N

N
N

HAL

open science

Verification of UML Model Elements Using B

Ninh Thuan Truong, Jeanine Souquiéres

» To cite this version:

Ninh Thuan Truong, Jeanine Souquieres. Verification of UML Model Elements Using B. Journal of

Information Science and Engineering, 2006, 22, pp.357-373. hal-00097566

HAL Id: hal-00097566
https://hal.science/hal-00097566
Submitted on 30 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00097566
https://hal.archives-ouvertes.fr

Verification of UML model elements using B

Abstract

This paper describes the formal verification of UML model elements using
B abstract machines. We study the UML metamodel of class diagrams, col-
laboration diagrams and state-chart diagrams as well as their well-formedness
rules. Each element of UML models which is an instance of a metaclass, is trans-
formed into a B abstract machine. The relationship between abstract machines
is organised using the abstract syntax of UML class diagram of the UML meta-
model. B specifications are proved by a B prover which generates automatically
proof obligations, allowing UML model elements to be verified. The correctness
of the UML model elements is ensured by the well-formedness rules which are
transformed to B invariants. We illustrate our approach by a simple case study,
the printing system.

Keywords: B method, UML models, UML metamodel, formal verification,
well-formedness rules

1 Introduction

The application of formal methods [9] allows the rigorous definition and analysis of
the functionality and the behaviour of a system. Starting from rigorous specifications,
formal methods can be used for the derivation of test cases, or for a validation and
verification technique aimed at proving that the specification satisfies the require-
ments.

The Unified Modelling Language (UML) [4] is a widely accepted modelling language
that can be used to visualise, specify, construct and document the artifacts of a soft-
ware system. It has been accepted as a standard object-oriented modelling language
by OMG [14], and is becoming the dominant modelling language in the industry. The
syntax and semantics of the notations provided in UML are defined in terms of its
metamodel. In the UML metamodel [14], modelling constructs are defined using three
distinct views: an abstract syntax in UML class diagrams, static semantics ensuring
that all UML constructs are statically well formed in OCL [20], and dynamic seman-
tics specifying the meaning of the constructs, mainly in English.

The derivation from UML specifications into the B formal method [1] is considered
as an appropriate way to jointly use UML and B in practical, unified and rigorous
software development. The transformation from UML diagrams to B specification
have been considered in [8, 13, 7]; these approaches provide a multi-view framework
for the specification of a system but do not allow the complete verification of the
properties of UML semantics. The transformation of the UML metamodel to formal
methods (Object-Z, B) has been considered by K. Soon-Kyeong, C. David in [10] and

R. Laleau, F. Polack in [11]. However, these approaches only consider the specifi-
cation process but do not allow the checking of UML model elements with support
tools. Cavarra et al. [5] build a framework to transform UML metamodel and UML
models into ASM (Abstract State Machines) [2] but the verification of this work is
not presented. Concerning the validation of UML models and OCL constraints, M.
Richter et al. [15] present an approach based on animation. They developed a tool
called USE (UML-based Specification Environment) which is an animator for simu-
lating UML models and an OCL interpreter for constraint checking.

The purpose of our work is to use B support tools to check UML model elements.
We transform meta-classes of an UML specification, objects of these classes (which
are elements of UML models) and well-formedness rules of UML semantics proposed
by OMG [14] into B abstract machines. The corresponding B specification is then
proved by support tools which generate automatically proof obligations.

The transformation of the Core package and the verification of class diagrams is pre-
sented in [18]. The transformation of behavioural diagrams is presented in [19]. This
paper integrates these derivations in a common approach to verify UML model ele-
ments of different diagrams.

The paper is organised as follows. Section 2 provides the basic concepts of our ap-
proach. Section 3 presents a case study to illustrate the transformation and verifi-
cation. Section 4 presents our principal contribution; we compare the difference of
well-formedness rules between packages and propose a general principle to transform
the UML metamodel into B. In the three next sections, we present the transformation
of the metamodel of class diagrams, collaboration diagrams and statechart diagrams,
into B. We illustrate the transformation of well-formedness rules to B invariants and
the proof of UML model elements using B support tools. Section 8 ends with some
concluding remarks.

2 Background

In this section, we introduce the B method, the UML metamodel and its relation with
UML models.

2.1 The B method

B [1, 16] is a formal software development method, originally developed by J. R.
Abrial. The B notation is based on set theory, the language of generalised substitu-
tions and first order logic. It is one of few formal methods which has robust, commer-
cially available support tools for the entire development life-cycle from specification
through to code generation [17]. Specifications are composed of abstract machines,
similar to modules or classes. Each abstract machine consists of a set of variables,
invariant properties relating to those variables and operations.

Variables of B specifications are strictly typed. Type of variables is not given explicitly
as in the majority of language programming but is presented in the invariants clause.
The state of the system, i.e. the set of variable values, is only modifiable by operations
which must preserve its invariants.

With the refinement mechanism, an abstract specification can evolve to a more con-
crete specification, by adding new data or operations, allowing the behaviour of the

abstract system to be ’simulated’ by the refined system. At every stage of the specifi-
cation, proof obligations ensure the preservation of the system invariant. These proof
obligations are generated automatically by support tools like AtelierB [17], B-Tookit
[3] and B4free [6]. Analysing proof obligations with B support tools is an efficient
and practical way to detect errors encountered during the specification development.
B provides structuring primitives like INCLUDES, IMPORT, USES and SEES allow-
ing users to compose abstract machines. Thus, large systems can be specified in a
modular way and can be reused. In this paper, we will use these advantages of the B
method to specify UML model elements and to check them with UML semantics.

2.2 UML metamodel and its relation with UML models

The UML metamodel [14] defines the complete semantics for representing object mod-
els using UML. It is defined in a metacircular manner, using a subset of UML notations
and semantics to specify itself. In this way the UML metamodel bootstraps itself in
a similar way to how a compiler is used to compile itself. The UML metamodel is
defined as one of the four-layer metamodelling architecture: meta-metamodel, meta-
model, model and user objects. Figure 1 shows an example of the relation between the
UML metamodel and the UML model of the printing system. A model is an instance
of the UML metamodel, each element of the UML model is an instance of a metaclass
of the metamodel, for example, the notifyStatus() operation of the Computer class is
an instance of the Operation metaclass of the UML metamodel.

Printer Queue

UML model

Computer

+ hostName: String PrintServer
+ |PAdress: String 1. 0..*
+ userName: String

+ createComputer(hostName,| PAdress,userName)
+ notifyStatus() AN

\\"instanonf" \\ "instanceOf"
UML metamodel .
K '\
Operation ® 0.* Par ameter
name: String
visibility: VisibilityKind

Figure 1: Example of relation between UML metamodel and UML model

The metamodel is described in a semi-formal manner using three views, which are
helpful to understand the UML semantics:

e Abstract Syntax. UML class diagrams are used to present the UML metamodel,
its concepts (meta-classes), relationships and constraints.

e Well-Formedness Rules. A set of rules and constraints for UML model elements
are defined. Rules are expressed in an English prose and in the Object Con-

straint Language (OCL). OCL [20] is a specification language that uses logic for
specifying invariant properties of systems.

e Semantics. The semantics of model usage is described in an English prose.

Since the metamodel layer is relatively complex, it is decomposed into logical pack-
ages. Each package show strong cohesion with each other and loose coupling with
meta-classes in other packages. The metamodel is decomposed into many packages.
We focus on three packages of the metamodel: the Core package, the Collaboration
package and the State Machine package which are respectively the metamodel of the
class diagrams, the collaboration diagrams and the statechart diagrams.

3 A case study

To illustrate our approach, we present the specification of the printing system, which
is a system to print a file from a computer. This system works as follows: when a user
gives a command to print a file, this command will be transfered to the PrintServer.
If the printer is busy, the file to print will be stored in a queue, else it will be printed
and the PrintServer will notify the status of the printing process to the computer.
The class diagram of this system is presented in the UML model part of Figure 1.
In this diagram, we only describe the elements and properties necessary to illustrate

the transformation. The collaboration diagram is showed in the UML model part of
Figure 2.

:Queue
UML models [Printer busy]
1.2.store(file)
1.print(file) :
:Computer ‘PrintServer [Printer free]
- 1.1.print(file)
‘\ .
\ 1.3.notifyStatus
\“ \\\ 'E .
\ "instanceOf" , "instanceOf"
UML metamodel | R
N N predecessor
ClassifierRole Message * Interaction
name : String sender name: String :
multiplicity: Mult receiver suceessor
N activator

Figure 2: Collaboration diagram of the printing system and its metamodel

As for the class diagram, there is a package of the metamodel layer called the Collab-
oration package which is used to define collaboration diagram elements. Each element

of a collaboration diagram is an instance of a metaclass in the Collaboration pack-
age. For instance, the message 1.3 notifyStatus of the collaboration diagram of the
printing system is an instance of the Message metaclass of the UML metamodel (see
Figure 2).

4 Transformation of the UML metamodel into B

Many approaches of the transformation of UML diagrams into a B specification are
proposed. In these approaches, the transformation of an attribute of an UML class
to a variable of a B abstract machine is usually presented as follows [13]:

MACHINE CLASS
SETS OBJECTS
CONSTANTS CLASS

PROPERTIES
CLASS C OBJECTS
Class VARIABLES
)) class, attrib
attrib : attribType INVARIANT

class € CLASS A
attrib € class < attribType

END
With this transformation, it is easy to express attributes of classes by binary relation
constructs of the set theory. However, this transformation is only applied when object
identifiers will be generated in the execution of the program (in this case, if an object
is created, its identifier is assigned to a random integer number because a deferred
set in B is defined as a non-empty subset of integers (OBJECTS € P(INT))).
With the metamodel, it is to be noticed that the UML abstract syntax is mapped to a
set of MOF packages (Meta Object Facility) called the UML Interchange Metamodel.
These packages are available as an XML document which is generated from the UML
Interchange Metamodel following the rules of the XML Metadata Interchange (XMTI)
[14]. It is a standard for the UML models to be exchanged between tool editors of
UML (Rational Rose, ArgoUML, ...) as a stream or as files. To enhance facility, we
work with the XMI structure and values of attributes of XMI.
That means that object identifiers of meta-classes are determined by identifiers in the
XMI code generated by UML tool editors. Hence we can simply define the type of
variables as follows:

attr; € CLASS - TYPE(attr;)

where § -» T denotes the set of all partial functions from S to T, CLASS is a set of
object identifiers and TYPE(attr;) is the type of the attribute transformed into B.
One usage of this expression is its application for the verification. In the process of ver-
ification of the B method, support tools generate automatically proof obligations for
proving predicates. These proof obligations always verify the correctness of variable
values of substitution in the operations with invariants of abstract machines. When
predicates in the INVARIANT clause contains existential and/or universal quantifiers,
variables of abstract machines have to contain all potential values in order that the
tool support performs the comparison and proves the predicates. With this definition

of the type of variables, we introduce a new variable attr, typed similarly as the one
of objects, in order to merge all values of variables of machine’s object:

attr € CLASS —+ TYPE(attr)
attr := attry U attrs U... U attry,

The value of the variable attr is a set of pairs of object identifiers mapped to the
attribute values of all objects of the class:

attr = {object; — valuey, objects — value,, ..., object, — valuey, }

With the attr set, considered as a variable, we can express the well-formedness rules
as an invariant of abstract machines. Proof obligations generated by support tools can
inspect the data of all objects to verify the existential and/or universal quantification
transformed from well-formedness rules.

The structure of the metamodel of class diagrams and behavioural diagrams (com-
posed of collaboration and statechart diagrams) is similar. Class diagrams are used
to describe static properties (attributes and associations) on UML models. However,
the object’s attribute on the Behavioural Elements package (Collaboration and State
Machine packages) can be valued by a set of elements, meanwhile the one of the Core
package has only one value. Depending on the value of attributes, each attribute is
transformed to B as a variable whose invariant is either a partial function or a relation
between the type of the class in which it is introduced and the type of attributes.
Another difference between the Behavioural Elements package and the Core pack-
age is well-formedness rules. In the Core package, well-formedness rules are usually
simple, each rule expresses constraints for only one attribute. Well-formedness rules
of the Behavioural Elements package are more complex, with many attributes which
participate together in a rule. To verify the correctness of each rule (transformed as
an invariant of a B abstract machine), values of all the variables which participate
in invariants of B abstract machines should be determined, furthermore, all these
variables must be assigned to values at the same time, the B prover thus inspects all
values of variables to prove predicates. In the approach of the transformation of the
Core package to B [18], we merge the data of the variables on the separate operations
of the B abstract machine. This approach cannot be applied to the transformation of
the Behavioural Elements package, because variables which participate in the same
invariant may not be assigned to the values at the same time and hence the result of
the proof can be incorrect. To solve this problem, we propose a common approach
applied to the transformation of the Core package as well as the Behavioural Elements
package. Before the presentation of the procedure of transformation, let’s see some
definitions:

Definition 1
A composite class is a class that serves as the "whole” within a composition relation-
ship; a composite object is an instance of a composite class.

Definition 2
A component class is a class that serves as the "part” within a composition relation-
ship; a component object is an instance of a component class.

The procedure of transformation is defined as follows:

e Each object of a meta-class (UML model element) is transformed into a B
abstract machine, object attributes are transformed to variables of the abstract
machine. The type on these variables is expressed in the INVARIANT clause as
a partial function from the set of object identifiers to the type of the attribute:

attn-j € CLASS » TYPE(attn-j).

e The value of variables will be initialised in the INITTALISATION clause with a
set of the object identifier maps to the object’s attribute value:

attry; := {object; — value;; }

e Machines of the composite objects contain not only the variables which are
transformed from the attributes of these objects, but also variables to merge
values of the variables in the machines of component objects. These variables
are typed identically to the one of component objects:

attr; € CLASS - TYPE(attr;)

e We add an extra operation in the OPERATIONS clause of the composite ob-
ject’s abstract machine to merge variables of component object’s machines into
additional variables of composite object’s machines:

mergeData =
PRE
N attri; = value;;
THEN
attry := attryy U attriz U... U attryy, ||
attry := attryy U attras U... U attray, ||

attry, = attry, U attry,e U... U attrg,,

where : attr; (1 = 1..m): additional variables of composite object’s machine,
attry; (i = 1..m,j = 1..n): variables of machines of component objects,
m is the number of attributes of the component objects,
n is the number of component objects of a composite object.

The substitution above allows component object’s variables to be merged be-
cause the type of additional variables of composite object’s machines is the same
as the one of component object’s machines.

e The well-formedness rules of the component class in the metamodel are trans-
formed into invariants of machines of the composite objects.

This is the main procedure which allows us to transform the UML metamodel of class
diagrams, collaboration diagrams and statechart diagrams into B.

5 Transformation of the metamodel of UML class
diagrams into B

Based on the previous procedure of the transformation, we perform a transformation
of the metamodel of UML class diagram into B, illustrated by the printing system
presented in Figure 1 in order to verify UML model elements.

5.1 Transformation of the UML metamodel

First, we consider the transformation of an object of the metaclass Operations of the
metamodel, the createComputer operation, into B. An example of its XMI specifica-
tion generated in UML tool editors is presented as follows:

<UML:Operation xmi.id="xmi.011">
<UML:ModelElement.name> createComputer </UML:ModelElement .name>
<UML:ModelElement.visibility xmi.value="public"/>
<UML:ModelElement.isSpecification xmi.value="false"/>
<UML:BehavioralFeature.isQuery xmi.value="false"/>
<UML:0Operation.isRoot xmi.value="false"/>
<UML:0Operation.isLeaf xmi.value="false"/>
<UML:0Operation.isAbstract xmi.value="false"/>
<UML:Feature.owner>

Here defines the parameters

</UML:Feature.owner>

</UML:0Operation>

The result of the transformation of the UML create Computer operation to a B abstract
machine is given in Figure 3.

MACHINE CreateComputer

SEES Types

VARIABLES
createComputer_name,
create Computer_visibility,

INVARIANT
createComputer—_name € OPERATION + OPERATION_NAME A
createComputer_visibility € OPERATION - VISIBILITYKIND A

INITIALISATION
createComputer_name = {011 — createComputer} ||

createComputer_visibility := {011 — public} ||

END

Figure 3: B abstract machine for the UML create Computer operation

As presented in the procedure of transformation in the Section 4, machines of compos-
ite objects contain not only variables which are transformed from attributes of these
objects, but additional variables to merge values of variables in the machines of com-
ponent objects. Note that, each parameter of the operation createComputer is trans-
formed into a B abstract machine (CreateComputer_HostName, CreateComputer_TPA-
dress, CreateComputer_UserName), the structure of these machines is similar to the
one of the CreateComputer machine presented Figure 3. In the UML metamodel, the
Parameters metaclass is a component of the Operations metaclass. The abstract ma-
chine of the operation createComputer have to contain additional variables to merge
the values of variables in machines of its parameters. The additional part (which
composed of additional variables and the mergeData operation) for the specification
of the CreateComputer abstract machine is presented Figure 4.

Based on the structure of the UML metamodel represented by the XMI structure in
the left part of Figure 5, the general structure of B abstract machines transformed
from UML model elements of the printing system’s class diagram is presented as
follows (see the right part of Figure 5):

MACHINE CreateComputer

USES CreateComputer—_HostName, CreateComputer_IPAdress,
CreateComputer_UserName
/ % The structure of the abstract machine parameters is similar to
the one of the CreateComputer machine in Figure 3 * [
VARIABLES
parameter_name,
parameter_direction,

INVARIANT
parameter_name € PARAMETER -» PARAMETERS_NAME A
parameter—_direction € PARAMETER -+ DIRECTIONKIND A

INITIALISATION
parameter_name = @ ||
parameter_direction = @ ||

OPERATIONS
mergeData =
pre
hostName_name = {P1 — hostName} A
hostName_direction = {P1 — in} A
/ * from CreateComputer_HostName machine * /
ipAdress—name = {P2 — ipAdress} A
hostName_direction = {P2 — in} A
/ * from CreateComputer_IPAdress machine * [
userName_name = {P3 +— userName} A
hostName_direction = {P3 — in} A ..
/ * from CreateComputer_UserName machine * [
then
parameter_name =
hostName_name U ipAdress_name U userName_name ||
parameter_direction =
hostName_direction U ipAdress_direction U userName_direction ||

end
END

Figure 4: Additional part for the CreateComputer abstract machine

The machine of Model uses the machines of objects of the Association class ! (Compute-
r_PrintServer, PrintServer_Printer,...) and machines of objects of the Class class
(Computer, PrintServer, Queue, Printer). The machines of objects of the Association
class (Computer_PrintServer) use the machines of objects of the AssociationEnd class
(Computer_PrintServer_computer, Computer_PrintServer_printserver).

1 As the associations have no name, we give a name composed of the name of the two classes that
are connected by the association.

The machines of objects of Class class (Computer) use the machines of objects of the
Attribute class (Computer_HostName, Computer_IPAdress, Computer_UserName)
and machines of objects of the Operation class (Computer_createComputer, Compute-
r_notifyStatus) (their names are prefixed by the name of the class). The machines of
objects of the Operation class (Computer_CreateComputer) use the machines of ob-
jects of the Parameter class (CreateComputer_HostName, CreateComputer_TPAdress,
CreateComputer_UserName) (their names are prefixed by the name of the operation
to distinguish them with the name of Attribute’s machines).

All machines in the system see the Types machine which defines all the sets of the
system (members of these sets are extracted from the XMI specification of the meta-
model of the UML class diagram):

CLASS ={C1, C2, C3, C4}; [* zmiid = C1,...%/
OPERATION = {011, 012}; /% zmi.id = O11,...% /
VISIBILITYKIND = {public, privated, protected };
DIRECTIONKIND = {in, out, inout}; ...

Remarks. Abstract machines of the objects of the Multiplicity class are combined
with the abstract machines of objects of AssociationEnd class to become one kind
of machine, abstract machines of objects of AssociationEnd class. The attributes of
objects of the Multiplicity class are transformed to variables of abstract machines
of objects of the AssociationEnd class. The goal of this transformation is to merge
data and to work with the well-formedness rules for the verification of the Association
machine.

<Model> >
<DataType> USES
</DataType>
<Class>
<Operation>
— | om || ssodaon |
</Operation>
<Attribute>
</Attribute>
</Class> / /
<Association> ‘ Operation ‘ ‘AwociationEnd ‘
<AssociationEnd>
<Multiplicity>
</Multiplicity>
</AssociationEnd> Y
</Association>
</Model> Parameter

Figure 5: General structure of the UML metamodel of class diagrams and their trans-
formation to B

With the arrangement of the above-mentioned abstract machines’ structure, we can
keep the structure of the machines corresponding to metaclasses in the UML meta-
model. It is clear and simple, furthermore, we can also use the well-formedness rules
such as invariants of abstract machines and exploit the B theorem prover to prove
their own correctness.

10

5.2 Verification of UML model elements

Let’s consider a well-formedness rule of the Core package of the UML metamodel:

Rule WFR1: A1l Parameters should have a unique name
self .parameter -> forAll(pl,p2 | pl.name = p2.name implies pl = p2)

This OCL predicate can be transformed to a B invariant as presented in Figure 6.
This well-formedness rule of the Parameter meta-class is included in the abstract

INVARIANT
V(zz,yy).(zx € PARAMETER_NAME A
yy € PARAMETER_ NAME A zzx = yy
= parameter_name~'(zz) = parameter_name='(yy)

Figure 6: Transformation of the well-formedness rule WFR1 to B

machine of the composite objects (objects of the Operation class). In this case, it is
presented in the abstract machine of the createComputer operation (Figure 4), with
a renaming of the attribute name to parameter_name to have the same notation as
for the variable of this abstract machine.
The PARAMETER and PARAMETER_NAME sets are defined in the Types ma-
chine as follows:

PARAMETER = {P1, P2, P3};

PARAMETER _NAME = {hostName, ipAdress, userName}

One of the proof obligations that the B method proposes in an abstract machine is
of the form I A P = [S]I where

P: precondition of the operation

S: body of the operation

I: invariant of the abstract machine
Applying this proof obligation to the invariant and the mergeData operation of the
CreateComputer abstract machine, the proof obligation in the B prover will be writ-
ten as follows:

(zz € {hostName, ipAdress, userName} A

yy € {hostName, ipAdress, userName} A

r = Yy =

({P1 — hostName, P2 ~ ipAdress, P3 — userName}~'(zz) =

{P1 — hostName, P2 — ipAdress, P3 — userName}~'(yy)))
The result of this predicate is WFR1 = true.

In a similar way, we transform others well-formedness rules of the Core package into
B to verify the correctness of UML model elements of class diagrams.

6 Transformation of the metamodel of UML collab-
oration diagrams into B

The metamodel of UML collaboration diagrams called the Collaboration package is a
sub-package of the Behavioural Elements package. It specifies the concepts needed to

11

express how different elements of a model interact with each other from a structural
view. This package uses constructs defined in the Foundation package of UML as well
as in the Common Behaviour package.

6.1 Transformation of the UML metamodel

Based on the procedure of transformation presented in Section 4, we transform the
metamodel of UML collaboration diagrams into B to verify its elements. Attributes of
each object in the Collaboration package are transformed as variables of the abstract
machine with their type determined as follows:

MACHINE Interaction

SEES Types

USES Messagel, Messagell, Messagel2, Messagel3
VARIABLES

interaction_name, interaction_contest,

message_name, message_interaction, message_sender,
message_activator, message_predecessor, ...

INVARIANT

interaction_name € INTERACTION -+ INTERACTION_NAME A
interaction_contert € INTERACTION -» COLLABORATION A

message_name € MESSAGE + MESSAGE_NAME A
message_interaction € MESSAGE -+ INTERACTION A
message_sender € MESSAGE + CLASSIFIER_ROLE A
message_activator € MESSAGE + MESSAGES A
message_predecessor € MESSAGE < MESSAGE A ...

INITIALISATION
interaction_name := { intel — interactionl } ||
interaction_context = { intel — colll } ||
message_name = @ || message_interaction := & || message_sender = & ||
message_activator := & || message_predecessor = &...
OPERATIONS
mergeData =
pre
messagel_predecessor = & A messagell_predecessor = & A
messagel2_predecessor = {messl2 — messll} A
messagel3_predecessor = {messl3 — messll, messl3 — mess12} A
then
message_predecessor := messagel_predecessor U

messagell_predecessor U messagel2_predecessor U messagel3_predecessor ||

end

END

Figure 7: Interaction B abstract machine

e The type of variables transformed from attributes of objects which contain only
one value is defined as a partial function from the set of object identifiers to the
type of their values: attr; € CLASS + TYPE(attr;).

12

e The type of variables transformed from attributes of objects which possibly
contain a set of elements is defined as a relation from the set of object identifiers
to the type of their values: attr; € CLASS < TYPE(attr;).

To illustrate the transformation of the metamodel of the UML collaboration diagram
of the printing system (presented Figure 2) to a B specification, we introduce B
abstract machines of objects of the Message and Interaction classes.

Four instances are identified for the Message meta-class: 1, 1.1, 1.2, 1.3. Based on the
procedure of transformation presented in Section 4, each instance of the Message class
is transformed into a B abstract machine, named Messagel, Messagell, Messagel2,
Messagel3. The Interaction meta-class of this case study have only one object. This
object is transformed into a B abstract machine presented in Figure 7. The Interaction
abstract machine does not only contain variables transformed from the attributes
of the Interaction object (prefixed with interaction), it also contains variables to
merge the data of the variables in the abstract machines of objects of the Message
class (prefixed with message). The merging of variables is realised by the operation
mergeData of the Interaction machine. The purpose of this merging, as presented
above, is to verify UML model elements of the collaboration diagram.

The machines of component objects in the UML metamodel are used by the machine
of the composite objects (in the XMI specification, component classes are expressed
by siblings, composite classes are expressed by parent). The general structure of
B machines transformed from the metamodel of a UML collaboration diagram is
presented Figure 8.

<Model> m USES
<Collaboration> .

<ClassifierRole>
</ClassifierRole>

<AssociationRole> K -
<AssociationEndRole> ‘ Collaboration ‘ ‘ CallAction ‘

</AssociationEndRole>
</AssociationRole>
<Interaction>
<Message> ‘ Clas'fierRoIe‘ ‘AssociationRole ‘ ‘ Interaction ‘
</Message>
</Interaction>
</Collaboration>
<CallAction>
</CallAction>
</Model>

‘AssociationEndRole‘ ‘ Message ‘

Figure 8: General structure of the UML metamodel of collaboration diagrams and
their transformation to B

The left hand part of the figure gives the XMI summary description of a collaboration
diagram on UML models. The right hand part is the structure of corresponding
B abstract machines. The machine of object of the Model class uses (USES) the
machines of objects of the Collaboration class and the CallAction class; the machines
of objects of the Collaboration class uses the machines of objects of the ClassifierRole
class, the AssociationRole class and the Interaction class and so on.

All the machines in the system see (SEES) the Types machine which defines all sets
of the system. In our case study, these sets are:

13

MESSAGE = {messl, mess1l, mess12, mess13};

MESSAGE_NAME = {print, restore, notifyStatus};

CLASSIFIER_ROLE = {class1, class2, class3, class4};
CLASSIFIER_ROLE_NAME = {Computer, PrintServer, Queue, Printer};

6.2 Verification of UML model elements

Let’s consider the transformation of well-formedness rules of the Messages class and
the verification of UML model elements of the Collaboration package which must
satisfy these rules.

Rule WFR2. The predecessors and the activator must be contained in
the same Interaction.
self.predecessor -> forAll(p | p.interaction = self.interaction)
and
self.activator -> forAll(a | a.interaction = self.interaction)

This OCL predicate can be transformed to the B invariant as presented Figure 9.

INVARIANT

Y pp.(pp € MESSAGE A message_predecessor[{pp}] # @
= message_interaction[message_predecessor[{pp}]] =
message_interaction[{pp}]) A
V aa.(aa € MESSAGE A message_activator[{aa}] # @
= message_interaction|message_interaction[{aa}]] =
message_interaction[{aa}]

Figure 9: The B invariant transformed from the WFR2 rule

Applying this rule on the case study of the printing system and taking into account
the values of the variables, we have:

MESSAGE = {mess1, mess11, mess12, mess13}.

The values of message_predecessor, message_activator and message_interaction sets
established by the mergeData operation of the Interaction machine are:
message_predecessor = {mess12 — messll, mess13 — messll, messl3 — mess12};
message_activator = {messll — messl, messl2 — messl, messl3 — messl};
message_interaction =

{messl — intel, messll — intel, messl2 — intel, messl3 +— intel}

Let’s analyse the proof obligation (I A P = [S]I) of the B abstract machine for
verifying the preservation of the invariant I above, where P is the precondition of the
mergeData operation and S is its body.

WFR2a =V pp.(pp € MESSAGE A message_predecessor[{pp}] # < =
message_interaction[message_predecessor[{pp}]] = message_interaction[{pp}])

14

Let’s examine each value of pp:

if pp = mess1 = message_predecessor[{messl}] = &;
if pp = mess1l = message_predecessor[{mess11}] = &;
In these two cases, the precondition of WFR2a is not satisfied.

if pp = mess12 = message_predecessor[{mess12}] = {mess11}
= message_interaction[{mess11}] = {intel}
So message_interaction[message_predecessor[{mess1}]] = {intell}

On the other hand, message_interaction[{mess12}] = {intel}
= WFR2a = true

if pp = mess13 = message_predecessor[{mess13}] = {mess1l, mess12}
Note that: ran(u < r) = r[u] with « C s Ar € s & t (See The B-Book [1], p.102)

= message_interaction[{mess1l, mess12}]

= ran({messll, mess12} < message_interaction)

= ran({messll — intel, mess12 — intel}) = {intel}
and message_interaction[{mess13}] = {intel} = WFR2a = true.
We deduce that WFR2a = true for each value of pp.

WFR2b =V aa.(aa € MESSAGE A message_activator[{aa}] # @
= message_interaction[message_activator[{aa}]] = message_interaction[{aa}])

if aa = messl = message_activator[{messl}] = &
if aa = messll or aa = messl2 or aa = messl3

= message_activator[{aa}] = {messl}

= message_interaction[{mess1}] = {intel}
and message_interaction[{aa}] = {intel} = WFR2b = true

As a consequence, we have: WFR2 = WFR2a AN WFR2b = true.

Rule WFR3. The predecessors must have the same activator
as the Message:
self.allPredecessors -> forAll(p | p.activator = self.activator)

This OCL predicate can be transformed to the B invariant as presented Figure 10.

INVARIANT

Vzz.(zx € MESSAGE A message_predecessor{{zz}] # @ =
message_activator[message_predecessor[{zz}]] = message_activator[{zz}])

Figure 10: The B invariant transformed from the WFR3 rule

if 2z = mess1 = message_predecessor[{messl}] = &;

if xz = messll = message_predecessor[{mess1l}] = &;

if xz = mess12 = message_predecessor[{mess12}] = {mess1l}
= message_activator[{mess11}] = {messl}

15

and message_activator[{mess12}] = {mess1}
= WFR3 = true

if 2z = mess13 = message_predecessor[{mess13}] = {mess1l, mess12}
= message_activator[{mess11, mess12}]
= ran({mess1l, mess12} < message_activator)
= ran({messll — messl, mess12 — messl}) = {messl}
and message_activator[{mess13}] = {mess1}
= WFR3 = true.
The result of this invariant is WFR3 = true

Rule WFR4. A Message cannot be the predecessor of itself.
not self.allPredecessor -> includes(self)

This OCL predicate can be transformed to the B invariant as presented Figure 11.

INVARIANT

Vax.(zx € MESSAGE = zx ¢ message_predecessor[{zx}])

Figure 11: The B invariant transformed from the WFR4 rule

if zz = mess1 = message_predecessor[{messl}] = @;
if xz = messll = message_predecessor[{mess1l}] = @&;
if xz = mess12 = message_predecessor[{mess12}]
= ran{mess12 — messll}
= {messll}, (messl2 ¢ {messll});
if 2z = mess13 = message_predecessor[{mess13}]
= ran{messl3 — messll, messl3 — messl2}
= {messll, mess12}, (messl3 & {messll, mess12});
As a result, WFR4 = true.

The verification of the well-formedness rules can be executed by the support tool
AtelierB [17], which can both automatically and interactively demonstrate theorems.
When using the AtelierB tool to prove the Interaction abstract machine of the printing
system, 15 proof obligations are proved automatically and 3 proof obligations are
proved interactively.

7 'Transformation of the metamodel of UML state-
chart diagrams into B

The metamodel of statechart diagrams called the State Machine package, it is a sub-
package of the Behavioural Elements package. It specifies a set of concepts that can
be used for modelling behaviour through finite state-transition systems. It is defined
as an elaboration of the Foundation package. The State Machine package depends on
concepts defined in the Common Behaviour package, enabling integration with other
sub-packages in Behavioural Elements. The procedure of transformation of the State
Machine package into B is similar to the one of the Collaboration package. Based on
the structure of the State Machine package, the structure of B abstract machines is
composed as presented in Figure 12.

16

<Class>
<StateMachine>

<Transition>
<Guard>
</Guard> StateMachine
<CallAction>
</CallAction>

</Transition>

<CompositeSate> Transition CompositeState
<State>
</State>

</CompositeState>

</StateMachine> ‘Guard ‘ ‘CallAction‘ ‘ State
</Class>

Figure 12: General structure of the UML metamodel of statechart diagrams and their
transformation to B

The machines of objects of the Class class use the machines of objects of the StateMa-
chine class; the machines of objects of the StateMachine class use machines of objects
of the Transition class and machines of objects of the CompositeState class and so
on.

Because of the similarity in the verification with well-formedness rules, we point out
only the transformation of UML metamodel of state-chart diagrams and do not illus-
trate its verification in the case study.

8 Conclusion

We have presented a technique to transform the metamodel of UML class diagrams,
collaboration diagrams, statechart diagrams and their well-formedness rules into B
formal specifications. This transformation aims to verify the UML model elements
which must satisfy the well-formedness rules of UML semantics.

By exploiting the advantages of formal approaches for the verification, our approach
owns powerful provers like AtelierB. In addition, OCL used to specify well-formedness
rules of UML semantics and B notations are based on the first order predicates logic
so their reciprocal transformation is easy. Furthermore, B is based on the set the-
ory, the relation between classes and their objects in UML is similar to the relation
between sets and their elements. Operations on attributes of classes correspond to
operations on binary relation constructs in the set theory. The proof in the B provers
is automatically and easily performed.

A prototype ArgoUML+B [12] has been developed from ArgoUML 2, a free available
platform for editing UML diagrams. This prototype automatically transforms UML
diagrams (class, state-chart, collaboration) into B. Furthermore, the internal repre-
sentation of an UML model is completely generated from the specification, that means
that values of objects in the UML metamodel are saved as XMI code. We continue to
develop this prototype to automatically generate B abstract machines from the XMI
support.

Inspired from this approach, we plan to build a formal approach to specify and verify
object-based systems using the B method.

2http://argouml.tigris.org

17

References

[1]

[2]
[3]
[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. R. Abrial. The B-Book, Assigning Programs to Meanings. Cambridge Univer-
sity Press, 1996.

Abstract State Machine. Available at http://www.eecs.umich.edu/gasm.
B-Core(UK) Ltd. B-Toolkit User’s Manual. Oxford (UK), 1996. Release 3.2.

G. Booch, J. Rumbaugh, and 1. Jacopson. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

A. Cavarra, E. Riccobene, and P. Scandurra. A framework to simulate UML
models: moving from a semi-formal to a formal environment. In Proceedings of
the ACM Symposium in Applied Computing, pages 1519-1523. ACM press, 2004.

Clearsy. Bjfree. Available at http://www.bjfree.com.

P. Facon, R. Laleau, and H.P. Nguyen. Mapping Object Diagram into B. In
Methods Integration Workshop, Leeds, March 25-26 1996.

H. LeDang and J. Souquieres. Contributions for Modelling UML State-Charts
in B. In Third International Conference on Integrated Formal Methods, LNCS.
Springer Verlag, May 2002.

M.G. Hinchey and J. P. Bowen. Applications of Formal Methods. Prentice Hall,
1995.

S.K Kim and D. Carrington. A Formal Mapping between UML Models and
Object-Z Specifications. In ZB 2000: Formal Specification and Development in
Z and B, volume 1878 of LNCS, pages 2-21. Springer Verlag, 2000.

R. Laleau and F. Polack. Metamodels for Static Conceptual Modelling of Infor-
mation System. In Workshop on Defining Precise Semantics of UML, Sophia
Antipolis, France, ECOOP 2000.

H. Ledang, J. Souquiéres, and S. Charles. ArgoUML+B: Un outil de transforma-
tion systématique de spécifications UML vers B. In Approaches Formelles dans
I’Assistance au Développement de Logiciels (AFADL’2003), 2003.

E. Meyer and J. Souquiéres. A systematic approach to transform OMT diagrams
to a B specification. In Proceedings of the Formal Method Conference, number
1708 in LNCS, pages 875-895. Spring Verlag, 1999.

OMG. Unified Modeling Language. OMG hitp
/[www.omg.org/docs [formal /03—03—01.pdf , Version 1.5 March 2003.

M. Richters. A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, Bremen University, 2002.

S. Schneider. The B Method: An Introduction. PALGRAVE, ISBN 0-333-79284-
X, 2001.

Steria. Obligations de preuve: Manuel de référence. Steria - Technologies de
I'information, version 3.0. Tool is available at http://wwuw.atelierb.societe.com.

18

[18] N.T. Truong and J. Souquiéres. An approach for the verification of UML models
using B. In 11th International Conference of Engineering of Computer Based
Systems (ECBS), pages 195-202. IEEE Computer Society press, 2004.

[19] N.T. Truong and J. Souquieres. Verification of behavioral elements of UML mod-
els using B. In 20th Annual ACM Symposium on Applied Computing (SAC’05),
pages 1546-1552. ACM press, 2005.

[20] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, ISBN 0-201-37940-6, 1999.

19

