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Geometric Eddington Factor for radiative
transfer problems

J. Cartier* A. Munnier'

Abstract. In this paper, a geometric closure method for radiative transfer equations
has been developed and investigated using particular geometric configurations. Then, we
propose a new formulation of the Eddington factor (and the related flux limiter) adapted
to radiative transfer calculations, whereas classical Eddington’s approximation cannot
be applied. Moreover, a numerical scheme and numerical results for the new flux limiter
are presented in two dimensions configurations.
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1. Introduction

Inertial Confinment Fusion (ICF) is a way to achieve thermonuclear fusion in
a laboratory: it consists in imploding a small target of hydrogen so that high
temperature and high density lead to the burn of a large fraction of fuel. The
more efficient way to obtain a quasi-isotropic implosion is to use the radiation flux
created by conversion of Laser energy into X-ray in the wall of an Hohlraum (see
figure 1).
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Figure 1: Hohlraum cavity
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Radiative transfer equations describe the transport of X-ray energy in the
Hohlraum, neglecting hydrodynamic motion it writes as:

1 I
S+ G-Vl +0,] = —0,8uT), (1.1)
c 47

where I(z,(, v, t) is the radiative intensity (¢! takes its values in the unit sphere S2
and the frequency v is strictly positive), ¢ is the speed of light and o, is the opacity.
The intensity I (:c,ﬁ,l/, t) is related to the distribution function of a photon gas
that is of a population of particles travelling in straight lines at the speed of light
¢. The source function S(v,T) is the so-called Planck function which depends on
the temperature T so that equation (1.1) is coupled to an energy balance equation:

7

O Ei(T) + /

) / dv oo (I — =8, T)) =0, (1.2)
S2 v>0 4

where E; is the internal energy.

The usual method for solving system (1.1)(1.2) consists in using an implicit Monte-
Carlo method (see [3] for example). However, Monte-Carlo oscillations of the solu-
tion alter the required symmetry of the radiation field and can cause an incorrect
calculation of the implosion. On the other hand, deterministic methods (see [2])
are very costly and cannot be used for parametric studies. This is why it is useful
to obtain approximate models for radiative transfer problems. The goal of this
paper is to present a new closure for (1.1)(1.2) that can be used in the ICF context.
In order to simplify the analysis, we will restrict ourselves to a simplified version
of (1.1)(1.2): first, we consider a stationary problem (i.e. we solve the system on
one single time step). Secondly, we assume that the source function is given so
that frequency variable can be removed and (1.1) becomes:

= = c
G-VoI+0l= oS (1.3)

At last, we impose boundary conditions that account for albedo of the gold
wall. For each z on the boundary and each incoming direction Q2 we impose:

— ]_ — —- = —
I(z,0) = ——Y / I(z, ) 7, dSV, (1.4)
™ ﬁ.fib>0

where 77 is the unit normal outward vector at the boundary point z. For the sake
of simplicity, we only consider a model geometry (see figure 2).
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albedo: 0<1—-w<1

T\‘ gold wall — \

| left hole right hole
\ albedo : D albedo :
: 1—-w=0

|

|
|
|
l1—w=0 1
|
|

L \

albedo: 0<1-w<1

Figure 2: Model geometry

When opacity is large, it is well known (see [4]) that diffusion approximation
can be applied to system (1.3)(1.4). In this limit, radiative energy E,. is solution
of a diffusion equation:

-

—div (iVET> +0E, =08, E, := 1 / I(z,Q)dS. (1.5)
30 C Js2
In an Hohlraum this assumption does not hold: the cavity is usually filled with a
low density gas and the photon mean free path in the gas (¢~!) is large compared
to typical dimension of the device. So limit (1.5) which corresponds to the small
mean free path limit is no longer valid.
However, it is always possible at least formally, to define a corrected diffusion limit

—div <5VET> +0E, =08, E,:= l/ I(z, Q) df}, (1.6)
g C Jg2

where A is related to the Eddington factor v so that equation (1.6) provides a
correct approximation of the solution. This is our purpose to discuss this method
and to propose a calculation of the Eddington factor adapted to our problem.
The outline of the paper is the following: in next section, we describe the calcu-
lation of 7 in the Hohlraum. Then, we analyse its properties with respect to the
general theory of Eddington factors of [5]. In section 4, we give some details on
the numerical scheme for the non-linear diffusion equation. At last, we present
numerical results showing the interest of our approach and we compare them with
usual flux-limited diffusion theory.

2. Calculation of Eddington factor
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Let us consider the radiative transfer equation:

-

ﬁ-VI(x,ﬁ)—FaI(x,ﬁ)=£US($), (z,3) €D xS
(2.7)

I o - -

I(z,Q) = w/ I(z,Q")Q -7 dY, ze€dD, Q-7 <0.
T J&ri>o

Here, 1 — w denotes the albedo of the wall and is defined as the ratio between

incoming and outcoming radiative fluxes at the boundary. The geometrical con-

figuration that we consider in the sequel is described in figure 3.
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Figure 3: Geometric configuration

We also introduce:

E(z) := % /4 I(z,9)d}, (radiative energy density), (2.8)
Fz) = /4 I(z,$) (B, (radiative flux), (2.9)
[P(z)] := % /4 i I(z,0) G ® Qdf, (radiative pressure tensor),
and the Eddington tensor [y] which is defined by the relation :
=2

We apply the so-called “moment method” which consists in integrating the first
equation of (2.7) over the solid angles 2. We get :

1o =
zV'F‘i‘O’E:O’S in D. (2.10)
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Multiplying the first line of (2.7) by 1 and integrating over directions {3, we obtain:

div[P] + %ﬁ =0 inD, (2.11)
that is:
1
—div(=div([y] E)) +c E=0S inD. (2.12)
o

When o is large, diffusion approximation applies (see [4]) and the Eddington factor
becomes constant:

] = 5 11 (213)

In this case, radiative transfer equation can be replaced by a diffusion equation
(the so-called Rosseland approximation).

In our situation the diffusion approximation (1.5) is not valid but it is always pos-
sible to replace formally the transport equation by a diffusion equation provided
that the Eddington Tensor is correctly defined: we refer here to the review paper
[5] which explains how a flux-limited diffusion equation can in some sense approx-
imate a transport equation. We want to apply this method in our case, but using
specific informations about the geometry we can improve the calculation of the
Eddington factor (and hence of the flux-limiter) and obtain better results.

We have to consider now the following model with a flux-limiter A:

—div(iﬁE)+0E:JS in D,
o N (2.14)

wE+2(2—w);VE-ﬁb:0 on 0D,
where A is related to the Eddington factor [y] (see section 3.2). Our aim is to
determine an algebraic expression of A in such a way that the solution of the
approximated problem (2.14) is close (in a formal sense) to the solution of the
transport problem. We impose that A (and the related Eddington factor) only
depends on:

VE
e a gradient length %

e geometrical data.

We briefly described how the boundary condition for the diffusion equation has
been derived:

We first introduce the quantities F' := F.iiy on D and F+ := fﬁ’-ﬁb>0 I(z, Q) -
ity d) and F~ := fﬁ’.ﬁb<0 I(z, ) 7, dSY' such that F = F+ — F~. According

to the definition of the albedo, F~ = (1—w)F™* and hence, F* —F~ =wF*t = F.
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On the other hand

. e =
F=F.fty=-2SVE -t (2.15)
ag

Furthermore, we assume the following quasilinear P1 approximation:
=~ ¢E 3% 4
= +

I(z,Q) = —+ —Q-F. 2.1
() =+ 2 (216)
Hence we get:
Wt = w E 3G ), d, (2.17)
5 4 4
G/ iy >0 /I 7/
and
1
E = E =
wFt = 27rw/ E_3eep i) pdp=wE —YA9E.7, (218
o \4m  4mo 4 20

Summarizing (2.15) and (2.18), we obtain the boundary condition for the energy
E:

A=
wE+2(2—w);VE-ﬁb:0. (2.19)
L 22—w) N, .
Remark 2.1. The quantity Q0 o is called the extrapolation length.
ag

3. Computation of the Eddington Tensor [v]

In order to compute [v], we apply a method inspired by the one developped in [6]
for spherical problems: we assume that the radiative intensity at a given point x
in D is piecewise constant with respect to the solid angle variable ).

3.1. The two intensities model

We first introduce some notations: let us define Sz(z) as the part of S? containing
all the solid angles that link point x to the holes and Sr¢(z) = 8% \ Sz(x). We
make the following modelling assumption:

Ii(z) when € Sp(z)
I(z,8) = (3.20)
L(z) when §} € S7°(z).

This modelling can be justified by considering the numerical solution of the trans-
port equation obtained with the classical DSN method: figure 4 presents the in-
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tensity as a function of Qata given point z in D close to the right hole. We clearly
see that it is piecewise constant over St and S%.

The intensity I;(x) is the mean radiative intensity resulting from the emission
of the holes (and the medium) and I>(x) is the intensity resulting from the emission
of the wall (and the medium). We also define:

o = di and ::/ df, (3.21a)
St Sre

the vectors :

5= | 0dd and @ := 0 dq, (3.21b)
St Sre

and finally the tensors :

[mi]:= [ Q@0dd and [m,]:= 0 @ Qdq. (3.21c¢)
St Ste

The analytical expressions of all these data will be given in the Appendix A. Using
our assumption we obtain the following system :

1 < 1 ~
E=-1 / dQ+ - I, / ds)
C St C Sr¢

! F=5 | Qdi+1L Gda (3.22)
ST STC
1 O | Y o
ME=-I5 [ Ge0dl+-L [ (eddd,
\ c ST c Srec

where the unknowns are I, I and [y]. Nevertheless, it is not possible to solve
this system directly because [7] is a tensor. In order to solve the system, we will
project the second and third equations along an appropriate direction.
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Figure 4: Intensity with respect to angle, close to the right hole of the domain
D (results obtained on a uniform 100 x 100 grid in space and Sg4 quadrature for
velocities).

3.1.1. Solution of the system It is easily seen that the following relations hold:

a1 +as =4, (3.23a)
U1 + U2 =0, (3.23b)
and
4
[m4] + [mo] =37 [Id). (3.23c)

Applying (3.23) to (3.22), the system under considerations reads:
1=o1u1 +47us

f

[v] = [ma]a. + 4?W[Id]um

I
St

uy (3.24)
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where
- F
fi=—. (3.25)
c
The new unknowns are:
1 1
Uy 1= C_E(Il - _[2), Ug = C_EI2 and [’7]

Observe that f have to satisfy, as required in the flux-limited diffusion theory:
1fl<1. (3.26)

Moreover, f and [4] (the first and second moment of a nonnegative unit intensity

—E) must satisfy the following constraints :
c

() = 1, (3.27)

M -Ffef>o0. (3.28)

1
Multiplying by §[I d] the first equation of the system (3.24) and substracting to

the third equation we get:

1=t +47us

f=tm (3.29)
) = 510 + (] - 1)) .

3.1.2. Computation of a scalar Eddington factor v According to [5], we are
interested in finding a scalar Eddington factor v defined by:

vt = [y] 7. (3.30)
where 7 is the unit vector f7|f]. This leads to the following relation (see [5]):

b= 52 11+ 2L

This model can be seen as a generalization of the classical Eddington approxima-
tion (2.13). In order to determine v, we shall use the tensor [y] introduced in the
previous subsection.

First of all, remark that ¥ is an eigenvector of the matrix [m] and denote m;
the associated eigenvalue. Hence, we have:

7l ® . (3.31)

U1 ¥
TR 832
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The third equation of (3.29) shows that ¥ is also an eigenvector of [y]. Using
(3.30) we obtain:

1
’y—§+m1ul—%ﬂ1 (333)
Then, we express 4, in terms of f. The second equation of (3.29) shows that ¥
has the same direction as 7 (7 = — A |) and we get:
Uy = |_.—|
1]
Finally, we obtain:
1 my — % F‘
=4 —". 3.34
TE3T TG B (3:34)
We shall rewrite this expression as:
1
W) =5 -, (3.35)
where h; is defined by:
@ dl — [ (G -7)? di
hy=3_"1_3 v {S f : (3.36)
6] | fsT -7 dS2 |
and
7
I=&

3.2. Computation of a flux limiter A

In this section, we relate the Eddington factor v to a flux-limiter A. Let us consider
again the moment system:

V. (FE)+0(E—S)=0 (3.37)
V-(E)+ofE=0. (3.38)

Multiplying the equation (3.37) by f and substracting to equation (3.38), one
obtains:

V-l -Ffe HE+0fS=0. (3.39)

From now on, we assume that the spatial variations of [y] and f are small, and
we deduce, according to [5], an algebraic relation between [y], f, E and VE:

=\ = -

(m-Fof)E=7, (3.40)
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where R is the dimensionless gradient defined by:

. VE
= ——. 41
R s (3.41)
So R :=|R| and f are related by the relation:
f
R=—"F"—. 3.42
N GEIE (3.42)
This allows us to define the flux limiter \ as
f=XR)R or XR) =~(f) - f, (3.43)
what yields the flux:
7o _CARVE (3.44)
o

We compute the flux limiter \(R) related to the Eddington factor v(f). We have:

MR) = % — MA(R)R — N2(R)R?, (3.45)

what yields:
2

MR = SR =171 VO - R? + 12R? (3.46)

4. Properties of v and A\

This section is devoted to the behaviour of the scalar v (and \) with respect to o
and f.
In [5], Levermore gives four conditions that v and X\ must satisfy:

(C1) A(R) +A(R)?R* < 1.

(€2) +(0) = % and A(0) = %

(C3)  A(R) + A(R)%2R? is an increasing function of R.
(C4)  ~(f) — f? is a decreasing function of f.

The conditions (C1), (C2) and (C4) are satisfied, but our flux limiter violates
the condition (C3). In order to satisfy (C3), the Eddington factor must be increas-
ing as a function of f and it is not the case here because hy is always positive,
hence A\(R) + A(R)2R? is decreasing as a function of R.
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Influence of geometrical parameter h; We can see that, when h; is equal to
zero our geometric limiter is equal to the first part of the Minerbo limiter related
to the Eddington factor v(f) = .
Behaviour of )\ for diffusive and void cases For diffusive cases, i.e. ¢ >> 1,
the Eddington’s approximation is valid and we can take A = % For our flux
limiter, we get: lim,_, 1o A = %, and for the void case: lim,_,o A = 0.

Influence of gradient A main property of flux limiter is to decrease when the
norm of the radiative energy gradient increase, thus we have: limg oA = %,
limp 10 A = 0. When f = 0 there is no preferred direction, the intensity is
isotropic and the Eddington approximation is valid : v(0) = % and A(0) = 1.
Let us now compare in figure 5 our geometric flux limiter with other classical flux

limiters for a fixed value of hy (h; = 1).

0.35 T T

T
Geometric limiter

Levermore limiter -------
Kershaw limiter --------

03

0.25 -

02 r

0.1

Figure 5: Behaviour of flux limiters when R increases

5. Numerical scheme

In order to solve the photon transport equation, we use the standard Sy method
with the spatial diamond-differencing scheme. This is the reference transport
method for a two-dimensional Cartesian fine mesh.
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To solve the diffusion equation with a fixed flux limiter, we use a two-dimensional
finite differences scheme coupled to a Jacobi algorithm. We also use a mixed-hybrid
finite elements method (see [8]) in order to obtain more accuracy and to reduce
the CPU time which becomes prohibitive when ¢ is small

Let us remark that no general result claiming the well-posedness of the nonlin-
ear diffusion problem is available because of nonlinear dependence of the diffusion
coefficient as a function of the gradient of the solution. Nevertheless, the flux
limiter is bounded and positive and we observe convergence of the following fixed-
point iterative method:

Step 1: Initialization : solve the diffusion equation with A(R) = 3 (Edding-
ton’s approximation):
—div(x VE")+ o E° =0 S in D,
1oy . (5.47)
wE° +2(2—w)3—VE iy =0 on dD.
o
Step 2: We compute R® = —WTEOl.

Step 3: For all k¥ > 0, we compute a solution E¥ of the diffusion problem
with X\ given by the expression of flux limiter, function of RF~1:

—div(2 (R*')WVE*) +0E*=05 in D,

k—1) 5.48
wEk+2(2—w)$VEk-ﬁb:0 on 9D. (5.48)
Step 4: Then we compute RF = —W%k‘ and we loop to step 3 while

||[E* — E*~1||; becomes larger than a small arbitrary parameter.

6. Numerical Results

We first consider the case of two plane plates with reflecting conditions on the plane
plates, entering flux equal to zero on the holes and a source equal to 1 (S=1).
We compare in the figures 6, 7 and 8 a reference transport solution, a solution
obtained by Eddington’s approximation, a solution obtained with our model and a
solution obtained with other flux limiters: Wilson’s limiter [5], Chapman-Enskog’s
limiter [5] and Kershaw’s limiter [5] for different values of o. Let us give here the
expressions of these flux limiters:

Wilson’s limiter :  A(R) = 315 and the related v(f) = 71_1(;_3]&,

Chapman-Enskog’s limiter : ~ A(R) = % (coth R — ) and the related
1
R

v =coth R (cothR — &) with f =cothR — £,
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Kershaw’s limiter : \(R) = ﬁ and the related v(f) = #

The influence of these flux limiters will be compared to our geometrical model.

1.1 T T

I transport referencle solution
Eddington approximation --------
i —— B
09 i
> \
=) W\
@ 0.8 - FAR
< U
w i
i\
07 | i
b
i
i
06 [ ‘T
|
05 1 1 1 1
0 0.2 0.4 0.6 0.8 1

X

Figure 6: Section of energy for plane plates configuration in case of ¢ = 10

These numerical results are computed in two dimensions (on a 50 x 50 grid)
but we just give a one-dimensional profile section of the energy in the figure and
only in a quarter of domain D because of symmetry reasons. According to the
notations of the figure 3, these numerical results was computed with the following
parameters: L =2, H =1, h = 0 and the albedo of the wall w = 0.

One observes that the energy density are, in all cases considered, better approx-
imated by the geometric method than by the diffusion’s Eddington approximation
(P1) or by the diffusion equation with classical flux limiters. It is particularly true
for the region close to the hole where our geometric model seems clearly to be the
most competitive method.

Figure 6 presents the profile of the energy in a case where o is large. That
means an isotropic case and it is why every model gives the same results. In figure
7, we show a case where opacity is smaller than the previous one. It seems that
geometrical model is better than the others. When the opacity o is close to zero,
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the geometrical model always seems to be more efficient than the others but the
flux-limiters results are too far away from the transport solution (as we can see in
figure 8) because of the limits of validity of the model.

Indeed, we can compute, using the transport program, the effective ideal flux
limiter given by the following relation:

cA(R)VE

g

F=-— (6.49)

This flux limiter is the better one can expect with our model and it does not
provide better results than the geometrical flux limiter.

09 T T T T T T T T | T
transport reference solution

0.85 — Eddington approximation --------
. _ S Wilson’s limiter

08 I

0.75

0.7

Energy

0.65 -

0.55 -

0.45 | | | | | | | | |

Figure 7: Section of energy for plane plates configuration in case of o = 1
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0.7 T T T T
transport reference solution
geometric limiter ------—-
— Chapman'’s limiter --------
T Kershaw's limiter
0.65
T
>
=
o 055
c
0]
0.5
0.45 -
0.4 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 8: Section of energy for plane plates configuration in case of o = 0.5

Let us now compare the results obtained with the ”transport flux limiter” and
the other ones in the figure 9:

07 T T T T T T T T N T
transport reference solution
geometric limiter -------
e transport limiter --------
T Eddington approximation
0.65 |-
0.6 -
<
5
8 o055
x
=2
0.5
0.45 -
04 1 1 1 1 1 1 1 1 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9: Section of energy for plane plates configuration in case of o = 0.5
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We can see that, even with the ”transport flux limiter” the results are not close
to the reference transport solution and our geometric limiter seems as good as the
"transport flux limiter”. When o is close to zero, the diffusion model seems being
not valid. Indeed, the “transport flux limiter” being obtained directly from the
transport equation, it is optimal for our model.

We can also compare the profiles of the flux limiters as shown in figure 10:

limiter

We presents here a table containing the relative errors

0.35

‘ geome{ric Iimner‘
Tl — Wilson's limiter --------
- —
03 | T i
0.25 | 1
0.2 B
0.15 | i
\
\
\
\
\\
01 Il Il Il Il Il Il Il Il Il |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X

Figure 10: Profiles of flux limiters in case of ¢ = 0.5

Relative errors

[|Etrall1

||Edif—FEtrall1

between the

transport reference solution and the solutions of our diffusion model for different
flux limiters and some values of ¢ in the case of two plane plates.

Geometric limiter

Wilson’s limiter

Kershaw’s limiter

Eddington’s approx. (P1)

o =10 2,63.10°3 2,75.10°3 3,02.10°3 3,27.10-°
o=1 7,94.10°° 1,19.10 2 2,66.10 2 3,45.10 2
c=0,5 4,42.102 5,77.10~2 8,22.102 9,30.102

7. Conclusion
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In this paper, we have proposed a new formulation of the Eddington factor (and
the underlaying flux limiter) adapted to radiative transfer calculations in a cav-
ity. The main point was that classical flux-limited diffusion theory did not apply
because photon mean free path and gradient length of the solution are large in
front of the size of the cavity so that geometric effects are dominant. Hence, the
Eddington factor includes geometric features of the domain.

Although our modelling of the Eddington factor is correct, the corresponding re-
sults on the diffusion equation are not totally satisfactoring: our understanding is
that the treatment of the boundary condition should be questionned. Future work
will consist in applying this factor to realistic configurations (i.e. radiation hydro-
dynamic flows in an ICF cavity). In this case it may be necessary to improve the
model in order to account for a more detailed description of the cavity (presence
of the target, distinction between left and right laser entry holes,...).
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A. Analytical expression of the data

The angles 6;, i = 1,2, 3,4 are defined as shown in figure 3. We may then compute,
according to the definitions (3.21), the following expressions:
ap =2 ((92 - 01) + 2 (04 — 03) (150)
Qg = 2m — aq. (151)

We compute as well:

02 o,
1—22cos @ 1— 22 cos @
vl /191/ ( 1—Z251n0>dd9+/9 / ( I_ZQSIHG)dZda.
3
Applying the change of variables z = sin ¢, dz = cos t dt, we get:

/2

/ \/l—zzdz—/ (cos t)* dt

/2
_ [t oS Zt]”/2

2+2

—m/2 2’



Geometric Eddington Factor for radiative transfer problems 19

and therefore, we obtain

. 7w (%2 ( cosd 7 (% [ cos b
v1:—§/91 (sme)de—§/93 (Sine)do, (1.52)

. [0s—05 cos (94-‘593)
+ sm( 2 ) ( sin(a‘“;%) . (1.53)

Then, we compute the expressions of [m]. The definition of [m4] is

92 ‘94
[mi] / / M6, 2)] dzd0+/ / M(6,2)]dzdl,
91 ‘93

(cos 8)2  cos 6 sin 6
cos 0 sin @ (sin )2

where

M(6,2)] = (1 22) (

1

4
It is a simple matter to obtain / (1—2%)dz = 3 and
-1

& 271 cos201% 6,-0 sin 20172
2 2 1
/91 (cos 6)° do = /01 [2-}— 5 ]91_ -+ [ I ]91

and

/] . 92
2. 0; — 6, sin 26
2 —
/91 (sin §)* df = 5 [ 1 ]01 .

We also have:

02 0 . 2 )
/ sin 8 cos 8df = B(sin 9)2] — (sin 62) (sin 6y) ‘

01 ‘91 2
Finally, we get:
0y —0;  sin 2605 — sin 26, (sin 5)% — (sin ;)2
+
4 2 4 2
[m1] = 3
(sin 65)? — (sin ;)2 6> — 61 sin 20, —sin 26,
2 2 4
0y — 63  sin 204 — sin 203 (sin 4)? — (sin 63)2
4 2 + 4 2
+ 3 . (1.54)
(sin 84)? — (sin 63)? 0, — 63  sin 20, — sin 263

2 2 4
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The expressions above simplify, using the trigonometric relations:

sin 205 — sin 20; = 2 sin(f2 — 01) cos(6y + 61)

=4 sin (92 ;01> oS (02 ;01) cos(by + 62),

(sin 65)% — (sin 0;)? = (sin B — sin 6y) (sin O3 + sin 6,)

=4 sin b2 =6, oS b1 + 62 sin b2 + 6, €oS 792—91
B 2 2 2 2

= 2 sin (02 ;01> cos (02 ;01) sin(6; + 62).

and

Hence, we obtain:

ésin 6> — 6, cos 6> — 6,
3 2 2

4 (6,—0 6, — 0, | cos(Pat0s)  sin(6a+6s)
+ 3 sin 5 cos 5 . (1.55)
sin(fs4 + 65) —cos(04 + 63)

cos(f; +6>)  sin(6; + 62) :|

sin(fy +62) —cos(fy + 62)

Combining expressions (1.52) and (1.55) of ¢; and [/m;] with relation (3.22) from
previous section, we obtain explicitly:

[7] = [’)’](R, 01702703704)‘

We can also compute the angles 6;, i = 1,2,3,4 with respect to the position (z,y)
of the point, setting the origin (0,0) at the center of the domain:

B —y—H/2+h
01 (z,y) = arctan <—L/2 — )

B H/2—y—h
02($,y) = arctan (m)

03(z,y) = m — arctan (#)
_ H/2—y—h
Os(z,y) = arctan( 2 +a )

B. Numerical results figures in two dimension
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