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Extreme values of symmetric power L-functions at 1

Y.-K. Lau (Hong Kong) & J. Wu (Nancy)

Abstract. We obtain an almost all result on the size of the mth symmetric power

L-functions (m = 1, 2, 3, 4) for the normalized Hecke eigencuspforms at s = 1, which

extends results of Elliott and Montgomery & Vaughan on Dirichlet L-functions to higher

degree L-functions.

§ 1. Introduction

The study on the extreme values of Dirichlet L-functions at the point 1 has a long and

rich history. The research in this topic was originated with a paper of Littlewood [15] in 1928

and was pursued by many authors (cf. [1], [2], [6], [7], [8], [23], [17] and [9]). A very good

historical account can be found in [9], where Granville & Soundararajan made a very important

new progress on the distribution of the extreme values of L(1, χd) for a real primitive character

χd of modulus d.

Among the family of L-functions attached to the automorphic cuspidal representations for

GLm(Q) where m ≥ 1, the Dirichlet L-functions constitute only a small part corresponding

to m = 1. The GL2 class consists of those L-functions associated to holomorphic cusp forms

or Maass forms. The symmetric m-th power of a GL2 L-function yields, under Langlands

functoriality conjecture if m ≥ 5, an automorphic GLm+1 L-function which is defined as a

Euler product of degree m (and thus called a degree m L-function). The properties of these

L-functions are of great current interests and their values at 1 are recently delved. Luo [16]

investigated the case of symmetric square L-functions for Maass forms with large eigenvalue.

Royer [18, 19], Habsieger & Royer [10], Royer & Wu [20] considered the first two symmetric

power L-functions attached to holomorphic cusp forms with large squarefree level while Cogdell

& Michel [3] and Royer & Wu [21] considered all the symmetric power L-functions. Besides Lau

& Wu [14] studied similar problems in the weight aspect. In this paper we shall further study

the extreme values of symmetric power L-functions at 1.

Let us introduce our notation. For a positive even integer k, we denote by H∗
k(1) the set of

all normalized Hecke primitive eigencuspforms of weight k for the modular group Γ(1) = SL2(Z).

It is a finite set with cardinality

(1.1) |H∗
k(1)| =

k − 1

12
+ O

(

k2/3
)

.
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Here the normalization is taken in the way that the Fourier series expansion at the cusp ∞,

(1.2) f(z) =

∞
∑

n=1

λf (n)n(k−1)/2e2πinz (=m z > 0),

has its first coefficient equal to one (i.e. λf (1) = 1). Inherited from the Hecke operators, the

Fourier coefficient λf (n) satisfies the following relation

(1.3) λf (m)λf (n) =
∑

d|(m,n)

λf

(

mn

d2

)

for all integers m ≥ 1 and n ≥ 1. According to Deligne [4], for any prime number p there is a

(complex) number αf (p) such that

(1.4) |αf (p)| = 1

and

(1.5) λf (pν) = αf (p)ν + αf (p)ν−2 + · · · + αf (p)−ν

for all integers ν ≥ 1. Hence λf (n) is a real multiplicative function of n.

Associated to each f ∈ H∗
k(1), the symmetric mth power L-function (m ∈ N) is defined as

(1.6) L(s, symmf) :=
∏

p

∏

0≤j≤m

(

1 − αf (p)m−2jp−s
)−1

for σ > 1, where and in the sequel σ and τ mean tacitly the real and imaginary part of s,

i.e. s = σ + iτ . Multiplying out the Euler product, we see that it admits a Dirichlet series

representation:

(1.7) L(s, symmf) =
∞
∑

n=1

λsymmf (n)n−s

for σ > 1, where λsymmf (n) is a multiplicative function. By (1.4) and (1.6), we have for n ≥ 1,

(1.8) |λsymmf (n)| ≤ τm+1(n).

As usual τm+1(n) denotes the number of solutions in positive integers n1, . . . , nm+1 of the

equation n = n1 · · ·nm+1. The case m = 1 in (1.8) is commonly known as Deligne’s inequality.

For m = 1, 2, 3, 4, the symmetric power function L(s, symmf) can be analytically prolonged to

C and satisfies the functional equation

L∞(s, symmf)L(s, symmf) = ε(symmf)L∞(1 − s, symmf)L(1 − s, symmf),

where ε(symmf) = ±1 and L∞(s, symmf) is the corresponding gamma factor (cf. [3, Section

1.1]).

In [14], Lau & Wu proved the following results on the extreme values of L(1, symmf) in the

weight aspect. Let m = 1, 2, 3, 4 and 2 | k. For any f ∈ H∗
k(1), under GRH for L(s, symmf), we

have

(1.9) {1 + o(1)}(2B−
m log2 k)−A−

m ≤ L(1, symmf) ≤ {1 + o(1)}(2B+
m log2 k)A+

m
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as k → ∞. In the opposite direction, it was shown unconditionally that there are f±
m ∈ H∗

k(1)

such that for k → ∞,

L(1, symmf+
m) ≥ {1 + o(1)}(B+

m log2 k)A+
m ,(1.10)

L(1, symmf−
m) ≤ {1 + o(1)}(B−

m log2 k)−A−
m .(1.11)

Here (and in the sequel) logj denotes the j-fold iterated logarithm. The constants A±
m and B±

m

are explicitly evaluated,

(1.12)



















A+
m = m + 1, B+

m = eγ (m = 1, 2, 3, 4),

A−
m = m + 1, B−

m = eγζ(2)−1 (m = 1, 3),

A−
2 = 1, B−

2 = eγζ(2)−2,

A−
4 = 5

4 , B−
4 = eγB′−

4 ,

where ζ(s) is the Riemann zeta-function, γ denotes the Euler constant and B′−
4 is a positive

constant given by a rather complicated Euler product (cf. [14], (1.16)).

The results in (1.9), (1.10) and (1.11) determine completely, at least under GRH, the

order of magnitude of L(1, symmf). Then it is interesting and natural to try removing the

assumption of GRH and closing up the gap coming from the factor 2. We shall prove an almost

all result towards this delicate problem, which can be regarded as analogues, in the higher degree

L-function case, of results of Elliott ([6], [7]) and Montgomery & Vaughan [17] on Dirichlet L-

functions. It leads to a consequence that the forms f satisfying (1.10) or (1.11) are rather rare

in the sense of being density zero.

In what follows we shall assume k to be any sufficiently large even integer (but the parity

will be repeatedly emphasized).

Theorem 1. Let m ∈ {1, 2, 3, 4}, θ1 > 0 and θ2 > 0 such that 1 − 2θ1 − θ2 > 0 and θ3 ∈
(0, min{1/2θ1 − 1, 1}] be fixed. Then for 2 | k and z ≥ (log2 k)1/θ1 , we have

L(1, symmf) =

{

1 + O

(

1

zθ2
+

1

(log k)θ3

)}

∏

p≤z

∏

0≤j≤m

(

1 − αf (p)m−2j

p

)−1

for all but except O
(

ke−z
θ1
0

)

forms f ∈ H∗
k(1), where z0 := min(z, (log k)2) and the implied

constants depend on θ1, θ2 and θ3 only.

Corollary 2. Let ε > 0 be an arbitrarily small positive number, m ∈ {1, 2, 3, 4} and 2 | k.

Then there is a subset E∗
k of H∗

k(1) such that

|E∗
k| � ke−(log k)1/2−ε

and for each f ∈ H∗
k(1)rE∗

k, we have

{

1 + O
(

(log k)−ε
)}

(B−
m log2 k)−A−

m ≤ L(1, symmf) ≤
{

1 + O
(

(log k)−ε
)}

(B+
m log2 k)A+

m .

The implied constants depend on ε only.

Remarks. (i) These results can be generalized (with a little extra effort) to H∗
k(N), where

N is squarefree and H∗
k(N) denotes the set of all normalized Hecke primitive eigencuspforms
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of weight k for the congruence subgroup Γ0(N). Our method can also be applied to establish

similar results in the level aspect for N squarefree and free of small prime factors.

(ii) We consider the case 1 ≤ m ≤ 4 because the required properties of the high symmetric

power L-functions are only known in these cases. Other higher degree case will follow along the

same line of argument when the (expected) corresponding properties are established.

Our results above are analogues of Theorem 1 of [17] (see also [7]), where the case L(1, χd)

was investigated. However their methods seem not to be directly generalized to the symmetric

power L-functions. Following their approaches, one can see that correspondingly the key point

of proof is to study the large sieve type inequality

(1.15)
∑

f∈H∗
k
(1)

∣

∣

∣

∣

∑

P<p≤2P

λsymmf (p)

p

∣

∣

∣

∣

2j

.

But then two difficulties come up due to the lack of the feature in quadratic characters. First,

λsymmf (n) is not completely multiplicative and second, the instantaneously available (almost)

orthogonality property following from the large sieve result (developed in [5] for the level case

and in [14] for the weight) is not adequate. As was indicated by Cogdell & Michel in [3, Section

1.3], the latter one seemed a bit problematic. In order to get around this difficulty, we shall

appeal to Petersson’s trace formula with the observation

λsymmf (n) = λf (nm)

for squarefree n. But then the harmonic weight (in the trace formula) needs further treatment

as its trivial bound is not admissible for our purpose. To this end, we make use of (see (2.6)

below)

1 =
k − 1

12
ωf

∑

n≤k7/2

λf (n2)

n
+ Oε

(

k−1+ε
)

,

where ωf is the harmonic weight (see (2.5) below). However, only a short initial section of the

newly introduced sum is manageable by the Petersson trace formula. The remaining part will be

handled with the idea in ([13], Lemma 3) by virtue of the large sieve result in [14]. Clearly our

result for (1.15) (see the proposition below) is of independent interest and has other applications

which will be presented elsewhere.

§ 2. A large sieve type inequality

This section is devoted to establish a large sieve type inequality, which will be our key tool

for the proof of Theorem 1. For 2 | k, f ∈ H∗
k(1), m ∈ N and 1 ≤ P < Q ≤ 2P , we consider the

sum

Tsymmf (P, Q) :=
∑

P<p≤Q

λsymmf (p)

p
.

Our aim is to prove the following result, which reveals a good control over the tail part of the

Dirichlet series representation of log L(1, symmf) for most forms f .
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Proposition. Let m ∈ N be fixed. Then, we have

(2.1)
∑

f∈H∗
k
(1)

|Tsymmf (P, Q)|2j �m k(log k)θ(m)e2j log jP−j + (j!)2k20/21

uniformly for

(2.2) 2 | k, j ∈ N, 1 ≤ P j ≤ k7/(6m+24) and P < Q ≤ 2P,

where θ(m) := (m + 1)4 + m + 7 and the implied constant depends on m only.

To prove it, we need a couple of preliminary lemmas.

Although the function λsymmf (n) is not completely multiplicative on N, its restriction on

the subset of squarefree integers recaptures this property and furthermore

(2.3) λsymmf (n) = λf (nm)

for n squarefree† which follows immediately from (1.5), (1.6) and (1.7). Thus we give an upper

estimate to |Tsymmf (P, Q)|2j in terms of sums over squarefree integers.

Lemma 1. Let j ∈ N, 2 | k, m ∈ N and 1 ≤ P < Q ≤ 2P . For any f ∈ H∗
k(1), we have

∣

∣Tsymmf (P, Q)
∣

∣

2j �m (j log Q)(m+1)4
∑\

n2≤Qj

1

n
3/2
2

∣

∣

∣

∣

∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (nm
1 )

aj(n1n2)

n1

∣

∣

∣

∣

2

,

where

(2.4) aj(n) = aj(n; P, Q) := |{(p1, . . . , pj) : p1 · · · pj = n, P < pi ≤ Q}|.

The summations
∑\

and
∑[

indicate run over squarefull‡ and squarefree integers, respectively.

The implied constant depends on m only.

Proof. Multiplying out the product Tsymmf (P, Q)j , we obtain a summation over integers in

(P j , Qj]. As every integer n decomposes uniquely into a product of coprime integers n = n1n2

with n1 squarefree and n2 squarefull, it then follows that

Tsymmf (P, Q)j =
∑\

n2≤Qj

1

n2

∏

pν‖n2

λsymmf (p)ν
∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λsymmf (n1)
aj(n1n2)

n1
.

Next we remove the products of λsymmf (p) over squarefull integers by the Cauchy-Schwarz

inequality and (1.8):

|Tsymmf (P, Q)|2j ≤
∑\

n≤Qj

(m + 1)2Ω(n)

n1/2

∑\

n2≤Qj

1

n
3/2
2

∣

∣

∣

∣

∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λsymmf (n1)
aj(n1n2)

n1

∣

∣

∣

∣

2

.

† ‡ An integer n is squarefree (resp. squarefull) if p2 - n for all prime numbers p (resp. if

p | n ⇒ p2 | n).
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Here Ω(n) denotes the number of prime factors of n counted with multiplicity. Consequently,

we get our result with (2.3) and the estimate below obtained by Rankin’s trick

∑\

n≤x

(m + 1)2Ω(n)

n1/2
≤

∏

p≤x

(

1 + (m + 1)4p−1 + Om(p−3/2)
)

�m (log x)(m+1)4

(see the proofs of Theorems II.1.2 & II.1.13 in [22] for paradigms). �

In view of Lemma 1, we invoke naturally the Petersson trace formula to prove our proposi-

tion. However the summation on the left-side of (2.1) runs over f ∈ H∗
k(1) without the harmonic

weight

(2.5) ωf :=
Γ(k − 1)

(4π)k−1‖f‖ =
12ζ(2)

(k − 1)L(1, sym2f)

by [11, §2]. To this end, we borrow the technique in [13]. The underlying principle is built on

approximating the factor L(1, sym2f) with a finite Dirichlet series.

Lemma 2. Let 2 | k, f ∈ H∗
k(1) and y ≥ 1. For any fixed ε > 0, we have

L(1, sym2f) = ζ(2)
∑

n≤y

λf (n2)n−1 + Oε

(

kε(k3/4y−1/2 + k−1)
)

.

The implied constant depends on ε only.

Proof. For σ > 1, we have

L(s, sym2f) = ζ(2s)
∑

n≥1

λf (n2)n−s.

Applying the Perron formula ([22], Corollary II.2.1 with B(x) = xε and α = 3), we deduce that

∑

n≤y

λf (n2)

n
=

1

2πi

∫ 1/ log y+ik

1/ log y−ik

L(1 + s, sym2f)

ζ(2 + 2s)

ys

s
ds + Oε

(

(ky)ε(k−1 + y−1)
)

.

By deplacing the segment of integration to σ = − 1
2 + ε and using the convexity bound for

L(s, sym2f) (see [14], Proposition 3.1):

L(s, sym2f) �ε (k + |τ |) 3
2

max{0,1−σ}+ε,

it follows that
∑

n≤y

λf (n2)

n
=

L(1, sym2f)

ζ(2)
+ Oε

(

(ky)ε(k−1 + k3/4y−1/2)
)

,

which is equivalent to the required result. �

Taking y = k7/2 and using the bound ωf � (log k)/k (cf. [11]), Lemma 2 with (2.5) gives

(2.6) 1 =
k − 1

12
ωf

∑

n≤y

λf (n2)

n
+ Oε

(

k−1+ε
)

.

As mentioned in the introduction, the (short enough) initial section of the extraneous sum is

under control of the Petersson trace formula. For the remaining part, we proceed with the idea

in [13] to deduce that this part is small on average in virtue of the large sieve result developed

in [14]. Define

ω∗
f (x, y) :=

∑

x<n≤y

λf (n2)n−1.

Then we give below the analogues of Lemmas 4 and 3 in [13], where the sum
∑

λsym2f (n)n−1

is used instead but it seems that our choice will lead to simpler manipulations.
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Lemma 3. Let i ≥ 1, 2 | k and f ∈ H∗
k(1). Then we have

(2.7) ω∗
f (x, y)i =

∑

xi<d`≤yi

λf (`2)
ci(d, `)

d`
,

where ci(d, `) = 0 unless d = d[d∗ with d[ squarefree and d∗ squarefull such that d[ | ` and

(d[, d∗) = 1. Furthermore, we have

(2.8) |ci(d, `)| ≤ τi(d`)τi−1(d)

where τi(·) is the divisor function defined as in (1.8).

Proof. We proceed by induction on i. The case of i = 1 is trivial since we have c1(1, `) = 1 and

c1(d, `) = 0 for d ≥ 2. Assume that (2.7) holds for i as claimed. Thus by (1.3) we have

ω∗
f (x, y)i+1 =

∑

x<ni+1≤y

1

ni+1

∑

xi<d`≤yi

ci(d, `)

d`

∑

di|(`,ni+1)2

λf

(

( `ni+1

di

)2
)

=
∑

xi+1<d0`0≤yi+1

λf (`2
0)

d0`0
ci+1(d0, `0)

with

ci+1(d0, `0) =
∑

x<ni+1≤y

∑

xi<d`≤yi

∑

di|(`,ni+1)2

`ni+1=di`0, d0=ddi

ci(d, `).

We write uniquely d0 = d[
0d

∗
0 into a product of coprime integers with d[

0 squarefree and d∗0
squarefull. We claim that

ci+1(d0, `0) 6= 0 ⇒ d[
0 | `0.

Let d[
0 = d′d′i with d′ ‖ d and d′i ‖ di.

† Then, (d′, di) = (d′i, d) = 1 as d[
0 ‖ ddi and d[

0 is squarefree.

Since di | (`, ni+1)
2 and `ni+1 = di`0, we have d′i | `0 (by noting d′i ‖ di). On the other hand, by

the induction hypothesis we see that ci(d, `) 6= 0 implies d′ | `, thus d′ | `0 for (d′, di) = 1. This

follows d[
0 | `0 as d[

0 = d′d′i is squarefree.

It remains to verify (2.8), which is an immediate consequence of the formula:

ci(d, `) :=
∑

x<n1,...,ni≤y
d`=n1···ni

∑

d1|(n1,n2)2

∑

d2|(n1n2/d1,n3)2

· · ·
∑

di−1|(n1···ni−1/d1···di−2,ni)2

d=d1···di−1

1.

This completes the proof of Lemma 3. �

Lemma 4. For any A > 0, ε > 0 and integer i ≥ 1, we have

(2.9)
∑

f∈H∗
k
(1)

ω∗
f(x, y)2i �A,ε,i kε

† The notation d ‖n means that vp(d) = vp(n) for all p | d, where vp(n) is the exponent of p

in the canonical factorization of n.
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uniformly for 2 | k and k5 ≤ xi < yi ≤ kA.

Proof. The main ingredients of proof are Lemma 3 and the following large sieve type inequality:

Suppose a(n) �ε n−1+ε for any ε > 0. Then

(2.10)
∑

f∈H∗
k
(1)

∣

∣

∣

∑

L<`≤2L

a(`)λf (`2)
∣

∣

∣

2

�ε (kL)ε
(

1 + k5/2L−1/2
)

holds uniformly for 2 | k and L ≥ 1.

The inequality (2.10) is a consequence of the relation

(2.11) λf (`2) =
∑

dn2=`

λsym2f (d)µ(n)

where µ(n) is the Möbius function, and the large sieve inequality in ([14], Proposition 4.1 with

m = 2): For any ε > 0 we have

∑

f∈H∗
k
(1)

∣

∣

∣

∑

`≤L

b`λsym2f (`)
∣

∣

∣

2

�ε kε
(

L + k5/2L1/2+ε
)

∑

`≤L

|b`|2

uniformly for 2 | k, L ≥ 1 and {b`}1≤`≤L ⊂ C.

¿From (2.11), we write the inner sum in (2.10) into

∑

L<`≤2L

a(`)λf (`2) =
∑

d≤2L

λsym2f (d)
∑

√
L/d<n≤

√
2L/d

µ(n)a(dn2)

and apply the large sieve inequality to the right-side. Then (2.10) follows because the condition

a(n) � n−1+ε yields
∑

d≤2L

∣

∣

∣

∑

√
L/d<n≤

√
2L/d

∣

∣a(dn2)
∣

∣

∣

∣

∣

2

� L−1+ε.

Now we prove (2.9). Firstly, we divide the sum in (2.7) dyadically

ω∗
f (x, y)i =

∑

j≤(log yi)/ log 2

∑

xi/2j+1<`≤yi/2j

λf (`2)
cj(`)

`
,

where

cj(`) :=
∑

2j<d≤2j+1

xi/`<d≤yi/`

ci(d, `)

d
.

Then, by the Cauchy-Schwarz inequality, we obtain

(2.12)
∑

f∈H∗
k
(1)

ω∗
f (x, y)2i �A (log k)

∑

j≤(log yi)/ log 2

∑

f∈H∗
k
(1)

∣

∣

∣

∣

∑

xi/2j+1<`≤yi/2j

λf (`2)
cj(`)

`

∣

∣

∣

∣

2

.

¿From (2.8) and τi(d`) ≤ τi(d)τi(`), we have

cj(`) ≤ τi(`)
3
∑

d|`

1

d

∑\

2j/d<d∗≤2j+1/d

τi(d
∗)2

d∗
.
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By the Rankin trick again, it is easy to see that

∑\

d≤t

τi(d)2√
d

� (log t)θ0(i)

with θ0(i) := ((i + 1)i/2)2, and hence

cj(`) � τi(`)
3τ(`)2−j/2(log 2j)θ0(i).

Following from (2.12) and (2.10) with a(`) = 2j/2(log 2j)−θ0(i)cj(`)/`, we infer that

∑

f∈H∗
k
(1)

ω∗
f (x, y)2i �A,ε,i kε

∑

j�log k

1

2j

∑

f∈H∗
k
(1)

∣

∣

∣

∣

∑

xi/2j+1<`≤yi/2j

2j/2(log 2j)−θ0(i)cj(`)

`
λf (`2)

∣

∣

∣

∣

2

�A,ε,i kε
∑

j�log k

2−j
{

1 + k5/2(xi2−j−1)−1/2
}

�A,ε,i kε

for k5 ≤ xi ≤ yi ≤ kA. �

Now we are ready to prove the proposition.

Proof of Proposition. By Lemma 1 and (2.6), we deduce that

(2.13)
∑

f∈H∗
k
(1)

|Tsymmf (P, Q)|2j �m (log k)(m+1)4
{

k
∑\

n2≤Qj

|M(n2)|
n

3/2
2

+ O(R)

}

,

where

M(n2) :=
∑

f∈H∗
k
(1)

ωf

∑

n≤y

λf (n2)

n

∣

∣

∣

∣

∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (nm
1 )

aj(n1n2)

n1

∣

∣

∣

∣

2

with y = k7/2, and

R := k−1+ε
∑\

n2≤Qj

1

n
3/2
2

∑

f∈H∗
k
(1)

∣

∣

∣

∣

∑[

P j/n2<n1≤Qj/n2

(n1,n2)=1

λf (nm
1 )

aj(n1n2)

n1

∣

∣

∣

∣

2

(2.14)

� j!2kε
∑\

n2≤Qj

1

n
3/2
2

(

∑

P j/n2<n≤Qj/n2

τ(nm)n−1
)2

� j!2kε

by the Deligne inequality, (1.1) and the trivial estimate for (2.4)

(2.15) aj(n) ≤ j!.

The remaining task is to estimate M(n2). We square out the innermost sum in M(n2) and

explore the cancellation through the Petersson trace formula. But this approach is only effective

for small n, hence we split M(n2) into two parts

(2.16) M(n2) = Sx + Sx,y
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according to n ≤ x and x < n ≤ y respectively where x = k1/2. The second term Sx,y is handled

by Lemma 4, as follows.

¿From the estimate ωf � (log k)/k, the Deligne inequality and (2.15), we have

Sx,y � k−1(log k)
∑

f∈H∗
k
(1)

|ω∗
f (x, y)|

(

j!
∑

n≤Qj

τ(nm)n−1
)2

� (j!)2k−1(log k)2m+3
∑

f∈H∗
k
(1)

|ω∗
f (x, y)|.

Applying Hölder’s inequality and Lemma 4 with i = 10, we deduce that

Sx,y � (j!)2k−1+ε
(

∑

f∈H∗
k
(1)

1
)19/20( ∑

f∈H∗
k
(1)

ω∗
f (x, y)20

)1/20

� (j!)2k−1/20+ε.

Now we treat Sx by the Petersson trace formula (see [12], Corollary 2.10)

∑

f∈H∗
k
(1)

ωfλf (a)λf (b) = δ(a, b) + O
(

k−5/6(ab)1/4τ3((a, b)) log(2ab)
)

where δ(a, b) is the Kronecker delta and the implied constant is absolute. Squaring out and

using (1.3) and (2.15), we obtain

Sx ≤ (j!)2
∑

n≤x

1

n

∑[ ∑[

P j/n2<n1,n′
1≤Qj/n2

1

n1n′
1

∑

d|(n1,n′
1
)m

∣

∣

∣

∣

∑

f∈H∗
k
(1)

ωfλf (n2)λf

(

(n1n
′
1)

m

d2

)
∣

∣

∣

∣

.

Let us write n1 = d` and n′
1 = d`′ where d = (n1, n

′
1). Then d, ` and `′ are squarefree and

pairwisely coprime for squarefree n1 and n′
1. Therefore,

Sx ≤ (j!)2
∑[ ∑[ ∑[

P j/n2<d`,d`′≤Qj/n2

(`,`′)=1

1

d2``′

∑

d1|dm

∑

n≤x

1

n

∣

∣

∣

∣

∑

f∈H∗
k
(1)

ωfλf (n2)λf

(

(d2``′)m

d2
1

)∣

∣

∣

∣

.(2.17)

The Petersson trace formula yields that the sum over f ∈ H∗
k(1) equals

δ
(

n2, (``′)m(dm/d1)
2
)

+ O

(

(d2``′)m/4n1/2

d
1/2
1 k5/6

τ3(n
2) log k

)

.

Clearly for d1 | dm and squarefree integers ` and `′ with (`, `′) = 1, we have

n2 = (``′)m(dm/d1)
2 ⇒ ``′(dm/d1) | n.

Thus after summing over n, the δ-symbol contributes

∑

n≤x

1

n
δ
(

n2, (``′)m(dm/d1)
2
)

� 1

``′
d1

dm

∑

n≤x/``′(dm/d1)

1

n

� log k

``′
,
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while the O-term produces a term trivially bounded by

log k

``′
Qj(m/2+2)

k5/6

∑

n≤x

τ3(n
2)√

n
� (log k)6

``′

in view of our choices of x, j and Q.

Inserting these estimates into (2.17), it follows that

Sx � (j!)2(log k)6
∑[ ∑[ ∑[

P j/n2<d`,d`′≤Qj/n2

τ(dm)

(d``′)2

� (j!)2(log k)6
∑[

d≤Qj/n2

τ(dm)

d2

(

∑[

P j/dn2<`≤Qj/dn2

1

`2

)2

� (j!)2(log k)6
n2

2

P 2j

∑[

d≤Qj/n2

τ(dm).

Together with the estimates of Sx,y and (2.17), we get an upper bound for M(n2):

M(n2) � (j!)2(log k)6
n2

2

P 2j

∑[

d≤Qj/n2

τ(dm) + (j!)2k−1/20+ε.

In view of (2.13), we need to evaluate the following sum over squarefull integers.

∑\

n≤Qj

n1/2
∑[

d≤Qj/n

τ(dm) � Qj(log k)m
∑\

n≤Qj

n−1/2

� Qj(log k)m+1

as there are O(
√

t) squarefull integers less than t and
∑

d≤t τ(dm) � t(log t)m. Together with

(2.13) and (2.14), we conclude that

∑

f∈H∗
k
(1)

|Tsymmf (P, Q)|2j � k(log k)(m+1)4+m+7(j!)2QjP−2j + (j!)2k19/20+ε

which gives our desired result, by Stirling’s formula and Q ≤ 2P . �

§ 3. Proof of Theorem 1

Let m ∈ N, 2 | k and f ∈ H∗
k(1). We have

(3.1) log L(s, symmf) =
∞
∑

n=1

Λsymmf (n)

ns log n
(σ > 1),

where

(3.2) Λsymmf (n) =

{

[

αf (p)mν + αf (p)(m−2)ν + · · · + αf (p)−mν
]

log p if n = pν ,

0 otherwise.

Apparently |Λsymmf (n)| ≤ (m + 1) log n for n ≥ 1. To prove our theorem, we shall show

alternatively that for almost all f , log L(1, symmf) is well approximated by a short partial sum
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over primes. Actually, log L(1, symmf) has a good approximation by a partial sum of moderate

length when L(s, symmf) has a bigger zero-free region, which is available for most f ∈ H∗
k(1).

As in [14], for each η ∈ (0, 1
100 ], we define

(3.3) H+
k,symm(1; η) :=

{

f ∈ H∗
k(1) : L(s, symmf) 6= 0 for s ∈ S

}

,

where S := {s : σ ≥ 1 − η, |τ | ≤ 100kη} ∪ {s : σ ≥ 1}, and

(3.4) H−
k,symm(1; η) := H∗

k(1)rH+
k,symm(1; η).

According to (1.11) of [14], we have

(3.5) |H−
k,symm(1; η)| �η k31η.

For f ∈ H+
k,symm(1; η), we have the following result.

Lemma 5. Let η ∈ (0, 1
100 ] and δ0 ∈ (0, 1] be fixed and m ∈ {1, 2, 3, 4}. Let 2 | k and

x = exp
{

[(log k)/7(m + 4)]δ0

}

. Then for any f ∈ H+
k,symm(1; η), we have

log L(1, symmf) =
∑

p≤x

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

(log k)δ0

)

.

The implied constant depends on δ, η and m only.

Proof. Let f ∈ H∗
k(1), T ≥ 1 and x ≥ 1. By the Perron formula ([22], Corollary II.2.1 with

B(x) = 1 and α = 1), we have

∑

2≤n≤x

Λsymmf (n)

n log n
=

1

2πi

∫ 1/ log x−iT

1/ log x−iT

log L(s + 1, symmf)
xs

s
ds + O

(

log(Tx)

T
+

1

x

)

.

Once f ∈ H+
k,symm(1; η), we have the upper estimate

(3.6) log L(s, symmf) �η log k

uniformly for σ ≥ 1− 1
4η and |τ | ≤ (log k)4/η. This is a particular case of Proposition 3.5 of [14]

(with α = 1
4η).

Now for f ∈ H+
k,symm(1; η), we move the line of integration to σ = − 1

4η and estimate

log L(s + 1, symmf) by (3.6) over the contour. We see that

∑

2≤n≤x

Λsymmf (n)

n log n
= log L(1, symmf) + O

(

log(kTx)

T
+

(log k)(log T )

xη/4

)

(3.7)

= log L(1, symmf) + O

(

1

(log k)4/η−1

)

by taking the parameters T = (log k)4/η and x = exp
{

[(log k)/7(m + 4)]δ0

}

.

On the other hand, we have

∑

2≤n≤x

Λsymmf (n)

n logn
=

∑

p≤x

∑

ν≤(log x)/ log p

Λsymmf (pν)

pν log pν
(3.8)

=
∑

p≤x

∑

0≤j≤m

∑

ν≤(log x)/ log p

αf (p)(m−2j)ν

νpν

=
∑

p≤x

∑

0≤j≤m

{

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

x

)}

.
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Combining (3.7) and (3.8), we get the required result. �

The size of x given in Lemma 5, even though being quite small, is still insufficient for

our purpose. Making use of the proposition to remove the “exceptional forms”, we are able to

further reduce its size in the next two lemmas.

Lemma 6. Let m ∈ N, δ1 > 0 and δ2 > 0 such that δ1 − δ2 − 2 > 0 be fixed. Suppose that

(3.9) 2 | k and (log k)δ1 ≤ P ≤ Q ≤ 2P ≤ k14/15(m+4).

Then we have

(3.10)
∣

∣Tsymmf (P, Q)
∣

∣ ≤ 1

(log k)δ2

for all but except Oδ1,δ2,m

(

k1−θ0

)

forms f ∈ H∗
k(1), where θ0 := (δ1 − δ2 − 2)/10(m + 4)δ1 > 0.

Proof. Define

(3.11) E1
m(P, Q) := {f ∈ H∗

k(1) : (3.10) fails}.

We shall use the proposition in Section 2 with the choices

j =

[

c′
log k

log P

]

+ 1, c′ :=
1

5(m + 4)

to count |E1
m(P, Q)|. Plainly we have

k1/(3m+12) ≤ P j < (2P )j ≤ k7/(6m+24)

by (3.9), whence the proposition is applicable. This follows that

(3.12) |E1
m(P, Q)| � k

(

(log k)θ(m)e2j log jP−j + e2j log jk−1/21
)

(log k)2δ2j .

On the other hand, the lower bound for P in (3.9) yields that

− j log P + j(2 log j + δ2 log2 k) + θ(m) log2 k

≤ −c′ log k +
(

c′(log k)/ log P + 1
)

(2 + δ2) log2 k + θ(m) log2 k

≤ −c′{(δ1 − δ2 − 2)/δ1} log k + (θ(m) + 2 + δ2) log2 k

≤ − 1
2c′{(δ1 − δ2 − 2)/δ1} log k

and
− 1

21 log k + j(2 log j + δ2 log2 k)

≤ − 1
21 log k +

(

c′(log k)/ logP + 1
)

(2 + δ2) log2 k

≤ −
(

1
21 − c′(2 + δ2)/δ1

)

log k + (2 + δ2) log2 k

≤ − 1
2

(

1
21 − c′(2 + δ2)/δ1

)

log k.

Inserting these two estimates into (3.12) and noticing 1
21 − c′(2 + δ2)/δ1 ≥ c′(δ1 − δ2 − 2)/δ1, we

get the desired result. This completes the proof. �

Lemma 7. Let m ∈ N, δ3 > 0 and δ4 > 0 such that 1 − 2δ3 − δ4 > 0 be fixed. Suppose that

(3.13) 2 | k and (log2 k)1/δ3 ≤ P ≤ Q ≤ 2P ≤ (c log k)1/δ3 ,

where c = (1 − 2δ3 − δ4)/24(m + 4)(θ(m) + 2) > 0. Then we have

(3.14)
∣

∣Tsymmf (P, Q)
∣

∣ ≤ P−δ4

for all but except Oδ3,δ4,m

(

ke−(θ(m)+2)P δ3
)

forms f ∈ H∗
k(1).
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Proof. The argument is similar to Lemma 6. Define

(3.15) E2
m(P, Q) := {f ∈ H∗

k(1) : (3.14) fails}.

But this time we apply the proposition with another choice of parameters

j =

[

c′
P δ3

log P

]

+ 1, c′ :=
2θ(m) + 4

1 − 2δ3 − δ4
.

By (3.13), it is easy to verify that ec′P δ3 ≤ P j ≤ k2cc′ = k1/6(m+4) < k7/(6m+24). Thus we

deduce by the proposition that

(3.16) |E2
m(P, Q)| � k

(

(log k)θ(m)e2j log jP−j + e2j log jk−1/21
)

P 2δ4j .

Now, in view of our choices of c′ and c, we have

− (1 − δ4)j log P + 2j log j + θ(m) log2 k

≤ −(1 − δ4)c
′P δ3 + 2

(

c′P δ3/ log P + 1
)

δ3 log P + θ(m) log2 k

≤ −c′(1 − 2δ3 − δ4)P
δ3 + (θ(m) + 2) log2 k

≤ − 1
2c′(1 − 2δ3 − δ4)P

δ3

by the lower bound for P in (3.13), and

− 1
21 log k + j(2 log j + δ4 log P )

≤ − 1
21 log k +

(

c′P δ3/ logP + 1
)

(2δ3 + δ4) log P

≤ − 1
21 log k + 2c′(2δ3 + δ4)P

δ3

≤ −
(

1
21c − 2c′(2δ3 + δ4)

)

P δ3

≤ − 1
2c′(1 − 2δ3 − δ4)P

δ3

by the upper bound in (3.13). We get the required result by these two estimates with (3.16).

This completes the proof. �

Now we finish the proof of Theorem 1.

Let η ∈ (0, 1
100 ] and δ0 ∈ (0, 1] be fixed and m ∈ {1, 2, 3, 4}. Take δi (1 ≤ i ≤ 4) such that

1/θ1 > δ1 > 2/(1 − θ2), δ2 = 2δ0 = 2θ3, δ3 = θ1, δ4 = θ2.

It is esay to verify that δ1 and δ3 fulfill the conditions in Lemmas 6 and 7 respectively, and

1/δ3 > δ1. Define

x = exp
{

[(log k)/7(m + 4)]δ0
}

, y1 := (log k)δ1 , y2 := (log2 k)1/δ3 .

Then we consider the following three cases according to the size of z.

1◦ The case z ≥ x

The required formula follows immediately from Lemma 5 with a better upper bound O(k31η)

for the exceptional set in view of (3.5).
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2◦ The case y1 ≤ z < x

Using Lemma 5 with x = exp{[(log k)/7(m + 4)]δ0}, we can write

(3.17) log L(1, symmf) =
∑

p≤z

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

(log k)δ0

)

+ R1(symmf)

for any f ∈ H+
k,symm(1; η), where

R1(symmf) := −
∑

z<p≤x

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)

.

This case will be done if we show that R1(symmf) is negligible apart from a small exceptional

set of f . Clearly,

R1(symmf) =
∑

z<p≤x

{

λsymmf (p)

p
+ Om

(

1

p2

)}

=
∑

z<p≤x

λsymmf (p)

p
+ O

(

1

z

)

.

Define

Pi := 2i−1z, Qi := min{2iz, x}, E1
m := H−

k,symm(1; η) ∪ ∪
i�log x

E1
m(Pi, Qi),

where E1
m(Pi, Qi) is defined as in (3.11). According to Lemma 6, we have

|E1
m| � k31η +

∑

i�log x

|E1
m(Pi, Qi)| � (log k)δ0k1−θ0

and for f /∈ E1
m,

R1(symmf) �
∑

i�log x

∣

∣Tsymmf (Pi, Qi)
∣

∣ +
1

z

� 1

(log k)δ2−δ0
+

1

z
.

Inserting it into (3.17), we find that for f /∈ E1
m,

(3.18) log L(1, symmf) =
∑

p≤z

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

(log k)min{δ0, δ2−δ0}
+

1

z

)

,

which will give the required result.

3◦ The case y2 ≤ z < y1

We truncate the tail as in (3.17), and use the estimate in the second case. Thus it remains

to evaluate

R2(symmf) := −
∑

z<p≤y1

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)

.

Let us take

Pi := 2i−1z, Qi := min{2iz, y1}, E2
m := H−

k,symm(1; η) ∪ ∪
i�log2 k

E2
m(Pi, Qi).
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By Lemma 7, we have

|E2
m| � k31η + ke−(θ(m)+2)zδ3

log2 k � ke−θ(m)zδ3

and

R2(symmf) �
∑

i�log2 k

∣

∣Tsymmf (Pi, Qi)
∣

∣ +
1

z
(3.19)

�
∑

i�log2 k

1

(2i−1z)δ4
+

1

z

� 1

zδ4

for all f /∈ E2
m.

Finally define E∗
k := E1

m ∪ E2
m, then we have

|E∗
k| � ke−θ(m)zδ3

.

In view of (3.19) and (3.18), we derive that

(3.20) log L(1, symmf) =
∑

p≤z

∑

0≤j≤m

log

(

1 − αf (p)m−2j

p

)−1

+ O

(

1

(log k)δ5
+

1

zδ4

)

for f ∈ H∗
k(1)rE∗

k, where δ5 := min{δ0, δ1, δ2−δ0}. Obviously this is equivalent to our required

result. The proof of Theorem 1 is thus complete. �

§ 4. Proof of Corollary 2

By Theorem 1 with the choice of

z = log k, θ1 = 1
2 − ε, θ2 = θ3 = ε,

there is a subset E∗
k of H∗

k(1) such that |E∗
k| � ke−(log k)1/2−ε

and

L(1, symmf) =

{

1 + O

(

1

(log k)ε

)}

∏

p≤z

∏

0≤j≤m

(

1 − αf (p)m−2j

p

)−1

for each f ∈ H∗
k(1)rE∗

k. In view of (1.4) and the prime number theorem, it follows that

L(1, symmf) ≤
{

1 + O

(

1

(log k)ε

)}

∏

p≤z

(

1 − 1

p

)−(m+1)

=

{

1 + O

(

1

(log k)ε

)}

(eγ log2 k)m+1

for all f ∈ H∗
k(1)rE∗

k. This proves the upper bound result in Corollary 2 and one can treat the

lower bound in the same way. �
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