

[1] J.-R. Abrial. The B Book. Cambridge University Press - ISBN 0521-
496195, 1996.

[2] J-R. Abrial and D. Cansell. Click’n’Prove : InteractiveProofs Within
Set Theory. In D. Basin et B. Wolff, editor,16th International Con-
ference on Theorem Proving in Higher Order Logics - TPHOLs’2003,
volume 2758 ofLNCS, pages 1–24. Springer Verlag, 2003.

[3] R. Bastide, O. Sy, and P. A. Palanque. Formal specification and
prototyping of CORBA systems. InECOOP ’99: Proceedings of the
13th European Conference on Object-Oriented Programming, pages
474–494. Springer-Verlag, 1999.

[4] P. Behm, P. Benoit, and J.M. Meynadier. METEOR: A Successful
Application of B in a Large Project. InIntegrated Formal Methods,
IFM99, volume 1708 ofLNCS, pages 369–387. Springer Verlag, 1999.

[5] D. Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable
Translator of B Specifications to Embedded C Programs. InIntegrated
Formal Method, IFM’03, volume 2805 ofLNCS, pages 94–113.
Springer Verlag, 2003.

[6] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making
components contract aware.IEEE Computer, pages 38–45, July 1999.

[7] C. Canal, L. Fuentes, E. Pimentel, J-M. Troya, and A. Vallecillo.
Extending CORBA interfaces with protocols.Comput. J., 44(5):448–
462, 2001.

[8] J. Cheesman and J. Daniels.UML Components – A Simple Process
for Specifying Component-Based Software. Addison-Wesley, 2001.

[9] S. Chouali, M. Heisel, and J. Souquières. Proving Component Inter-
operability with B Refinement. In H. R. Arabnia and H. Reza, editors,
International Worshop on Formal Aspects on Component Software.
CSREA Press, 2005. To appear in ENCTS 2006.

[10] S. Chouali and J. Souquières. Verifying the compatibility of compo-
nent interfaces using the B formal method. InInternational Conference
on Software Engineering Research and Practice, 2005.

[11] Clearsy. B4free. Available athttp://www.b4free.com, 2004.
[12] J. Han. A comprehensive interface definition frameworkfor software

components. InThe 1998 Asia Pacific software engineering confer-
ence, pages 110–117. IEEE Computer Society, 1998.

[13] G. T. Heineman and W. T. Councill. Component-Based Software
Engineering. Addison-Wesley, 2001.

[14] M. Heisel, T. Santen, and J. Souquières. Toward a formalmodel of
software components. In Chris George and Miao Huaikou, editors,
Proc. 4th International Conference on Formal Engineering Methods,
LNCS 2495, pages 57–68. Springer-Verlag, 2002.

[15] M. Jackson. Problem Frames. Analyzing and structuring software
development problems. Addison-Wesley, 2001.

[16] K.-K. Lau and M. Ornaghi. A formal approach to software component
specification. In G.T. Leavens D. Giannakopoulou and M. Sitaraman,
editors,Proceedings of Specification and Verification of Component-
based Systems Workshop at OOPSLA2001, pages 88–96, 2001.

[17] H. Ledang and J. Souquières. Modeling class operationsin B:
application to UML behavioral diagrams.ASE2001: 16th IEEE
International Conference on Automated Software Engineering, IEEE
Computer Society, 2001.

[18] E. Meyer and J. Souquières. A systematic approach to transform OMT
diagrams to a B specification. InProceedings of the Formal Method
Conference, LNCS 1708, pages 875—895. Springer-Verlag, 1999.

[19] Steria. Obligations de preuve: Manuel de référence. Ste-
ria - Technologies de l’information, version 3.0. Available at
http://www.atelierb.societe.com.

[20] C. Szyperski. Component Software. ACM Press, Addison-Wesley,
1999.

[21] K. Turowski, editor. Standardized Specification of Business Compo-
nents. Gesellschaft für Informatik, 2002.

[22] UML Revision Task Force. OMG Unified Modeling Language:
Superstructure, August 2005.http://www.uml.org.

[23] A. Vallacillo, J. Hernandez, and M. Troya. Object interoperability.
In Object Oriented Technology: ECOOP’99 Workshop Reader, pages
1–21, 1999.

[24] J. Warmer and An. G. Kleppe.The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1999.

[25] A. M. Zaremski and J. M. Wing. Specification matching of software
components.ACM Transactions on Software Engineering and Method-
ology, 6(4):333–369, 1997.

8

