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On the least quadratic non-residue

Y.-K. Lau & J. Wu

Abstract. We prove that for almost all real primitive characters χd of modulus

|d|, the least positive integer nχd
at which χd takes a value not equal to 0 and 1 satisfies

nχd
� log |d|, and give a quite precise estimate on the size of the exceptional set. Also,

we generalize Burgess’ bound for nχp′
(with p′ being a prime up to ± sign) to composite

modulus |d| and improve Garaev’s upper bound for the least quadratic non-residue in

Pajtechĭı-S̆apiro’s sequence.

§ 1. Introduction

Let q ≥ 2 be an integer and χ a non principal Dirichlet character modulo q. Here the

evaluation of the least integer nχ among all positive integers n for which χ(n) 6= 0, 1 is referred

as Linnik’s problem. In case χ coincides with the Legendre symbol, nχ is a least quadratic

non-residue. Concerning the size of nχ, Pólya-Vinogradov’s inequality

(1.1) max
x≥1

∣

∣

∣

∑

n≤x

χ(n)
∣

∣

∣
� q1/2 log q

implies trivially nχ � q1/2 log q. But for prime q, Vinogradov [24] proved the better bound

(1.2) nχ � q1/(2
√

e)(log q)2

by combining a simple argument with (1.1). He also conjectured that nχ �ε q
ε for all integers

q ≥ 2 and any ε > 0. Under the Generalized Riemann Hypothesis (GRH), Linnik [18] settled

this conjecture, and later Ankeny [1] gave a sharper estimate

(1.3) nχ � (log q)2

(still assuming GRH). Burgess ([3], [4], [5]) wrote a series of important papers on sharpening

(1.1). His well known estimate on character sums is as follows: For any ε > 0, there is δ(ε) > 0

such that

(1.4)
∣

∣

∣

∑

n≤x

χ(n)
∣

∣

∣
�ε xq

−δ(ε)

provided x ≥ q1/3+ε. The last condition can be improved to x ≥ q1/4+ε if q is cubefree. When

q is prime, he deduced, via (1.4) and Vinogradov’s argument,

(1.5) nχ �ε q
1/(4

√
e)+ε.

Since Burgess’ estimate (1.4) on character sums holds for composite modulus, one expects

a bound analogous to (1.5) for nχ in general cases, but this seems not available in literature.

Our first result is to propose such a generalisation, by modifying Vinogradov’s argument.
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Theorem 1. Let ε be an arbitrarily small positive number. For all integers q ≥ 2 and χ non

principal characters (mod q), we have

nχ �ε

{

q1/(4
√

e)+ε if q is cubefree,

q1/(3
√

e)+ε otherwise.

The proof of Theorem 1 will be given in the Section 2.

Let us now focus on real primitive characters. Denote D (resp. D(Q)) to be the set of

fundamental discriminants d (resp. with |d| ≤ Q), that is, the set of non-zero integers d which

are products of coprime factors of the form −4, 8, −8, p′ where p′ := (−1)(p−1)/2p (p odd

prime). Also, we write K (resp. K(Q)) for the set of real primitive characters (resp. with

modulus q ≤ Q). Then there is a bijection between D and K given by

d 7→ χd(·) =

(

d

·

)

K

where
(

d
·
)

K
is the Kronecker symbol. Note that the modulus of χd equals |d| and

(1.6) |D(Q)| = |K(Q)| =
6

π2
Q+O(Q1/2).

In the opposite direction of (1.2), Frilender [12], Salié [23] and Chowla & Turán (see [10])

independently shew that there are infinitely many primes p for which

(1.7) nχp′
� log p,

or in other words, nχp′
= Ω(log p). Under GRH, Montgomery [20] gave a stronger result

nχp′
= Ω(log p log2 p), where logk denotes the k-fold iterated logarithm. Without any assump-

tion Graham & Ringrose [14] obtained nχp′
= Ω(log p log3 p). In view of these results, it is

natural to wonder what is the size of the majority of nχp′
, or more generally nχd

. Indeed the

density of large nχp′
’s like those in (1.7) or bigger is low, which can be seen from an Erdős’

result [11],

(1.8) lim
x→∞

1

π(x)

∑

p≤x

nχp′
= constant

where π(x) denotes the number of primes up to x. This result is extended and refined by Elliott

in [7] and [8]. Using (1.8) or its refinement in [7], it follows, for any fixed constant δ > 0, we see

(1.9)
∑

p≤x, nχ
p′

≥δ log p

1 �δ
x

(log x)2
.

In [6], Duke & Kowalski indicated: Let α > 1 be given. Denote by N(Q,α) the number of

primitive characters χ (not necessarily real) of modulus q ≤ Q such that χ(n) = 1 for all

n ≤ (logQ)α and (n, q) = 1. Then one has

N(Q,α) �ε Q
2/α+ε

for all ε > 0. This follows that

|{|d| ≤ Q : nχd
≥ (logQ)α}| �ε Q

2/α+ε.
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However, in view of (1.6) this result is non-trivial only when α > 2 and it tells that nχd
≥

(log |d|)2+ε for almost all fundamental discriminants d. Very recently Baier [2] improved 2 + ε

to 1 + ε by using the large sieve inequality of Heath-Brown [15] for real primitive characters.

Still it is unable to cover the case α = 1 or to provide information on the sparsity of the primes

p with nχp′
� log p as in (1.9).

Our second result is to supplement the case α = 1, using the large sieve inequality of Elliott-

Montgomery-Vaughan (see [9] and [21]). We obtain an almost all result, which is strong enough

to yield a more tight estimate on the low density of exceptional non-residues than in (1.9).

Theorem 2. For 2 ≤ P ≤ Q, define

E(Q,P ) := {d ∈ D(Q) : χd(p) = 1 for P < p ≤ 2P and p - |d|}.

Then there are two absolute positive constants C and c such that

(1.10) |E(Q,P )| � Qe−c(log Q)/ log2 Q

holds uniformly for Q ≥ 10 and C logQ ≤ P ≤ (logQ)2. In particular we have

(1.11) nχd
� log |d|

for all but except O
(

Qe−c(log Q)/ log2 Q
)

characters χd ∈ K(Q).

Sections 3 and e are devoted to the proof of Theorem 2.

The next Theorem 3 (essentially due to Graham & Ringrose [14]) shows that the upper

bound for exceptional real primitive characters set is optimal. Graham & Ringrose considered

a problem of the quasi-random graths (Paley graths) which leads to study the lower bound for

the sum of the right-hand side of (6.5) below. This will also be the essential part of our proof

of Theorem 3. We shall provide the salient points along the line of arguments in [14] to prove

Theorem 3, see Sections 5 and 6.

Theorem 3. For any fixed constant δ > 0, there are a sequence of positive real numbers

{Qn}∞n=1 with Qn → ∞ and a positive constant c such that

(1.12)
∑

Q1/2
n <p≤Qn

nχp≥δ log p

1 �δ Qne
−c(log Qn)/ log2 Qn .

Further if we assume that both L1(s, Py) and L4(s, Py) defined in (5.3) below have no exceptional

zeros in the region (5.4), then (1.12) holds for all Q ≥ 10.

Finally we consider the least quadratic non-residue problem in Pajtechĭı-S̆apiro’s sequence

{[nc]}∞n=1, where c > 1 is a constant and [t] denotes the integral part of t ∈ R. Denote by nχp′ ,c

the least positive integer n such that [nc] is a quadratic non-residue (mod p). Garaev [13] proved

that for 1 < c < 12
11 and any ε > 0, one has

(1.13) nχp′ ,c �c,ε p
3/(8(3−2c)

√
e)+ε

for all primes p. He pointed out also that by the method of exponential pairs the range of c and

the exponent of p can be improved to 1 < c < 12
11 +0.00257 · · · and 1/(8(1−θ2c)

√
e), respectively,

where θ2 = 0.66451 · · ·. Here we propose a further improvement by applying a recent result of

Robert & Sargos [22], and give an almost result based on Theorem 2.
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Theorem 4. Let 1 < c < 32
29 . Then for all primes p and any ε > 0, we have

nχp′ ,c �c,ε p
9/((64−40c)

√
e)+ε.

For all but except O
(

Qe−c(log Q)/ log2 Q
)

primes p with p ≤ Q, we have

nχp′ ,c �c,ε (log p)9/(16−10c)+ε.

We prove Theorem 4 in Section 7.

Our range of c is larger than 12
11 + 0.00257 · · · (32

29 = 12
11 + 0.01253 · · · .) and our exponent is

definitely better than (1.13) but is smaller than 1/(8(1 − θ2c)
√
e) only when c > 1/(9θ2 − 5) =

1.019794 · · ·. It is possible to give a slightly better result with Huxley’s estimates for exponential

sums [16, § 18.5]. We can also generalize Theorem 4 to composite modulus |d| as in Theorem 1,

but with smaller range of c and larger exponent of |d|.

§ 2. Vinogradov’s argument and proof of Theorem 1

Without loss of generality we assume nχ ≥ q1/(4
√

e) (otherwise there is nothing to prove).

Let x be a number specified later but satisfy

q > x ≥
{

q1/4+ε if q is cubefree,

q1/3+ε otherwise.

By Burgess’ well known estimate (1.4) on character sums, for any ε > 0 there are two

positive constants Cε and δ(ε) > 0 such that

Cεxq
−δ(ε) ≥

∣

∣

∣

∑

n≤x

χ(n)
∣

∣

∣
(2.1)

≥
∑

n≤x
(n,q)=1

1 − 2
∑

n≤x
(n,q)=1, χ(n) 6=1

1

≥
∑

n≤x
(n,q)=1

1 − 2
∑

nχ<p≤x

∑

m≤x/p
(m,q)=1

1.

As usual we denote by ϕ(n) the Euler function, µ(n) the Möbius function and ω(n) the number

of distinct prime factors of n. With the Möbius inversion formula, we have, for some |θ| ≤ 1,

(2.2)
∑

n≤x
(n,q)=1

1 =
∑

d|q
µ(d)

∑

m≤x/d

1 =
ϕ(q)

q
x+ θ2ω(q).

To estimate the last double sum on the right-hand side of (2.1), we divide the sum over

p into two parts according as nχ < p ≤ x/2ω(q) or x/2ω(q) < p ≤ x. By (2.2), the first part

contributes at most

∑

nχ<p≤x/2ω(q)

(

ϕ(q)

q

x

p
+ 2ω(q)

)

(2.3)

≤ ϕ(q)

q
x

{

log

(

log x

lognχ

)

+O
(

e−
√

log nχ

)

}

+
(1 + ε)x

log(x2−ω(q))

≤ ϕ(q)

q
x log

(

log x

lognχ

)

+ (1 + 2ε)
x

logx
.
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Note that 2ω(q) � xε and nχ ≥ q1/(4
√

e). For the second part, we interchange the summations

and apply the Rankin trick,

∑

x/2ω(q)<p≤x

∑

m≤x/p
(m,q)=1

1 ≤
∑

1≤m≤2ω(q)

(m,q)=1

∑

p≤x/m

1

� x

log x

∑

1≤m≤2ω(q)

(m,q)=1

1

m

≤ x

log x

∏

p≤2ω(q)

(p,q)=1

(

1 − 1

p

)−1

=
ϕ(q)

q

x

log x

∏

p>2ω(q)

p|q

(

1 − 1

p

)−1

×
∏

p≤2ω(q)

(

1 − 1

p

)−1

.

In virtue of the simple estimates

∏

p>2ω(q)

p|q

(

1 − 1

p

)−1

� exp

{

∑

p>2ω(q)

p|q

1

p

}

� exp

{

ω(q)

2ω(q)

}

� 1,

∏

p≤2ω(q)

(

1 − 1

p

)−1

� exp

{

∑

p≤2ω(q)

1

p

}

� ω(q),

it follows immediately that

(2.4)
∑

x/2ω(q)<p≤x

∑

m≤x/p
(m,q)=1

1 � ϕ(q)

q
x
ω(q)

log x
.

Inserting (2.2), (2.3) and (2.4) into (2.1), we conclude

Cεxq
−δ(ε) ≥ ϕ(q)

q
x

{

1 − 2 log

(

log x

lognχ

)}

− 2ω(q) − (1 + 2ε)
x

log x
− Cε

ϕ(q)

q
x
ω(q)

log x
.

From this we deduce that

log

(

log x

lognχ

)

≥ 1

2
− Cε

2

q1−δ(ε)

ϕ(q)
− (1/2 + ε)q

ϕ(q) log x
− Cε

2

ω(q)

log x

≥ 1

2
− Cε

(

q

ϕ(q) log x
+
ω(q)

log x

)

provided q ≥ q0(ε). Since q/ϕ(q) log x + ω(q)/ log x � (log2 q)
−1, the preceeding inequality

implies

nχ � x1/
√

e exp

{

O

(

q

ϕ(q)
+ ω(q)

)}

,

which gives the required result, by taking

x =

{

q1/4+ε if q is cubefree,

q1/3+ε otherwise.

This completes the proof of Theorem 1. �
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§ 3. A large sieve inequality of Montgomery-Vaughan

Our key tool for proving Theorem 2 is a large sieve inequality of Montgomery & Vaughan

in [21, page 1050] following from [21, Lemma 2]. Here we state a slightly refined version (see

Lemma 1 below). Their original statement absorbs the factors (6/ logP )j and {6/(logP )2}j in

the implied constant. We reproduce here their proof with a minuscule modification.

Lemma 1. We have

(3.1)
∑

d∈D(Q)

∣

∣

∣

∣

∑

P<p≤2P

χd(p)

p

∣

∣

∣

∣

2j

� Q

(

6j

P logP

)j

+

(

6P

(logP )2

)j

uniformly for 2 ≤ P ≤ Q and j ≥ 1. The implied constant is absolute.

Proof. Since χd(n) is completely multiplicative on n, we can write

(

∑

P<p≤2P

χd(p)

p

)j

=
∑

P j<m≤(2P )j

aj(m)

m
χd(m),

where

aj(m) := |{(p1, . . . , pj) : p1 · · · pj = m, P < pi ≤ 2P}|.

By Lemma 2 of [21] with the choice of parameters

X = P j , Y = (2P )j and am = aj(m)/m,

it follows that as aj(m1)aj(m2) ≤ a2j(n
2) for n2 = m1m2,

(3.2)
∑

d∈D(Q)

∣

∣

∣

∣

∑

P<p≤2P

χd(p)

p

∣

∣

∣

∣

2j

� Q
∑

P j<n≤(2P )j

a2j(n
2)

n2
+

(

∑

P<p≤2P

1

p1/2

)2j

.

Writing n = pν1
1 · · · pνi

i with ν1 + · · · + νi = j, we have

a2j(n
2) =

(2j)!

(2ν1)! · · · (2νi)!

=
(2j)!

j!

ν1!

(2ν1)!
· · · νi!

(2νi)!
aj(n).

From this, it is easy to see a2j(n
2) ≤ jjaj(n), and thus

∑

P j<n≤(2P )j

a2j(n
2)

n2
≤ jj

∑

P j<n≤(2P )j

aj(n)

n2

=

(

j
∑

P<p≤2P

1

p2

)j

≤
(

6j

P logP

)j

.

Inserting it into (3.2) and using the estimate

∑

P<p≤2P

1

p1/2
≤ 6P 1/2

logP
,

we obtain the required result (3.1). �
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§ 4. Proof of Theorem 2

Define

E∗(Q,P ) :=
{

d ∈ D(Q) : Q1/2 ≤ |d| ≤ Q and χd(p) = 1 (P < p ≤ 2P, p - |d|)
}

.

Let C logQ ≤ P ≤ (logQ)2. For d ∈ E∗(Q,P ), we invoke the prime number theorem to deduce

∑

P<p≤2P

χd(p)

p
=

∑

P<p≤2P

1

p
−

∑

P<p≤2P, p||d|

1

p

≥ log 2 + o(1)

logP
− {1 + o(1)} logQ

P log2Q

≥ log 2 − 2/C + o(1)

logP

>
1

2 logP
,

provided C is sufficiently large. It is apparent from (3.1) that

|E∗(Q,P )|
(2 logP )2j

≤
∑

d∈D(Q)

∣

∣

∣

∣

∑

P<p≤2P

χd(p)

p

∣

∣

∣

∣

2j

� Q

(

6j

P logP

)j

+

(

6P

(logP )2

)j

.

Hence we obtain

|E∗(Q,P )| � Q(12j logP/P )j + (12P )j

uniformly for C logQ ≤ P ≤ (logQ)2 and j ≥ 1. Taking

j =

[

logQ

48 logP

]

+ 1,

a simple calculation shows that

|E∗(Q,P )| � Qe−c(log Q)/ log2 Q

with c = (log 2)/48. This implies (1.10).

Finally let

E∗(Q) :=
{

d ∈ D(Q) : d ≤ Q1/2
}

∪ E∗(Q,C logQ).

Then by (1.10), we have

|E∗(Q)| � Qe−c(log Q)/ log2 Q;

and for any d ∈ D(Q)rE∗(Q) there is a prime number p � logQ � log |d| such that χd(p) 6= 1,

which implies (1.11). The proof is complete.
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§ 5. Graham-Ringrose’s method

In this section, we shall state and extend the main results of ([14], Theorems 2, 3 and 4)

for our purposes. For characters of certain moduli, Graham & Ringrose [14] obtained a wide

zero-free region and good zero density estimates for the corresponding Dirichlet L-functions.

The main ingredient of their method is an q-analogue of van der Corput’s result, which can be

stated as follows: Suppose that q = 2νr, where 0 ≤ ν ≤ 3 and r is an odd squarefree integer,

and that χ is a non-prinicipal charater mod q. Let p be the largest prime factor of q. Suppose

that k is a non-negative integer, and K = 2k. Finally, assume that N ≤M . Then

(5.1)
∑

M<n≤M+N

χ(n) �M1− k+3
8K−2 p

k2+3k+4
32K−8 q

1
8K−2 d(q)

32k2+11k+8
16K−4 (log q)

k+3
8K−2 σ−1(q),

where σa(q) :=
∑

d|q d
a and d(q) := σ0(q). The implied constant is absolute.

Recall that for any odd prime p,

χ8(p) =

(

2

p

)

, χq′(p) =

(

q

p

)

K

=

(

q

p

)

(q odd prime, q′ := (−1)(q−1)/2q)

by definition. For squarefree m ≥ 2, the character χm :=
∏

p|m χp′ for odd m or χm := χ8χm′

for m = 2m′ is a real primitive of modulus m or 4m, respectively. By convention, we set χ1 ≡ 1.

Moreover, if χ4 is the real primitive character mod 4, i.e. χ4(n) = (−1)(n−1)/2 for odd n, then

χ4m := χ4χm is also a real primitive character of modulus 4m.

Let

(5.2) Py :=
∏

p≤y

p = e{1+o(1)}y (y → ∞),

and define for ` = 1 or 4,

(5.3) L`(s, Py) :=
∏

m|Py

L(s, χ`m),

where L(s, χ`m) is the Dirichlet L-function associated to χ`m. Denote by N`(α) the number of

zeros of L`(s, Py) in the rectangle

α ≤ σ ≤ 1 and |τ | ≤ logPy.

Here and in the sequel we implicitly define the real numbers σ and τ by the relation s = σ+ iτ .

The next lemmas 2, 3 and 4 are trivial extensions of Theorems 2, 3 and 4 of [14], respectively.

Lemma 2. Let y ≥ 100. Then there is an absolute positive constantC1 such that the L-function
∏

`=1,4 L`(s, Py) has at most one zero in the region

(5.4) σ ≥ 1 − C1(log2 Py)1/2

logPy
and |τ | ≤ logPy.

The exceptional zero, if exists, is real.

Proof. As the crucial estimate (5.1) holds for all non-principal primitive characters of modulus

q = 2νr ≥ 2 with 0 ≤ ν ≤ 3 and r being odd squarefree. Consider the case ν = 0 or 3, and

ν = 2 or 3, respectively. We see that (5.1) applies to χm and χ4m for any m|Py. It follows that

[14, Lemma 6.1] is valid for these characters. Proceeding with the same argument, we have [14,

Lemma 6.2] for our L-function
∏

`=1,4 L`(s, Py) in place of L(s, Py) there. Then the same proof

of [14, Theorem 2] will give the desired result. (Note that the value of φ suffers a negligible

change when Py is replaced by 4Py or 8Py.) The exceptional zero must be real, for otherwise,

its conjugate is another zero in the specified region. �
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Lemma 3. Let C1 be as in Lemma 2. There is a sequence of positive real numbers {yn}∞n=1

with yn → ∞ such that both L1(s, Pyn) and L4(s, Pyn) have no zeros in the region

(5.5) σ ≥ 1 − η(yn) and |τ | ≤ logPyn ,

where

η(y) :=
C1(log2 Py)1/2

2 logPy
.

Proof. Similar to [14, Theorem 3], our proof is also based on an interesting argument attributed

to Maier [19]. Suppose that for some y, the product L1(s, Py)L4(s, Py) has an exceptional zero

in the region (5.4). That is, it has a real zero β > 1−2η(y). In view of (5.2), we can take yn ≥ y

such that

(5.6) η(yn) < 1 − β < 2η(yn).

By Lemma 2, β is the only exceptional zero of
∏

`=1,4 L`(s, Pyn) in the region

σ > 1 − 2η(yn) and |τ | ≤ logPyn .

Together with the first inequality in (5.6), this forces
∏

`=1,4 L`(s, Pyn) to have no zero in the

region (5.5). It follows that we can find a sequence of positive real numbers {yn}∞n=1 with

yn → ∞ such that both L1(s, Pyn) and L4(s, Pyn) have no zero in this region. �

Lemma 4. Let ` = 1 or 4 and y ≥ 100. Then there is an absolute constant C2 such that

(5.7) N`(α) �



















exp

{

C2(1 − α) logPy
√

log2 Py

+
log3 Py

2

}

if α ≥ 1 − η1(y),

exp

{

C2(1 − α) logPy

log(1/(1 − α))

}

if α < 1 − η1(y),

where

k0(y) :=
[

(log2 Py)1/2
]

and η1(y) :=
k0(y)

2(2k0(y) − 2)
.

Proof. The case of ` = 1 has been done in [14, Sections 7 and 8] and N4(α) can be treated in

the same way by applying (5.1) to our χ4m. �

§ 6. Proof of Theorem 3

In this section, we denote by p and q prime numbers. Define

Py := {p : p ≡ 1 (mod 4) and χp(q) = 1 for all q ≤ y}.

Clearly we have nχp > y for any p ∈ Py. We shall first show that the set Py is not too small for

suitable y.
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Proposition. Let δ > 0 be a fixed small constant and y(x) be an strictly increasing function

defined on [120,∞) satisfying

(6.1) (log x)e−δ(log2 x)1/2 ≤ y(x) ≤ δ(log x) log3 x.

Then there are a positive constant c = c(δ) and a sequence of positive real numbers {xn}∞n=1

with xn → ∞ such that

(6.2)
∑

x1/2
n <p≤xn log xn

p∈Py(xn)

1 � xne
−cy(xn)/ log y(xn).

Further if we assume that both L1(s, Py) and L4(s, Py) have no zeros in the region (5.4) for all

y ≥ 100, then there is a positive constant c such that for all x ≥ 100 we have

(6.3)
∑

x1/2<p≤x log x
p∈Py

1 � x e−cy(x)/ log y(x).

Proof. First let 10 ≤ y ≤ x1/2. As usual, π(y) denotes the number of prime numbers ≤ y.

Clearly we have

(6.4) 2−π(y)−1
(

1 + χ4(p)
)

∏

q≤y

(

1 + χp(q)
)

=

{

1 if p ∈ Py,

0 if p /∈ Py.

When p and q are odd primes with p ≡ 1 (mod 4), i.e. χ4(p) = 1, we infer by quadratic reciprocity

law that

χp(q) =

(

p

q

)

=

(

q

p

)

= χq′(p) (q′ := (−1)(q−1)/2q).

Note also for odd prime p,

χp(2) =

(

p

2

)

K

=

(

2

p

)

= χ8(p).

Thus we can replace χp(q) by
(

q
p

)

in (6.4) to write

∑

x1/2<p≤x log x
p∈Py

1 =
1

2π(y)+1

∑

x1/2<p≤x log x

(

1 + χ4(p)
)

∏

q≤y

(

1 +

(

q

p

))

.

It is more convenient to introduce the weight factor (log p)
(

e−p/(2x) − e−p/x
)

to the summands,

∑

x1/2<p≤x log x
p∈Py

1 ≥ 1

2π(y)+2 log x

∑

x1/2<p≤x log x

(log p)
(

e−p/(2x) − e−p/x
)

×

×
(

1 + χ4(p)
)

∏

q≤y

(

1 +

(

q

p

))

.

We want to relax the range of the sum over p. To this end, we observe that by the prime number

theorem and integration by parts,

1

2π(y) log x

∑

x log x<p≤x2

(log p)
(

e−p/(2x) − e−p/x
)(

1 + χ4(p)
)

∏

q≤y

(

1 +

(

q

p

))

�
∑

x log x<p≤x2

(

e−p/(2x) − e−p/x
)

� x1/2/ logx.
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Combining this with the preceeding inequality, we obtain

(6.5)
∑

x1/2<p≤x log x
p∈Py

1 ≥ 1

(log x)2π(y)+2

∑

m|Py

(

Sx(m) + Sx(4m)
)

+O

(

x1/2

log x

)

,

where ` = 1 or 4, and

Sx(`m) :=
∑

x1/2<p≤x2

(log p)
(

e−p/(2x) − e−p/x
)

χ`m(p).

By the Perron formula, we can write

(6.6) Sx(`m) =
1

2πi

∫ 2+i∞

2−i∞
−L

′

L
(s, χ`m)(2s − 1)Γ(s)xs ds+O

(

x1/2 log x
)

.

We shift the line of integration to σ = − 3
4 . The function (2s − 1)Γ(s)xs has no pole in the strip

− 3
4 ≤ σ ≤ 2 since the pole of Γ(s) at s = 0 is canceled by the zero of (2s − 1). Thus the only

poles of the integrand in (6.6) occur at s = 1 if `m = 1 (note that L(s, χ1) is the Riemann

ζ-function), or at the zeros ρ(`m) = β(`m) + iγ(`m) of L(s, χ`m). It follows that

Sx(`m) = δ`m,1x−
∑

ρ(`m)

(2ρ(`m) − 1)Γ(ρ(`m))xρ(`m) +O
(

x1/2 log x
)

,

where δj,1 = 1 if j = 1 and 0 otherwise, and the sum is over all zeros with 0 ≤ β(`m) < 1.

We write N(T, χ`m) for the number of zeros of L(s, χ`m) in the rectangle 0 < β(`m) < 1

and |γ| ≤ T . Then we have the classical bound

(6.7) N(T, χ`m) � T log(Tm),

which implies, for any α ∈ (0, 1),

(6.8) N`(α) ≤
∑

m|Py

N(logPy , χ`m) � 2π(y)y2.

On the other hand, by means of (2s − 1)Γ(s)xs � xσ|τ |e−(π/2)|τ |, the contribution of the zeros

with |γ(`m)| ≥ logPy to Sx(`m) is � 1. Let ε be an arbitrarily small positive number. The

zeros with β(`m) ≤ 1 − ε and |γ(`m)| ≤ logPy contribute

� x1−εN(logPy, χ`m) � x1−ε(logPy)2 � x1−εy2.

Combining these with (6.5), we conclude

(6.9)
∑

x1/2<p≤x log x
p∈Py

1 ≥ x

(log x)2π(y)+2
+O

(

x1−ε2π(y)y2 +
T1(x, y) + T4(x, y)

(log x)2π(y)

)

uniformly for x ≥ 10 and 1 ≤ y ≤ x1/2, where

T`(x, y) :=
∑

m|Py

∑

ρ(`m)
β(`m)≥1−ε, |γ(`m)|≤logPy

xβ(`m)

= −
∫ 1

1−ε

xα dN`(α).



12 Y.-K. Lau & J. Wu

It remains to estimate T`(x, y). From now on we take y = y(x). By integration by parts

and by using (6.8), we can deduce

(6.10) T`(x, y) � x1−ε2π(y)y2 + x(log x)I`,

where

I` :=

∫ ε

0

x−βN`(1 − β) dβ.

Let η = η(y) and η1 = η1(y) be defined as in Lemmas 3 and 4, respectively. Set η2 :=

2y(x)/(log x) log y. It is easy to verify that 0 < η < η1 < η2 < ε. (The inequality η1 < η2

governs the lower bound of y(x) in (6.1).) Thus we can divide the interval [0, ε] into four subin-

tervals [0, η], [η, η1], [η1, η2] and [η2, ε], and denote by I`,0, I`,1, I`,2 and I`,3 the corresponding

contribution to I`. Plainly we have

1

2
log3 Py ≤ η

4
log x,

C2 logPy
√

log2 Py

≤ 1

4
log x,

C2 logPy

log(1/η2)
≤ 1

2
log x,

y

log y
=
η2
2

log x.

(The third inequality governs the upper bound of y(x) in (6.1).) From Lemma 4 and (6.8), we

deduce that

I`,1 �
∫ η1

η

exp

{

− β log x+
C2β logPy
√

log2 Py

+
1

2
log3 Py

}

dβ � x−η/2

log x
,

I`,2 �
∫ η2

η1

exp

{

− β log x+
C2β logPy

log(1/β)

}

dβ � x−η1/2

log x
,

I`,3 �
∫ ε

η2

exp

{

− β log x+
y

log y

}

dβ � x−η2/2

log x
.

Hence, all of them satisfy

I`,i = o
(

(log x)−1
)

(i = 1, 2, 3).

If we assume that both L1(s, Py) and L4(s, Py) have no zeros in the region (5.4) for all

y ≥ 100, then I`,0 = 0. Otherwise we use Lemma 3 to assure the existence of {yn}∞n=1 such that

I`,0 = 0.

With (6.10), our conclusion is

T`(xn, yn) = o

(

xn

(log xn)2π(yn)

)

(n→ ∞),

or

T`(x, y) = o

(

x

(log x)2π(y)

)

(x→ ∞)

under the assumption that both L1(s, Py) and L4(s, Py) have no exceptional zeros. Clearly this

and (6.9) imply the required result. This completes the proof of Proposition. �

Now we are ready to prove Theorem 3.

Taking Qn = xn log xn and y(x) = 100δ log x in Proposition and noticing that p ∈ Py ⇒
nχp ≥ y, we have

∑

(Qn/ log Qn)1/2<p≤Qn

nχp≥100δ log Qn

1 � Qne
−c1(log Qn)/ log2 Qn .

It implies the first assertion of Theorem 2, and the second one can be treated similarly. This

concludes Theorem 2. �
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§ 7. Proof of Theorem 4

Let 1 < c < 32
29 and ε be an arbitrary but sufficiently small positive constant. The upshot

is to show

(7.1) nχp′ ,c � n9/(16−10c)+ε
χp′

whenever nχp′
≥ N0(c, ε) for some suitably large constant N0(c, ε) depending only on c and ε.

Once (7.1) is established, the required results follow from Burgess’ upper bound (1.5) or (1.11).

To prove (7.1), we make use of the observation that the integer mnχp′
is quadratic non-

residue for any integer m < nχp′
. Now, we want to find a positive M (< 1

2nχp′
) as small as

possible such that

(7.2) [nc] = mnχp′

for some integers m ∈ (M, 2M ] and n > 1. This implies

(7.3) nχp′ ,c � (Mnχp′
)1/c

which leads to (7.1) with a suitable estimate on M .

Apparently, (7.2) is equivalent to

(7.4) (mnχp′
)1/c ≤ n < (mnχp′

+ 1)1/c.

Denote by {x} the fractional part of x. Then (7.4) holds if

(7.5) 0 < {(mnχp′
+ 1)1/c} ≤ (21/c−2/c)(Mnχp′

)1/c−1 =: ∆ < 1 (c > 1),

since

(mnχp′
+ 1)1/c − (mnχp′

)1/c ≥ (1/c)(2Mnχp′
)1/c−1.

Let δ∆(t) be the periodic function of period 1 such that δ∆(t) = 1 if t ∈ (0,∆] and = 0 if

t ∈ (∆, 1]. Then (7.5) will follow from

(7.6)
∑

M<m≤2M

δ∆
(

(mnχp′
+ 1)1/c

)

> 0.

Introducing the function ψ(t) := 1
2 − {t}, we can express

δ∆(t) = ∆ + ψ(∆ − t) − ψ(−t).

Thus we have
∑

M<m≤2M

δ∆
(

(mnχp′
+ 1)1/c

)

= ∆M +R,

where

R :=
∑

M<m≤2M

(

ψ
(

∆ − (mnχp′
+ 1)1/c

)

− ψ
(

− (mnχp′
+ 1)1/c

))

.

Consider respectively

f(t) = ∆ − ((M + t)nχp′
+ 1)1/c, f(t) = −((M + t)nχp′

+ 1)1/c.
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Then the treatment of R is reduced to the sum
∑

M<m≤2M ψ(f(m)), which can be handled

using a recent result in [22] via third derivative of f(t). Applying Theorem 2 of [22], we obtain

R �c,ε

{

M
(

M1/c−3n1/c
χp′

)3/19
+M3/4 +

(

M1/c−3n1/c
χp′

)−1/3
}

M ε2

.

Thus (7.6) will hold provided

M1−ε ≥ n(19c−16)/(16−10c)
χp′

.

Taking M = n
(19c−16)/(16−10c)+ε
χp′

, it follows that

R ≤ C0(c, ε)n
ε(10c−16)/19c
χp′

M ε2

∆M

for nχp′
≥ N1(c, ε) where C0(c, ε) and N1(c, ε) are absolute constants depending only on c and

ε. The hypothesis 1 < c < 32
29 yields that M < 1

2nχp′
for all sufficently large nχp′

. Furthermore,

this hypothesis assures that the exponent of nχp′
is negative and hence R is suppressed by ∆M

for all large nχp′
. Consequently, we derive (7.6) for nχp′

≥ N2(c, ε), and therefore (7.1) by

inserting the value of M into (7.3). The proof of Theorem 4 is thus complete. �
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[23] H. Salié, Uber den kleinsten positiven quadratischen Nichtrest nach einer Primzahl, Math.

Nachr. 3 (1949), 7–8.

[24] I.M. Vinogradov, Sur la distribution des résidus et non résidus de puissances, Permski

J. Phys. Isp. Ob. -wa 1 (1918), 18–28 and 94–98.

Department of Mathematics, The University of Hong Kong, Pokfulam Road,

Hong Kong

E-mail: yklau@maths.hku.hk

Institut Elie Cartan, UMR 7502 UHP CNRS INRIA, Université Henri Poincaré
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