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Phononic band-gap guidance of acoustic modes in photonic crystal fibers
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The elastic modes guided along the axis of an optical fiber are obtained for an arbitrary finite cross section
using waveguide finite element analysis. The band structure of acoustic phonons is obtained from this full-
vector computation. The analysis is applied to the case of a photonic crystal fiber possessing a honeycomb
lattice. It is shown that this fiber exhibits band gaps for elastic modes propagating along the longitudinal fiber
axis. For frequencies within a band gap, the external boundary of the fiber becomes a defect of the phononic
crystal that supports the propagation of guided elastic modes. Such boundary modes are very sensitive to the
boundary conditions. The further introduction of a defect within the two-dimensional phononic crystal leads to
the formation of highly confined elastic waveguide modes that copropagate in the same core volume as the
guided optical mode. We consider the application of these properties to the suppression of stimulated Brillouin
scattering and to enhanced collinear acousto-optical interactions. In particular, we obtain the optimum elastic
modal shape that maximizes the acousto-optical scattering coefficient for given optical modes.
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I. INTRODUCTION phase of an optical beafmhowever, it cannot give rise to

The study of wave propagation in microstructured anq_?ﬁtical mode comIJpIing_éhroqgh afCOUStO'OptiCE.iI (ili(fj'f_:c?ctiqn.
nanostructured materials is a subject of intense current rel"€ More general consideration of acousto-optical difiraction

search. Much attention has focused on electromagnetic wa\{gen requires us to increase the dimensionality of the prob-

propagation in photonic crystaidand photonic crystal fibers €M by performing a global analysis of phononic-band-gap
(PCP,3 and in parallel on acoustic or elastic wave interac-M0des. This is the purpose of the present paper, which con-

tions in phononic crystat§®. From a fundamental viewpoint, siders the full three-dimensional problem. More precisely,

both phononic and photonic crystals possess remarkab eég(r:]l;? dzr;et(?z Pﬁ('):n((:)i?s,clrn St,[];i ﬁgnewrof showing it can also
properties such as the existence of absolute band gaps tha?RecentI the gut—of- Ianeyacoustic.band aps in a two-
forbid the propagation of waves in any direction, which ha:sdi Y, P 9ap

readv led t ber of i tant licati in both th mensional solid-solid phononic crystal were investigated
aready led to a number of important applications in bo y a plane-wave expansidPWE) approach® The appear-
photonics and acoustics fields. In particular, phononic an

: nce of elastic modes guided along a defect of the two-
photonic crystals have been demonstrated to allow for veryjimensional solid-solid phononic crystal was further

efficient mirrors, cavities and waveguides, acting on a wavegemonstratedt However, the PWE methé8 followed in
length scale. these works can not be applied directly in the case of a finite
In most previous works, the phononic and photonic propPCF cross section, since it assumes either an infinite struc-
erties of periodically structured materials have been considture or periodic boundary conditions. Furthermore, the PWE
ered independently, although the idea emerges that the intemethod applies to a solid-solid composition, whereas a PCF
action of photons and phonons within band-gap material$s a periodic arrangement of micron-size cylindrical parallel
will lead to novel or enhanced effe&® beyond traditional hollow holes inside a silica matrix. We make use in this work
plane-wave acousto-optical interactions. However, the comef a particular formulation of the finite element method
bination of phononic and photonic crystal structures has bee(FEM), the waveguide FEME that is suited to the descrip-
addressed in the frame of a restricted dimensionality: ention of the propagation of elastic modes guided along a cy-
hanced photon-phonon interactions within one-dimensiondindrical fiber. With this technique, the waveguide modes can
acoustic band gaps have been consid&tead, for the case be obtained by imposing a longitudinal wave vector and
of PCFs, phononic band gaps have been demonstrated insalving for the discrete eigenfrequencies. By this procedure
preform! The latter situation, analyzed by Raylefghnd the band structure for acoustic modes is obtained.
finite-difference time domafh (FDTD) methods, was re- For illustration purposes we consider the case of a PCF
stricted to two-dimensional in-plane band gdps., for a  with a honeycomb lattice, forming a two-dimensional
zero longitudinal acoustic wavevectdhat give rise to static phononic crystal. We observe the existence of out-of-plane
elastic modes confined across the transverse fiber cross seattononic band gaps in the PCF and exploit this property for
tion. The acousto-optical interaction in the case of static elasstrongly confining elastic waveguide modes that propagate
tic modes can be employed to modulate dynamically thealong the longitudinal fiber axis. We further verify that the
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vertices and six nodes, that is one node at each vertex plus
one node at the center of each edge. The mesh of Fig. 1
includes 1856 finite elements and a total of 4441 nodes. The
unknowns, or degrees of freeda@OF), are the three dis-
placements at each node which amounts to a total of 13323
DOF. Interpolating polynomials of degree 2 in the intrinsic
coordinates of the triangle are used.

For isotropic materials and a cylindrical geometry, the
transverse componentg and u, and the longitudinal com-
ponentu, of the displacements are in phase quadrature. In
order to guarantee a unique solution to the variational prob-
lem associated to the finite element method, we use the real-
valued formulation within each finite element

) = T.n _

FIG. 1. Example of a finite element mesh of a honeycomb pho- U(xy,Z:) =p(xy)" - Ox codwt k2, @
toni tal fiber. N
onic crystal Tiber. uy(x,y,z;t) — p(X,y)T Oy COia)t — kZ), (2)
PCF supports single-mode optical guidance, though by w0y Z:t) = pooy)T - G, sin(et — k2), 3)

modified total internal reflection rather than by a photonic
crystal effect. This yields insights into the physics and propwhereﬂz(ﬂx,ﬂy,OZ)T is the vector of the B displacements at
erties of microstructures and nanostructures supportinghe n nodes of the finite element and tpeis a vector ofn
phononic-band-gap guidance of elastic modes while simultat agrange interpolation polynomialg1=6 in all computa-
neously presenting single-mode optical guidance in the samgons in this worl. The dynamics of elastic waves are ob-
PCF core region. Purposely, we then discuss particular deained as the solution of a variational problem involving the
sign examples that could lead to the hypersonic band-gakinetic and strain energies. The kinetic energy in a one-
inhibition of stimulated Brillouin scattering and to enhancedwavelength-long finite element with sectionis
acousto-optical interactions by energy confinement. Design 2mlk

rulgs for optimizing or ponversely minimizing the elasto- K:wzf dzf dxdy - p - u, (4)
optical scattering coefficient are drawn. 0 -

where p is the mass density and the displacement vector
u:(ux,uy,uZ)T. Inserting Egs(1)—(3) and integrating along
A PCF is typically based on a periodic arrangement ofyields

Il. ELASTIC WAVEGUIDE MODES

micron-size cylindrical parallel holes inside a silica matrix, 2
with a central defect acting as a core. Light is guided along K= ﬂ(aT ‘M, - 0), (5)
the hollow or solid core either by a photonic-band-gap 2k

effect* or by modified total internal reflectioft, respec-  \iith the elementary mass matrd,, and the polynomial
tively. As regards the propagation of elastic waves, the elasy,atrix P defined by 7

tic energy vanishes within the hollow cylinders and is thus

constrained to remain within the silica. The boundaries of the M = | dxdvP . o.P ©6)
hollow cylinders can be considered as free from tractions and o " et
act as very efficient scatterers for elastic waves of any polar-
ization. Silica is an isotropic material for the propagation ofand
elastic waves. pT 0 0
Our analysis of the elastic modes is based on the wave- T
guide finite element metha@EM) which combines a plane- P={0 p O )
wave-like ansatz for modes along the assumed infinite propa- 0 0 p'

gation direction with a finite element approach that is

advantageous in allowing the modeling of arbitrary cross'\/lamce.S M, and P have dlmens_lonsrﬁx_a’_n and 3x3n, .
sections® With this technique, the two-dimensional wave- respectively. Note that the considered finite element is im-

guide section in the plané,y) is meshed using finite ele- plicitly three dimensional, although only its two-dimensional

ments, and the displacements are represented by piecewi%é()a ?(ch:t?dcl)?\r:ar\]/\?;\?;;ﬂ t;ﬁ Sgﬁgillf;;j; Ittk?elesrt]rgatm aelggrg mﬁthin
polynomials within the elements. Along the propagation di- y gth. Y 9y

rectionz (aligned with the PCF axjsa sinusoidal variation of the finite element is
the displacements is imposed with a given wave vektdio 2mlk

. : - U= dz| dxdys'-c-S (8)
account for propagation along tlzeaxis, a harmonic depen- '
dence exfj(wt—k2)] is considered. Figure 1 displays an ex- 0 7
ample of a mesh used in this work to represent the croswhere the strain tens@ and the elastic tensarare written
section of a PCF. The finite elements are triangles with threén contractedor Voigt) notation, i.e.c is a 6xX 6 matrix and
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S is a six-component vector. Inserting E¢$)—(3), integrat-
ing alongz and making use of sine and cosine orthogonality,
the strain energy can be expressed as

1
U=— ar- Ky G ) 9 i
o ) (©) g
€
with the elementary stiffness matrix %
K,,=Jdxd)(ArT-c-Ar+AiT-c-Ai), (10)
where
p, 0 0
T
0 Py 0
0 0 kp'
A=l - oo | (11) ~
Py Py ﬁ
0O 0 O 3
0 0 O g
0 0 0
0 0 0
A= 0 0 0 17
i — O O 0 ’ ( )
0 _ ka pT FIG. 2. Band structures for elastic waveguide modes of honey-
T Ty comb silica photonic crystal fibefa) without and(b) with a central
-kp 0 X defect. The two-dimensional meshes of the cross-sections are

and the vectors pI(=(é’p1/&X, e Pl %) and shown as insets. The longitudinal line in silica is showrtan

pE:(&pllaY’ +++,0Pn/ y). The matrix K, has dimensions ey comb structures both) without and(b) with a central
3nx3n while matricesA, andA; have dimensions 8 3n. solid silica defect. For this structure having a hole pitch
As is usual with elastic FEM problems, the solution of the(center-to-center distancef a, the PCF diameter is then
variatior_1a| problem_ with no external applied forces is givenapproximately 18. Band structures are obtained by solving
by the linear equation for the generalized eigenvalue problem of Etp) as a func-
(K(K) - ®M)0 =0, (13) tion of the angitudipal wave vect(_k. It can be remarked
that the static elastic modes confined across the transverse
where the stiffness matriK(k) and the mass matrikl are  fiber cross section, considered, e.g., in Refs. 7 and 9, are
obtained by assembling the elementary stiffness and masshtained fork=0. Using proper finite elements, both the
matrices respectively by standard proceddfes(k) is actu-  stiffness and mass matrices are positive definite, which en-
ally a second order matrix polynomial iy as can be seen sures the positivity of the eigenvalues. We use a Cholesky
from Egs. (10<12), while M is k independent. Equation factorization of the stiffness matrix to transform the general-
(13) is in the form of a generalized eigenvalue problem forized eigenvalue problem into a standard one, followed by a
w? if kis considered a parameter. The corresponding eigeri-anczés algorithm to obtain the lowest eigenvalues. The
modes are the elastic waveguide modes of the fiber, or alteband structure in Fig.(2) for elastic modes without a central
natively acoustic phonons. It is worth noting that for all defect exhibits high density except in several regions where
eigenmodes, the kinetic and strain energies are equal. In faohly isolated branches exist. An examination of the corre-
they each amount to one half of the total mode energy. As 8ponding eigenvectors reveals that in the dense regions the
test for the waveguide FEM, we first verified that we wereelastic modes are similar to those of a solid cylinder. In par-
able to obtain the elastic modes guided by a plain cylindeticular, their energy density is spread in the whole fiber. In
with a circular cross section, for which analytical solutionscontrast, isolated branches correspond to modes that are con-
are known in connection with the Pochhammer-Chree dispeffined to the external boundary of the PCF, which is clamped
sion relations.’ in the calculation. When the external boundary is considered
We have then used the waveguide FEM technique to anastress-free instead, modes in the dense regions are only very
lyze the phononic band-gap characteristics of the silica-aislightly affected, but isolated branches are displaced. We in-
honeycomb structures shown in the meshed cross section &spret the isolated branches as corresponding to surface
insets in Fig. 2. Note that here, as elsewhere in this papemodes that are trapped along the external boundary of the
open circles are associated with holes. We consider in Fig. PCF when the frequency falls within a phononic band gap.
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FIG. 4. Energy densityshown in gray-sca)eof guided elastic
fodes propagating in the core of the photonic crystal fiber of Fig.
2(b) by a phononic band-gap effect for the points lab&®dd, (b)

E, and(c) F in the band structure of Fig.(8).

FIG. 3. Energy densityshown in gray-sca)eof guided elastic
modes propagating along the external boundary of the photoni
crystal fiber of Fig. 2a) for the points labeleda) A and(b) B in the
band structure of Fig.(a).

Indeed, in this case the waves cannot penetrate deeply tI(,:émditions _for the PCF with a central core defect depic'.[ed in
inner honeycomb structure and the external boundary acts 449- 2b). Figure 3a) and §b) show the fundamental optical
a defect of the phononic crystal that supports highly confined £ @nd TM modes at 1.5am, for a hole diameter and pitch
modes. Figure 3 displays the energy distribution of severa®’ 1.01xm and 1.13um, respectively. With such dimen-
such phononic crystal boundary modes. sions, the freque_ncy of thg acoustic .wavegu@e mode of Fig.
Considering now the phononic band-gap properties of thé(b), corresponding to pointE) in Fig. 2b), is 1.3 GHz.
structure shown in Fig.(), which is identical to the perfect Hence, from Figs. 4 and 5, we anticipate that guided acoustic
crystal structure in Fig. @) except for an additional central Modes within such an out-of-plane phononic band-gap struc-
silica defect, we expect confined elastic modes to appedpre Will enable enhanced collinear acousto-optical interac-
within the bandgaps. A comparison of the band structures ofons. presenting both a significantly increased interaction
Figs. 2a) and 2b) reveals that the densely populated model€ngth compared to in-plane acousto-optl_c_al interactions
regions, as well as the isolated branches corresponding @10ss the PCF cross secticand the possibility of coher-
modes confined between the external boundary and th@"tly coupling and transferring energy between several opti-
honeycomb-structured interior, are very similar, indicatingc@ modes.

insensitivity of these modes to the presence of the core de- Clearly, in the usual case of plane-wave acousto-optical
fect. However, it is significant that additional isolated interaction in a bulk material, the acoustic or elastic waves

branches appear within the bandgaps in Fifh)2and an are generated by an extended plane transducer and it is dif-

examination of modes along these particular branches rdicult to maich the optical and acoustic modal shapes. The

veals that they are confined and trapped within the silicgrossibility of copropagating optical and elastic energy along

defect. Figure 4 illustrates the energy distribution of severafh€ same fiber core with tight confinement is then intuitively

of these core modes. Their waveguiding clearly relies on th@Ppealing in view of enhancing elasto-optical interactions.

out-of-plane elastic band-gap properties of the PCF. It is als§©r definiteness, we consider the elasto-optical diffraction

significant that some of these core modes can exhibit surprigoefficient to be proportional to

ing dispersion relations. For instance, the mode depicted in

Fig. 4(a) [point D in Fig. 2Ab)] has a zero group velocity for K:f dxdyEVE{? i S, (14)

some value of th& wave vector. o

whereE®Y andE@ are the(real-valued electric field vectors

of the incident and the scattered optical modes, respectively,
Beam propagation methd@PM) simulations were used Sis the strain tensor associated to the elastic mode paad

to check that optical core guidance is possible under realistithe elasto-optical tensor. In this expression, and from this

I11. ELASTO-OPTICAL INTERACTIONS

o

4

2

FIG. 5. Optical(a) TE and(b)
TM mode simulations in the same
photonic crystal fiber as in Fig. 4.

-2

Vertical direction (um)
0

6 4 2 0 2 4 6 -
Horizontal direction (m) Horizontal direction (jLm)
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...... (a)
02020%¢%
(5

FIG. 6. (a) Photonic crystal fiber cross section
showing a combined microstructure and nano-
structure designed for simultaneous core optical
guidance and the inhibition of stimulated-
Brillouin-scattering phonon propagatiotb) De-
tail of the core region(c) and (d) Numerical
simulations of the fundamental TE and TM opti-
cal modes at 1.5nm, respectively.

Vertical direction (um)

0 1 2 3 4 5

5 4 3 2 a9 0 1 2 3 4 5 5 4 3 2 -
Horizontal direction (um) Horizontal direction (um)

point on, we use full tensorial notation and the repeated in- As another possible application of elasto-optical interac-
dex summation convention; indiceg ,k,I=1,2,3. We fur- tion in a PCF, we suggest that the design of a proper nano-
ther rewrite the strain energy of E() as structuration of the fiber could lead to the inhibition of
) stimulated Brillouin scatteringSBS), or at least to an in-
T crease in the SBS threshold, by engineering a phononic band
U= Tj dxdy$§Cij S (15 gap such that the phonons inv%lve% in SB% arF()a not allowed
7 to propagate any more. This is, for instance, of much practi-
and notice that the elastic energy is twice this quantity. Wecal significance around the technologically important wave-
wish to identify the elastic modal shape that will maximize length range around 1550 nm as SBS is highly detrimental
for given optical modes and a fixed elastic energy, for in-for fiber communications system$. o _
stance unity. This can be accomplished by using the SBS is a three-vyave nonlinear interaction in which an
Lagrange multiplier method. Introducing the Lagrange mul-intense, incident optical pump wave of frequengyis back-
tiplier £ we look for an extremum of the functionat &4, scattered into a downshifted Stokes wave of frequency

considered a function d&, and then identify¢ by the con-  @s=@p~ through the coherent generation of an acoustic
) ohonon at frequency» via material electrostrictiof? The

dition Z/=1. The result is that the elastic stress tensor assd? . S
ciated with the elastic modd;; =iy S must be scattereq acoustic phonons modula;e the refract]ve index of
the medium, acting as a Bragg grating propagating forward
T, = Apjq EVE®, (16)  at the longitudinal acoustic velocity, so that the reflected
optical mode is downshifted through the Doppler effect. The
whereA is some proportionality constant. It might be diffi- longitudinal wave vector of the SBS phonon is given by the
cult in practice to achieve an elastic modal shape given exphase matching conditiok=k,—ks, wherek, andk; are the
actly by the optimal shape of Eq16). However, even a optical pump and Stokes wave vectors, andvk defines the
partial matching of optical and elastic modes will clearly SBS phonon dispersion relation. In silica=5970 m/s,
result in an improved elasto-optical diffraction coefficient. which is much smaller than the speed of light, so that the
Among the three elastic core modes shown in Fig. 4, theacoustic wave vector and the SBS hypersound frequency are
mode labeledE) has the largest elasto-optical diffraction very well approximated in single-mode fibers by 2k, and
coefficient in combination with the TE or TM optical modes then w=2nvw,/c, wheren is the effective index of the opti-
displayed in Fig. 5. By controlling the anisotropy of the PCF,cal mode. Using typical parameters for telecommunication
e.g., through the anisotropic distribution of holes, anisotropidibers at 1.55um, the acoustic wavelength and frequency are
acousto-optical interaction between optical modes of differrespectively 543 nm and 11 GHz. In general, optically guid-
ent polarization should also be possible. Such an interactioimg high air-fill fraction PCFs will be acoustically multimode
may, for instance, find applications in ultrashort laser pulsdor such small acoustic wavelengths, but if a central addi-
shaping, as an alternative to bulk acousto-optical programtional nanostructure is added in the PCF core region to open
mable filters'® an out-of-plane phononic band gap for the phonon couple
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(w,k), the coherent amplification of SBS phonons will be overall transmission performance, the proposed nanostructu-
inhibited at these frequencies. ration of a PCF is totally passive. However, a precise predic-
To illustrate this more explicitly, the straight line in Fig. tion of the increase in the SBS threshold that can be achieved
2(a) passing through the origin shows the SBS phonon disusing such a nanostructured core requires a more complete
persion relation. Point C in Fig. (8 corresponds to model of SBS than used in this work. In particular, the effect
wal(2m)=1911 m/s andka/ (27)=0.32. Although it appears of electrostriction on the coupling between phonons and pho-
from the figure that the nanostructure opens up only a partiabns, considered as an elementary coupling mechanism for
out-of-plane band gap, the band-gap width is in fact signifi-sBS, should be considered. However, electrostriction will
cantly larger than the SBS linewidth. In particular, we con-paye |ittle or no effect on photonic and phononic spectra
sider the mixed microstructure-nanostructure PCF structurgyand diagramsas presented in the present work, and these

in Figs. Ga) and @b). Here, the hole diameter and pitch are ¢5 he ysed as the basis of a coupled-mode theory of SBS.
2.59 and 2.76um, respectively, for the exterior microstruc-

ture (typical solid core PCF dimensionsand 145 and
207 nm, respectively, for the internal honeycomb nanostruc-
ture (technologically feasible siz&s The exterior PCF mi- V- CONCLUSION
crostructure is designed such that highly confined optical In summary, we have used a waveguide finite element
guidance in the core is obtained. The nanostructure dimermethod to obtain the elastic modes guided by a photonic
sions in the core are chosen such that SBS phonons fatirystal fiber consisting of microscopic or nanoscopic air
within a phononic band gap. Optical guidance in such &holes in silica. The method yields modes of any polarization
structure was verified using standard beam propagatioand applies for arbitrary cross sections. We have demon-
method vector simulations, and Figgcband 6d) show the strated that out-of-plane phononic band gaps exist in a pho-
guided mode solutions for the T@orizonta) and TM (ver-  tonic crystal fiber with a honeycomb lattice, raising the pos-
tical) electric field components. Efficient optical guidance atsibility of guiding elastic modes confined along the external
1.55um is obtained in the presence of the phononic nanoboundary of the PCF as well as inside a defect of the
structure. Calculation of the associated effective indicephononic crystal. Based on these features, the hybrid guid-
(n=1.2046 andch=1.1557, respectivejyallows us to verify — ance of acoustic and optical guided modes has been demon-
that the phononic band-gap is opened about a mean SBSrated. These observations yield insights into the possibility
frequency of 9.3 GHz for both polarizations. of enhancing acousto-optical interactions as well as inhibit-
We note that, contrary to current modulation techniquesng phonons induced by the stimulated Brillouin scattering
used to suppress SBS in optical fibers that often impair theffect.
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