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Modelling of the electromechanical behaviour of PZT

O. Guillon, F. Thiebaud, P. Delobelle and D. Perreux

Laboratory of Applied Mechanics R. Chaléat, UMR 6604 Université de Franche-Comté/CNRS,
24 chemin de l’Épitaphe, 25000 Besançon, France

Abstract. The aim of this paper is to model the one-dimensional behaviour of a soft PZT tested in 
compression. Thanks to a viscoplastic formulation, the effects of cyclical loading and loading rates are also taken 
into account. The coupling between remnant strain and polarisation is achieved through a mechanically induced 
depolarisation function.

1. INTRODUCTION

Some applications of ferroelectric materials develop large displacements or large forces under both

electrical and mechanical loadings, in static or dynamic conditions. Irreversible strain and depolarisation

thus occur [1]. To improve reliability and life time of these components, it is important to measure and

model the effect of cyclical loadings on the response of the material. Non linear constitutive laws are

then required to design complex geometries and to estimate device performance.

From thermodynamical considerations, Bassiouny and Maugin proposed an interesting formulation

using the theory of plasticity, where remnant strain and polarisation are chosen as internal variables [2,

3]. This scheme was also used by Kamlah and Tsakmakis who presented a phenomenological model of

the non-linear electromechanical coupling in ferroelectrics [4]. This model was recently implemented in

a FEM-code [5]. Besides, McMeeking and Landis presented a simplified formulation by rigidly linking

the remnant strain to the remnant polarisation [6].

In this paper, another non-linear electromechanical model is presented. To take into account time ef-

fects, the evolution laws of the internal variables are given in a viscoplastic formulation. It describes the

characteristic phenomena of ferroelectricity: the dielectric hysteresis, the butterfly loop and the ferroe-

lastic hysteresis of a unit volume. Nevertheless, experimental measurements are needed to identify the

model parameters. A soft PZT obtained from a commercial source is tested cyclically in compression.

This one-dimensional formulation of the model is successfully validated using the experimental data.

2. MATERIAL AND EXPERIMENTAL PROCEDURES

A commercial bulk soft ceramic is used in this study, which non-linear behaviour is known to be more

pronounced than for hard PZT. It is furthermore easy to depole under stress by ferroelastic effect. PIC

255 is produced by PI Ceramic, Germany, and is indicated for actuators and high sensitive receivers

applications (Table 1). It is available in form of poled cylinders (15 mm height, 10 mm diameter).

A special device has been designed to carry out compressive experiments and to allow electrical mea-

surements. To offer a better stress state in the sample, compliant layers made of glass/epoxy isotropic

composite are used. Longitudinal strain is measured by means of an extensometric gauge. For poled ce-

ramics, stress is parallel to polarisation. Electrodes are short-circuited and electric charges are recorded
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with a Kistler 5015 charge amplifier. Some samples are depoled by heating treatment above Curie

temperature.

Table 1. Properties of soft PIC 255

Density (g.cm−3) 7.8

Curie temperature (°C) 350

Relative permittivity ε33 1800

Coupling factor kp 0.62

Mechanical Qm 80

Charge constant d333 (pC/N) 400

3. DESCRIPTION OF THE MODEL

Our goal is not to go into details of the model, which is fully explained in [7]. To shorten the body of

the present article, only its one-dimensional formulation is given (according to direction 3).

The thermodynamical state of a system at a given instant is defined by two types of variables: the

observable variables (related to the reversible phenomena) on one hand, and the internal variables (which

keep track of the material history) on the other hand.

To describe the irreversible electromechanical behaviour, two independent variables are needed: the

internal or remnant strain Sir
33

and the internal or remnant polarisation Pir
3

(electrical polarization P3

has been chosen instead of electrical displacement D3, as they are directly related). Physically, the

macroscopic internal variables must be viewed as averages of the corresponding microscopic quantities.

The total strain and polarisation can thus be split into:

S33 = Srev
33

+ Sir
33

, (1)

P3 = Prev
3

+ Pir
3
,

where the reversible components are given by the classical linear equations of piezoelectricity:

Srev
33

= s3333T33 + d333E3, (2)

Prev
3

= d333T33 + ε33E3.

where T33 is the stress and E3 the electric field, d333 a piezoelectric coefficient and s3333 the elastic

compliance which equals 1/Y33
E.

It is known that applying an electric field can generate a remnant strain due to ferroelectric domain

switching. On the other hand, a compressive stress can cause an irreversible ferroelastic strain because

of domain switching in random directions. Therefore, the irreversible strain has to be split up in two

components, a remnant strain Srem
33

and a depolarisation (or ferroelastic) strain S
dp
33

:

Sir
33

= Srem
33

+ S
dp
33

. (3)

Srem
33

is directly connected to the remnant polarization by:

Srem
33

= Srem
max

|Pir
3
|

Pmax

. (4)

Pmax represents the maximum value of the polarization in a material subjected to a high electric field

and Srem
max

is the maximum value of the strain reached for |Pir
3
| = Pmax .
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The evolution laws of the two internal variables are chosen to be time-dependent:

•

S
dp

33
=

•

S
dp

0

〈

|T33 − αm
33
| − T0

Nm

〉nm

T33 − αm
33

|T33 − αm
33
|

(5a)

•

P
ir

3
=

•

P
ir

0

〈

|E3 − αe
3
| − E0

Ne

〉ne

E3 − αe
3

|E3 − αe
3
|

(5b)

The superscripts m and e indicate respectively the parameters associated with the mechanical and the

electrical variables. The internal variables αm
33

and αe
3

are kinematic hardening variables and E0 and

T0 are constant parameters corresponding to the activation thresholds of the irreversible variables from

which one may understand the use of the Mac Cauley brackets (〈x〉 = x if x > 0 and 〈x〉 = 0 otherwise).

The other terms introduced in (5) are some constants of the model. The time-independent formulation

(i.e. plasticity) is the asymptotic case of this approach for high nm and ne exponents.

Due to similarities between ferroelectric hysteresis and ferroelastic curves, the same expression of

the evolution laws is chosen for the kinematic variables αm
33

and αe
3
. The shape of the polarisation cycles

is composed of a part tending towards reversibility in the neighbourhood of the saturation polarisation

and another part, irreversible, leading to a steep evolution in the vicinity of the coercive field. Thus,

each of the non-linear kinematic variables is split up in two terms, a reversible component αr and an

irreversible component αir :

αm
33

= αrm
33

+ αirm
33

with αrm
33

(0) = αirm
33

(0) = 0 ,

αe
3

= αre
3

+ αire
3

with αre
3
(0) = αire

3
(0) = 0 ,

(6)

and their evolution laws are given by:

•

α
rm

33
= brm

(

arm + |αrm
33
|
)
•

S
dp

33
,

•

α
irm

33
= birm

(

airm
•

S
dp

33
− αirm

33

∣

∣

∣

∣

•

S
dp

33

∣

∣

∣

∣

)

,
(7a)

•

α
re

3
= bre

(

are + |αre|
)
•

P
ir

3
,

•

α
ire

3
= bire

(

aire
•

P
ir

3
− αire

3

∣

∣

∣

∣

•

P
ir

3

∣

∣

∣

∣

)

.
(7b)

with the terms b and a constants of the model. The irreversible components have the formulation initially

proposed by Armstrong and Frederick [8] and widely used later [9][10] and are extended here to the

electrical variables. The laws used for the reversible components are much less classical.

Furthermore, it is widely brought up in the literature [5][11] that the piezoelectric coefficients dij

depend on the initial polarization. As a consequence, the coefficient d333 is written as a function of the

irreversible polarization Pir
3

:

d333 = d3330
+ d333max

Pir
3

Pmax

. (8)

d3330
(being possibly equal to zero) is the spontaneous piezoelectric coefficient in the absence of an

induced polarisation. d333max
is the maximum value of the piezoelectric coefficient induced when the

polarisation is saturated to the value |Pir
k | = Pmax.

Finally, the material can loose its polarisation in an irreversible way when a compressive stress is

increased beyond a threshold value. It means that the variables S
dp
33

and Pir
3

are not completely inde-

pendent as it has been assumed in the thermodynamical approach. Considering this, we introduce a
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depolarisation function fdp :

fdp = 1 − β
〈

− SdpC − S
dpC

0

〉

〈

− T33

〉

|T33|
with

•

S
dpC

=
•

S
dp

33
(9)

where β is a constant of the model and SdpC represents the strain associated to the compressive stress

causing depolarisation beyond the threshold value S
dpC

0
. Below this value, fdp is equal to 1. This function

is used for all terms depending on Pir
3
. Besides, in order to simulate the effect of stress on dielectric

hysteresis [12], αire is multiplied by fdp :

•

α
ire

3
= birefdp(a

ire
•

P
ir

3
− αire

3

∣

∣

∣

•

P
ir

3

∣

∣

∣
) (10)

as well as the piezoelectric part and the remnant part of the strain, so that total strain and polarisation

can be written as:

S33 =
T33

YE
33

+

(

(

d3330
+ d333 max

Pir
3

Pmax

)

E3 + Srem
max

|Pir
3
|

Pmax

)

fdp + S
dp
33

(11)

P3 = ε33E3 +

[

(

d3330
+ d333max

Pir
3

Pmax

)

T33 + Pir
3

]

fdp (12)

This formalism, applied to the one-dimensional case, will be used for all the simulations presented in

the next section.

4. VALIDATION OF THE MODEL

When possible, parameters are determined either with manufacturer’s data, or graphically on experi-

mental curves. In other cases, identification is processed by means of a local method. The Levenberg-

Marquardt algorithm is an effective way to solve non-linear least squares problems. The values of the

mechanical and electrical parameters used in the model are given in Table 2.

Table 2. Parameters used for the simulations

Parameters Unit Value Parameters Unit Value

Y33
E GPa 110 brm - 2.65 × 103

Nm MPa 11.9 birm - 750

nm - 15.8 arm MPa 3.2 × 10−3

T0 MPa 13 airm MPa 45

β - 180
•

S
dp

0
s−1 10−4

Srem
max

- 6.2 × 10−3 S
dpC

0
- 1 × 10−4

ε33 C/m.V 1.59 × 10−8 bre m2/C 42

Ne V/m 106 bire m2/C 5.7

ne - 1 are V/m 9.1 × 10−4

E0 V/m 0 aire V/m 1.6 × 106

Pmax C/m2 0.6 d333max
pC/N 500

•

P
ir

0
C/m2/s 5 d3330

pC/N 0
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Figure 1. Experimental and model curves: mechanical behaviour for an unpoled specimen (a) and a poled one (b),

depolarisation according to stress (c)

As the specimens are poled by the manufacturer, the poling process has to be simulated. A typical

dielectric hysteresis for soft PZT found in the literature [13] is fitted using manufacturer’s information

such as the value of the coercive field (1.5 kV/mm), so that remnant polarisation reaches 40 µC/cm2

and remnant strain 0.4%.

4.1. Compressive loadings

Unpoled and poled PZT are loaded by repeated compressive growing cycles (Figure 1). As more do-

mains are available to switching for the poled ceramic, strain levels are higher than for the unpoled

one [14] [15]. In spite of experimental observations, the threshold stress T0 has to be different than 0

in order to model the looping of the stress/strain curve, so that under low stress levels model does not

completely describe the real behaviour of the PZT. Poled specimen is affected by the ferroelastic effect:

fdp is activated by the compressive stress and depolarization occurs.
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Figure 2. Effect of loading rate on experimental (a) and model (b) curves

Figure 3. Response of a poled ceramic to a cyclical loading (a-depolarisation and b-strain)

4.2. Influence of loading rate

For poled specimens, the influence of the loading rate is explored by carrying out a -250 MPa load-

ing/unloading cycle. A ratio 100 is chosen between both loading speeds (set to 0.2 MPa/s and 20 MPa/s).

No major influence of the loading rate is highlighted on depolarisation and stress strain curves and max-

imal strain and depolarisation levels are comparable (Figure 2). As a conclusion, mechanically induced

switching processes for soft PZT do not seem to be highly influenced by stress rate.

4.3. Response to cyclic loadings

Fifteen 50 MPa compressive cycles are performed on poled samples. Material evolution is maximal

during the first cycle and after 10 cycles, responses of the material can be superimposed while strain

and polarisation levels stagnate (Figure 3). Thus the material accommodates to the cyclic loading and

no so-called ratchetting effect is observed. This signifies that the degradation of the material properties

may stabilise independently from long-term ageing phenomena.

Experimentally, polarisation and strain are related in a linear manner together. As they depend both

on domain configuration these variables are coupled, which is taken into account by fdp in the present
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Figure 4. Simulation of the effect of an applied stress on poling process: applied electric field (a) and stress (b)

according to time; polarisation hysteresis (c) and butterfly loops (d).

definition of the model. The simulation reproduces well this tendency, although the amplitude of the

cycles is less pronounced than actually.

4.4. Poling under stress

Under a compressive stress, the polarisation curve is contracted and tilted. The strain versus electric

field curve is also translated along the strain axis and in the direction of lower values of the strain [12].

However the remnant strain and polarisation can be reset by application of electric field at zero stress.

This is the so-called “memory effect”. The mechanical load prevents from domain switching when

electric fields are applied in a PZT actuator component. The model describes this phenomenon as fdp is

reset to 1 during the last electric loading at 0 stress, although T0 remains constant (Figure 4).

5. CONCLUSION

This electromechanical model is promising to fit the non-linear coupling of the PZT ceramics in its

one-dimensional formulation. The experimental results for one type of soft bulk PZT are simulated

qualitatively and more or less quantitatively. Other viscoplastic phenomena such as creep under constant

stress can be grasped with this model.

Nevertheless, in some cases the initially independent internal variables are found to be coupled.

In fact, the remnant polarization does not directly keep track of the microstructural changes in the

material. Indeed different configurations of the mass fractions of ferroelectric domains may lead to

the same polarization state (remember for example the case of a totally stress depoled ceramic and

an unpoled ceramic, which response are different under the same mechanical loading). The approach
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based on phenomenological theory is however well adapted for loadings close to uniaxial including

cyclic ones [16]. On the other hand, two-dimensional tests on convenient structures should permit to

propose and validate a multidirectional formalism of the model chosen among the possible formulations.
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