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SUMS OF ALMOST EQUAL PRIME SQUARES

HONGZE LI1 AND JIE WU

Abstract. In this short note, we prove that almost all integers N satisfying N ≡ 3 (mod 24)
and 5 - N or N ≡ 4 (mod 24) is the sum of three or four almost equal prime squares, respectively:

N = p2
1 + · · · + p2

j with |pi − (N/j)1/2| ≤ N1/2−9/80+ε for j = 3 or 4 and 1 ≤ i ≤ j.

1. Introduction

Motivated by Lagrange’s theorem, it is natural to conjecture that all large integers subject to
a natural congruence condition are the sum of four squares of prime numbers. Using the Hardy-
Littlewood method, Hua [5] has shown that an analogous result holds for sums of five squares of
primes. On the other hand, he has also proved that almost all integers n with n ≡ 4 mod 24 are
the sum of three squares of prime numbers. Define

A3 := {N ∈ N : N ≡ 3 (mod24), 5 - N},

A4 := {N ∈ N : N ≡ 4 (mod24)},

and denote by Ej(z) the set of integers N ∈ Aj ∩ [z/2, z] such that N 6= p2
1 + · · · + p2

j . Hua

proved that |E3(z)| �A z/(log z)A for some positive constant A. The study on size of Ej(z) has
received attention of many authors such as Schwarz [15], Liu & Liu [7], Wooley [18], Liu [6], Liu,
Wooley & Yu [9]. The best record is due to Harman & A. V. Kumchev [4]: |E3(z)| � z5/14+ε and
|E4(z)| � z6/7+ε for any ε > 0.

In this short note, we investigate this problem in form of short intervals:

(1.1) N = p2
1 + · · · + p2

j with
∣∣pi − (N/j)1/2

∣∣ ≤ N1/2−δ (1 ≤ i ≤ j),

where δ > 0 is a constant, which is hoped to be “large” as soon as possible.
In the case of j = 3 or 4, our result is as follows.

Theorem 1. Let j = 3 or 4. For any fixed ε > 0, the equation (1.1) with δ = 9
80 − ε is solvable

for almost all integers N ∈ Aj.

Following Liu & Zhan [11], we shall use the circle method to prove Theorems 1 and 2. Our
improves essentially come from an estimate for exponential sums over prime numbers of Liu, Lü
& Zhan [8] (see Lemma 2.1 below) and a mean value theorem of Choi & Kumchev [3] (see Lemma
2.2 below). However in order to exploit these we need to introduce some new arguments in Liu &
Zhan’s method.

2. Outline and preliminary lemmas

Throughout this paper, the letter p, with or without subscript, denotes a prime number and ε
an arbitrarily small positive number. Let j = 3 or 4 and N be a sufficiently large integer. Define

(2.1) x = xj := (N/j)1/2, y = yj := N1/2−9/80+4ε

1The work of the first author was supported by the National Natural Science Foundation of China (10471090)
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and

(2.2) P = Pj := N24ε, Q = Qj := N−6εy2.

The circle method, in the form we require here, begins with the observation that

(2.3) Rj(N) :=
∑

x−y≤p1,...,pj≤x+y

p2

1
+···+p2

j=N

(log p1) · · · (log pj) =

∫ 1+1/Q

1/Q

S(α)je(−αN) dα,

where e(t) := e2πit and

(2.4) S(α) :=
∑

x−y≤p≤x+y

(log p) e(αp2).

Clearly in order to prove our theorems 1 and 2, it is sufficient to show that Rj(N) > 0 for almost
all integers N ∈ Aj if j = 3, 4.

By Dirichlet’s lemma ([17], Lemma 2.1), each α ∈ [1/Q, 1 + 1/Q] can be written as

(2.5) α = a/q + β with |β| ≤ 1/(qQ)

for some integers a and q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by I(a, q) the set of α
satisfying (2.5), and define the major arcs M = Mj and the minor arcs m = mj as follows:

(2.6) M := ∪
1≤q≤P

∪
1≤a≤q
(a,q)=1

I(a, q) and m := [1/Q, 1 + 1/Q] \ M.

Thus we can write

(2.7) Rj(N) =

∫

M

S(α)je(−αN) dα +

∫

m

S(α)je(−αN) dα =: Rj(N ; M) + Rj(N ; m).

We shall establish an asymptotic formula for Rj(N ; M) in Section 3 and treat Rj(N ; m) in
Section 4. As indicated in the introduction, the new tools that we need are an estimate for
exponential sums over prime numbers of Liu, Lü & Zhan [8] and a mean value theorem of Choi &
Kumchev [3], which are stated as follows.

Lemma 2.1. ([8], Theorem 1.1) Let k ∈ N, 2 ≤ y ≤ x and α = a/q + β be a real number with
with 1 ≤ a ≤ q and (a, q) = 1. Define

Ξ := |β|xk + (x/y)2.

Then for any fixed ε > 0, we have
∑

x<p≤x+y

Λ(n)e(αnk) � (qx)ε
{
y(qΞ/x)1/2 + (qx)1/2Ξ1/6 + x3/10y1/2 + x4/5Ξ−1/6 + x(qΞ)−1/2

}
,

where the implied constant depends on ε and k only.

Lemma 2.2. ([3], Theorem 1.1) Let ` ∈ N, R ≥ 1, T ≥ 1, X ≥ 1 and κ := 1/ logX. Then there
is an absolute positive constant c such that

∑

r∼R
`|r

∑

χ (mod r)

∗
∫ T

−T

∣∣∣∣
∑

X≤n≤2X

Λ(n)χ(n)

nκ+iτ

∣∣∣∣ dτ �
(
`−1R2TX11/20 + X

)
(log RTX)c,

where
∑

χ (mod r)
∗

means summation over the primitive characters modulo r. The implied constant

is absolute.

In Choi & Kumchev’s original statement (in a more general form), there is no factor n−κ. Since
n 7→ n−κ is completely multiplicative and n−κ � 1 for X ≤ n ≤ 2X , their proof rests available
with some trivial modification.
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Next we bound S(α) on the minor arcs m by combining Lemma 2.1 with Liu & Zhan’s estimate
for short exponential sums over prime numbers ([10], Theorem 2): Let 1 ≤ a ≤ q ≤ uv with
(a, q) = 1 and u, v ≥ 1 and let α ∈ R such that |α − a/q| < 1/q2. Then for any ε > 0 we have

(2.8)
∑

u≤n≤u+v

Λ(n)e(αn2) �ε v1+ε
(
q−1/4 + u1/8v−1/4 + u1/3v−1/2 + (qu)1/4v−3/4

)
,

where Λ(n) is von Mangoldt’s function and the implied constant depends on ε only.

Proposition 2.1. With the previous notation, we have

(2.9) max
α∈mj

|S(α)| �ε N−2εy (j = 3, 4).

The implied constant depends on ε only.

Proof. Let

(2.10) Q′ = Q′
j := N−1/2−10εy3.

By Dirichlet’s lemma, each α ∈ m can be written as

α = a/q + β with 1 ≤ a ≤ q ≤ Q′, (a, q) = 1 and |β| ≤ 1/(qQ′).

We discuss three possibilities according to the size of q:
(i) If P ≤ q ≤ Q′, we can use (2.8) with (u, v) = (x − y, 2y) to write

(2.11) |S(α)| �ε N−2εy.

(ii) If q ≤ P , we must have 1/(qQ) < |α − a/q| ≤ 1/(qQ′). We shall apply Lemma 2.1 with
k = 2. Since Q−1 ≥ y−2, we have

NQ−1 � qΞ � q|β|N � NQ′−1.

Thus we have, for j = 3, 4,

|S(α)| �ε Nε/10
{
N−1/4y(qΞ)1/2 + N1/4q1/3(qΞ)1/6 + N3/20y1/2 + N2/5Ξ−1/6 + N1/2(qΞ)−1/2

}

�ε Nε/10
{
N1/4Q′−1/2y + N5/12P 1/3Q′−1/6 + N3/20y1/2 + N2/5(N−1PQ)1/6 + Q1/2

}

�ε Nε/10
{
N1/2+10εy−1/2 + N3/20y1/2 + N7/30+3εy1/3 + N−3εy

}

�ε N−2εy,

provided y ≥ N1/2−3/20+8ε. �

In order to exploit Choi & Kumchev’s mean value theorem effectively, we need to prove a
preliminary lemma.

Lemma 2.3. Let χ be a Dirichlet character modulo r. Let Q ≥ r, 2 ≤ X < Y ≤ 2X, T0 :=
(log(Y/X))−1, T1 := (log(Y/X))−2, T2 := 8πX2/(rQ), T3 := X4 and κ := (log X)−1. Define

(2.12) F (s, χ) :=
∑

X≤n≤2X

Λ(n)χ(n)n−s.

Then we have

(2.13)

max
|β|≤1/(rQ)

∣∣∣
∑

X≤n≤Y

Λ(n)χ(n)e(βn2)
∣∣∣ � log

(
Y

X

) ∫

|τ |≤T1

|F (κ + iτ, χ)| dτ

+

∫

T1<|τ |≤T2

|F (κ + iτ, χ)|

|τ |1/2
dτ

+

∫

T2<|τ |≤T3

|F (κ + iτ, χ)|

|τ |
dτ + 1
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and

(2.14)

∑

X≤n≤Y

Λ(n)χ(n) � log

(
Y

X

) ∫

|τ |≤T0

|F (κ + iτ, χ)| dτ

+

∫

T0<|τ |≤T3

|F (κ + iτ, χ)|

|τ |
dτ + 1.

The implied constants are absolute.

Proof. By Perron’s formula ([16], Corollary II.2.1), for any t ∈ [X, 2X ] we can write

∑

X≤n≤t

Λ(n)χ(n) =
1

2πi

∫ κ+iT3

κ−iT3

F (s, χ)
ts − Xs

s
ds + O

(
log(T3X)

T3

)
.

From this, a simple partial summation gives

(2.15)

∑

X≤n≤Y

Λ(n)χ(n)e(βn2) =

∫ Y

X

e(βt2) d
( ∑

X≤n≤t

Λ(n)χ(n)
)

=
1

2πi

∫ κ+iT3

κ−iT3

F (s, χ)V (s, β) ds + O(1),

where

V (s, β) :=

∫ Y

X

ts−1e(βt2) dt.

First for all β ∈ R, we have trivially

(2.16) |V (κ + iτ, β)| ≤

∫ Y

X

tκ−1 dt � log(Y/X).

On the other hand, the change of variables u = t2 and the second mean value formula ([16],
Theorem I.0.3) imply

V (s, β) =
1

2

∫ Y 2

X2

uκ/2−1e(βu + (τ/4π) log u) du

=
Xκ−2

2

∫ ξ

X2

e(βu + (τ/4π) log u) du +
Y κ−2

2

∫ Y 2

ξ

e(βu + (τ/4π) log u) du

for some ξ ∈ [X2, Y 2]. We estimate the last two integrals by using Theorem I.6.2 [16] if T2 < |τ | ≤
T3 and Theorem I.6.3 [16] if T1 < |τ | ≤ T2 and use (2.16) for |τ | ≤ T1. We obtain

max
|β|≤1/(rQ)

|V (s, β)| �





log(Y/X) if |τ | ≤ T1,

|τ |−1/2 if T1 < |τ | ≤ T2,

|τ |−1 if T2 < |τ | ≤ T3.

Now the inequality (2.13) follows from (2.15) by splitting the integral into three parts according
to |τ | ≤ T1 or T1 ≤ |τ | ≤ T2 or T2 ≤ |τ | ≤ T3 and by using the preceding estimates.

Similarly there is a real number ξ ∈ [X, Y ] such that

(2.17) V (κ + iτ, 0) = Xκ−1

∫ ξ

X

tiτ dt + Y κ−1

∫ Y

ξ

tiτ dt � (|τ | + 1)−1.

Now the inequality (2.14) follows from (2.15) with β = 0 by splitting the integral into two parts
according to |τ | ≤ T0 or T0 ≤ |τ | ≤ T3 and by using (2.17) and (2.16) with β = 0. This completes
the proof. �
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Next we shall prove three estimates (see (2.21), (2.22) and (2.23) below), which play an impor-
tant role in Liu’s iterative procedure [6]. Define

S0(β) :=
∑

x−y≤n≤x+y

e(βn2),(2.18)

Wχ(β) :=
∑

x−y≤p≤x+y

(log p)χ(p)e(βp2) − δχS0(β)(2.19)

and δχ = 1 or 0 according as χ is principal or not. We also set L := log N ,

(2.20) W ]
χ := max

|β|≤1/(rQ)
|Wχ(β)| and ‖Wχ‖2 :=

( ∫ 1/(rQ)

−1/(rQ)

|Wχ(β)|2 dβ

)1/2

.

Proposition 2.2. Let d ≥ 1 and j = 3, 4. Let (x, y) = (xj , yj) and (P, Q) = (Pj , Qj) be defined
as in (2.1) and (2.2), respectively. Then there is an absolute positive constant c such that for any
ε > 0 we have

∑

r≤P

[d, r]−(j−2)/2+ε
∑

χ (mod r)

∗
W ]

χ �ε d−(j−2)/2+εyLc,(2.21)

∑

r≤P

[d, r]−(j−2)/2+ε
∑

χ (mod r)

∗
‖Wχ‖2 �ε d−(j−2)/2+εN−1/4y1/2Lc.(2.22)

Further if d = 1, the first estimate can be improved to

(2.23)
∑

r≤P

r−(j−2)/2+ε
∑

χ (mod r)

∗
W ]

χ �A yL−A

for any fixed A > 0.

Proof. Introducing

(2.24) W̃χ(β) :=
∑

x−y≤n≤x+y

Λ(n)χ(n)e(βn2) − δχS0(β),

we have, for all β ∈ R,

(2.25)
∣∣W̃χ(β) − Wχ(β)

∣∣ ≤ 2
∑

x−y≤pν≤x+y
ν≥2

log p �
∑

x−y≤pν≤x+y
ν≥2

L � L2,

where we have used the fact that
∑

x−y≤pν≤x+y
ν≥2

1 ≤ L. Thus

W ]
χ ≤ W̃ ]

χ + O
(
L2

)
.

The contribute of O
(
L2

)
to (2.21) is , writing [d, r] = dr/` and ` = (d, r),

� L2
∑

`|d, `≤P

∑

r≤P, `|r

(dr/`)−(j−2)/2+εr

� d−(j−2)/2+εL2P (9−j)/4+ε

� d−(j−2)/2+εy,

since P (9−j)/4+ε �ε y in view of our choice of P (see (2.2)).
Therefore in order to prove (2.21), it is enough to show

(2.26)
∑

r∼R

[d, r]−(j−2)/2+ε
∑

χ (mod r)

∗
W̃ ]

χ � d−(j−2)/2+εyLc

for any R ≤ P , where r ∼ R means that R ≤ r < 2R.
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If R = 1 and r ∼ R, we have χ = χ∗
0 (mod 1) (the primitive character modulo 1). Thus

W̃ ]
χ ≤

∑

x−y≤n≤x+y

2L � yL.

This will contributes O(d−(j−2)/2+εyL), which is acceptable.
For 2 ≤ R ≤ P and r ∼ R, we have δχ = 0. Thus we can apply (2.13) to write

(2.27)

W̃ ]
χ �

y

x

∫

|τ |≤T1

|F (κ + iτ, χ)| dτ +

∫

T1<|τ |≤T2

|F (κ + iτ, χ)|

|τ |1/2
dτ

+

∫

T2<|τ |≤T

|F (κ + iτ, χ)|

|τ |
dτ + 1,

where T1 � (x/y)2, T2 � x2/(RQ) and T � x4.
By Lemma 2.2, the contribution of the first term on the right-hand side of (2.27) to (2.21) is

(2.28)

� d−(j−2)/2+εx−1y
∑

`|d, `≤2R

(R/`)−(j−2)/2+ε
(
`−1R2T1x

11/20 + x
)

� d−(j−2)/2+εy
(
P (9−j)/4+εN31/40y−2 + 1

)
Lc

� d−(j−2)/2+εyLc

in view of our choice of (P, y) (see (2.1) and (2.2)).
Introducing

M(`, R, T ′, x) :=
∑

r∼R, `|r

∑

χ (mod r)

∗
∫ 2T ′

T ′

|F (κ + iτ, χ)| dτ,

the contribution of the second term on the right-hand side of (2.27) to (2.21) is

(2.29)

� d−(j−2)/2+εLc
∑

`|d, `≤R

(R/`)−(j−2)/2+ε max
T1≤T ′≤T2

(
T ′−1/2M(`, R, T ′, x)

)

� d−(j−2)/2+εLc
∑

`|d, `≤R

(R/`)−(j−2)/2+ε
(
`−1R2T

1/2
2 x11/20 + T

−1/2
1 x

)
Lc

� d−(j−2)/2+εy
(
P (7−j)/4+εQ−1/2N31/40y−1 + 1

)
Lc

� d−(j−2)/2+εyLc,

in view of our choice of (P, Q, y) (see (2.1) and (2.2)).
Similarly the contribution of the third term on the right-hand side of (2.27) to (2.21) is

(2.30)

� d−(j−2)/2+εLc
∑

`|d, `≤R

(R/`)−(j−2)/2+ε max
T2≤T ′≤T

(
T ′−1M(`, R, T ′, x)

)

� d−(j−2)/2+εLc
∑

`|d, `≤R

(R/`)−(j−2)/2+ε
(
`−1R2x11/20 + T−1

2 x
)
Lc

� d−(j−2)/2+εy
(
P (9−j)/4+εN11/40y−1 + PQ(xy)−1

)
Lc

� d−(j−2)/2+εyLc,

in view of our choice of (P, Q, y) (see (2.1) and (2.2)).
Finally the contribution of the last term on the right-hand side of (2.27) to (2.21) is

(2.31) � d−(j−2)/2+ε
∑

`|d, `≤R

(R/`)−(j−2)/2+ε � d−(j−2)/2+ε � d−(j−2)/2+εy.

Now the inequality (2.26) follows from (2.28), (2.29), (2.30) and (2.31). This proves (2.21).
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The proof of (2.22) is rather similar. Therefore we shall only point out different places. First
the inequality (2.25) implies

‖Wχ‖2 � ‖W̃χ‖2 + L2(r/Q)1/2.

The contribution of O(L2(r/Q)1/2) to (2.22) is

� L2Q−1/2
∑

`|d, `≤P

∑

r≤P, `|r

(dr/`)−(j−2)/2+εr1/2

� d−(j−2)/2+εL2P 1/2+εQ−1/2

� d−(j−2)/2+εN−1/4y1/2,

since P 1+εN1/2 �ε Qy in view of our choice of (P, Q, y) (see (2.1) and (2.2)). Thus in order to
prove (2.22), it suffices to show that

(2.32)
∑

r∼R

[d, r]−(j−2)/2+ε
∑

χ (mod r)

∗
‖W̃χ‖2 � d−(j−2)/2+εN−1/4y1/2Lc

for any R ≤ P . For this, by Lemma 1.9 of [14] we write, for r ∼ R,

‖W̃χ‖2 �
1

RQ

( ∫ ∞

−∞

∣∣∣
∑

v−RQ/3<n2≤v+RQ/3
x−y≤n≤x+y

(Λ(n)χ(n) − δχ)
∣∣∣
2

dv

)1/2

�
1

RQ

( ∫ (x+y)2+RQ/3

(x−y)2−RQ

∣∣∣
∑

X≤n≤Y

(Λ(n)χ(n) − δχ)
∣∣∣
2

dv

)1/2

,

where X := max{(v − RQ/3)1/2, x − y} and Y := min{(v + RQ/3)1/2, x + y}.
If R = 1, we have

∣∣∣
∑

X≤n≤Y

(Λ(n)χ(n) − δχ)
∣∣∣ =

∣∣∣
∑

Y <n≤X

(Λ(n) − 1)
∣∣∣ ≤ 2(X − Y )L

�
{
(v + Q/3)1/2 − (v − Q/3)1/2

}
L

� Qv−1/2L � N−1/2QL,

which implies, in view of Q < xy,

(2.33)
d−(j−2)/2+ε‖W̃χ∗

0
‖2 � d−(j−2)/2+εQ−1

(
(N−1/2QL)2(xy + Q)

)1/2

� d−(j−2)/2+εN−1/4y1/2L.

For R ≥ 2 and r ∼ R, we have δχ = 0. Thus we can apply (2.14) of Lemma 2.3 to write

(2.34) ‖W̃χ‖2 �
( y

x3

)1/2
∫

|τ |≤T0

|F (κ+iτ, χ)| dτ +
(xy)1/2

RQ

∫

T0<|τ |≤T

|F (κ + iτ, χ)|

|τ |
dτ +

(xy)1/2

RQ
,

since T−1
0 = log(Y/X) � RQv−1 � RQx−2 and (x + y)2 + RQ/3 − (x − y)2 + RQ/3 � xy.

As before, the contribution of the first term on the left-hand side of (2.34) to (2.32) is

(2.35)

� d−(j−2)/2+ε(x−3y)1/2
∑

`|d, `≤2R

(R/`)−(j−2)/2+ε
(
`−1R2T0x

11/20 + x
)

� d−(j−2)/2+εN−1/4y1/2
(
P (5−j)/4+εQ−1N31/40 + 1

)
Lc

� d−(j−2)/2+εN−1/4y1/2Lc



8 HONGZE LI1 AND JIE WU

in view of our choice of (P, Q); the contribution of the second term on the left-hand side of (2.34)
to (2.32) is

(2.36)

� d−(j−2)/2+ε(xy)1/2(RQ)−1Lc
∑

`|d, `≤R

(R/`)−(j−2)/2+ε max
T0≤T ′≤T

(
T ′−1M(`, R, T ′, x)

)

� d−(j−2)/2+ε(xy)1/2(RQ)−1Lc
∑

`|d, `≤R

(R/`)−(j−2)/2+ε
(
`−1R2x11/20 + T−1

0 x
)
Lc

� d−(j−2)/2+εN−1/4y1/2
(
P (5−j)/4+εQ−1N31/40 + 1

)
Lc

� d−(j−2)/2+εN−1/4y1/2Lc;

the contribution of the last term on the left-hand side of (2.34) to (2.32) is

(2.37)

� d−(j−2)/2+εQ−1(xy)1/2
∑

`|d, `≤2R

∑

r∼R, `|r

(r/`)−(j−2)/2+ε

� d−(j−2)/2+εN−1/4y1/2R(5−j)/4+εQ−1x

� d−(j−2)/2+εN−1/4y1/2Lc,

since R(5−j)/4+εx ≤ P (5−j)/4+εN1/2 ≤ Q.
Now the estimate (2.32) follows from (2.33), (2.36), (2.35) and (2.37). This proves (2.22).

The estimate (2.23) can be proved in the same way as Lemma 2.3 of [13] and we omit detail.
This completes the proof of Lemma 2.2. �

3. Asymptotic formula for Rj(N ; M)

The aim of this section is to treat the integral Rj(N ; M) over the major arcs M.

Proposition 3.1. Let j = 3, 4. Then for N ∈ Aj with N → ∞, we have

(3.1)

∫

M

S(α)je(−αN) dα ∼ CjSj(N)N−1/2yj−1,

where Cj are some positive constants, φ(q) is the Euler function and

Sj(N) :=

∞∑

q=1

1

φ(q)j

q∑

a=1
(a,q)=1

( q∑

h=1

e2πiah2/q

)j

e−2πiaN/q.

Proof. Since q ≤ P < x− y, we have (p, q) = 1 for all p ∈ (x− y, x+ y]. By using the orthogonality
relation, we can write

S(a/q + β) =
∑

1≤h≤q

e2πiah2/q
∑

x−y≤p≤x+y
p≡h(mod q), (p,q)=1

(log p)e
(
βp2

)

=
1

φ(q)

∑

χ(mod q)

∑

1≤h≤q

χ(h)e2πiah2/q
∑

x−y≤p≤x+y

χ(p)(log p)e
(
βp2

)
.

Introducing notation

(3.2) C(χ, a) :=
∑

1≤h≤q

χ(h)e2πiah2/q and C(q, a) := C(χ0, a),

where χ0 is the principal character modulo q, the preceding relation can be written as

(3.3) S(a/q + β) =
C(q, a)

φ(q)
S0(β) +

1

φ(q)

∑

χ(mod q)

C(χ, a)Wχ(β),
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where S0(β) and Wχ(β) are defined as in (2.18) and (2.19), respectively. In view of our choice of
P and Q, we have 2P < Q. Thus the intervals I(a, q) are mutually disjoint and we can write, by
using (3.3),

(3.4)

∫

M

S(α)je(−αN) dα =
∑

1≤q≤P

∑

1≤a≤q
(a,q)=1

e−2πiaN/q

∫ 1/(qQ)

−1/(qQ)

S(a/q + β)je(−βN) dβ

=
∑

0≤k≤j

Cj
kIk,

where

Ik :=
∑

1≤q≤P

1

φ(q)j

∑

1≤a≤q
(a,q)=1

C(q, a)j−ke−2πiaN/q×

×

∫ 1/(qQ)

−1/(qQ)

S0(α)j−k

( ∑

χ (mod q)

C(χ, a)Wχ(β)

)k

e(−βN) dβ.

We shall see that I0 contributes the main term and the others Ij are as error terms.
By the standard major arcs techniques, we can prove

(3.5) I0 = CjSj(N)yj−1N−1/2{1 + o(1)}.

It remains to control the Ik (1 ≤ k ≤ j). We shall only treat Ij , the others can be treated
similarly (even more easily). We can write

Ij =
∑

1≤q≤P

∑

χ1 (mod q)

· · ·
∑

χj (mod q)

Bj(N, q; χ1, . . . , χj)Jj(N, q; χ1, . . . , χj),

where

Bj(N, q; χ1, . . . , χj) :=
1

φ(q)j

q∑

a=1
(a,q)=1

C(χ1, a) · · ·C(χj , a)e−2πiaN/q,

Jj(N, q; χ1, . . . , χj) :=

∫ 1/(qQ)

−1/(qQ)

Wχ1
(β) · · ·Wχj

(β)e(−βN) dβ.

Suppose that χ∗
k (mod rk) with rk | q is the primitive character inducing χk. Thus we can write

χk = χ0χ
∗
k. It is easy to see that Wχk

(β) = Wχ∗

k
(β). By Cauchy’s inequality, it follows that

(3.6) |Jj(N, q; χ1, . . . , χj)| ≤ W ]
χ∗

1

· · ·W ]
χ∗

j−2

Wχ∗

j−1
Wχ∗

j
,

where W ]
χ and ‖Wχ‖2 are defined as in (2.20) with r := [r1, . . . , rj ]. From (3.6) and the inequality

(see [12] for j = 3 and [1] for j = 5. The general case can be treated in the same way.)
∑

q≤z, r|q

|Bj(N, q; χ∗
1χ0, . . . , χ

∗
jχ0)| �ε r−(j−2)/2+ε(log z)c,

we deduce

Ij � Lc
∑

r1≤P

∑

χ1 (mod r1)

∗
W ]

χ1
· · ·

∑

rj−2≤P

∑

χj−2 (mod rj−2)

∗
W ]

χj−2
×

×
∑

rj−1≤P

∑

χj−1 (mod rj−1)

∗
Wχj−1

∑

rj≤P

[r1, . . . , rj ]
−(j−2)/2+ε

∑

χj (mod rj)

∗
Wχj

.
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By noticing that [r1, . . . , rj ] = [[r1, . . . , rj−1], rj ], we use consecutively (2.22) (2 times), (2.21) (j−3
times) and (2.23) (1 time) of Proposition 2.2 to write

(3.7)

Ij � N−1/4y1/2Lc
∑

r1≤P

∑

χ1 (mod r1)

∗
W ]

χ1
· · ·

∑

rj−2≤P

∑

χj−2 (mod rj−2)

∗
W ]

χj−2
×

×
∑

rj−1≤P

[r1, . . . , rj−1]
−(j−2)/2+ε

∑

χj−1 (mod rj−1)

∗
Wχj−1

� N−1/2yLc
∑

r1≤P

∑

χ1 (mod r1)

∗
W ]

χ1
· · ·

∑

rj−2≤P

[r1, . . . , rj−2]
−(j−2)/2+ε

∑

χj−2 (mod rj−2)

∗
W ]

χj−2

� N−1/2yj−2Lc
∑

r1≤P

r
−(j−2)/2+ε
1

∑

χ1 (mod r1)

∗
W ]

χ1

� N−1/2yj−1L−A

for any fixed A > 0.
Now the required asymptotic formula follows from (3.4), (3.5) and (3.7). �

4. Proof of Theorem 1 (the minor arcs)

We first prove a preliminary lemma, which can be regarded as generalisation of Hua’s lemma
([17], Lemma 2.5) in the case of short intervals.

Lemma 4.1. Let X ≥ Y ≥ 2, k ∈ N and

S∗
k(α) :=

∑

X−Y ≤n≤X+Y

e(αnk)

Then for any ε > 0 and 1 ≤ j ≤ k, we have
∫ 1

0

|S∗
k(α)|2

j

dα �ε XεY 2j−j .

Proof. We prove only the case of j = k = 2. The general case can be treated by recurrence. We
first write

|S∗
2 (α)|2 =

∑

X−Y ≤m≤X+Y

∑

X−Y ≤n≤X+Y

e(α(m2 − n2)) (m = n + h)

=
∑

−2Y ≤h≤2Y

∑

X−Y ≤n≤X+Y

e(αh(2n + h))

=
∑

d

ad e(αh(2n + h))

with

ad :=
∑

−2Y ≤h≤2Y

∑

X−Y ≤n≤X+Y

h(2n+h)=d

1.

Clearly a0 ≤ 4Y and ad ≤ τ(|d|) �ε |d|ε/2 �ε (XY )ε/2 �ε Xε (d 6= 0) where τ(|d|) is the divisor
function. On the other hand, we can write

|S∗
2 (α)|2 =

∑

X−Y ≤m≤X+Y

∑

X−Y ≤n≤X+Y

e(−α(m2 − n2)) =
∑

d

bd e(−αd),

where

bd :=
∑

X−Y ≤m≤X+Y

∑

X−Y ≤n≤X+Y

m2−n2=d

1.
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Clearly b0 ≤ 2Y and ∑

d

bd = |S∗(0)|2 ≤ (2Y )2.

Thus
∫ 1

0

|S∗
2 (α)|4 dα =

∫ 1

0

(
a0 +

∑

d1 6=0

ad1
e(αd1)

)(
b0 +

∑

d2 6=0

bd2
e(−αd2)

)
dα

= a0b0 +
∑

d 6=0

adbd � Y 2 + XεY 2 �ε XεY 2.

This completes the proof. �

Next we shall apply the device introduced by Wooley [18] to prove Theorem 1. Let j = 3 or 4
and denote by E ∗

j (z) the set of integers N ∈ Aj ∩ [z/2, z] such that

N 6= p2
1 + · · · + p2

j with
∣∣pi − (N/j)1/2

∣∣ ≤ N1/2−9/100+ε (1 ≤ i ≤ j).

Introduce the generating function

Z(α) :=
∑

N∈E ∗

j
(z)

e(−αN).

Clearly we have ∫ 1

0

S(α)jZ(α) dα = 0.

By using Proposition 3.1 with j = 3, 4, it follows that
∣∣∣∣
∫

m

S(α)jZ(α) dα

∣∣∣∣ =

∣∣∣∣
∫

M

S(α)jZ(α) dα

∣∣∣∣

=
∑

N∈E ∗

j
(z)

∫

M

S(α)je(−αN) dα

� |E ∗
j (z)|N−1/2yj−1.

From this and (2.9), we deduce that

|E ∗
j (z)| � N1/2y−j+1

∫

m

∣∣S(α)jZ(α)
∣∣ dα

� N1/2−2(j−2)εy−1

∫ 1

0

∣∣S(α)2Z(α)
∣∣ dα

� N1/2−2(j−2)εy−1

( ∫ 1

0

|Z(α)|2 dα

)1/2( ∫ 1

0

|S(α)|4 dα

)1/2

.

Clearly ∫ 1

0

|Z(α)|2 dα = |E ∗
j (z)|

and Lemma 4.1 implies
∫ 1

0

|S(α)|4 dα �

∫ 1

0

|S∗
2 (α)|4 dα � Nεy2.

Thus

|E ∗
j (z)| � N1/2−(2j−5)ε|E ∗

j (z)|1/2,

which is equivalent to E
∗
j (z) � z1−(4j−10)ε. This completes the proof of Theorem 1. �
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