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On a conjecture of Montgomery-Vaughan

on extreme values of automorphic L-functions at 1

J.-Y. Liu, E. ROoYER & J. WU

Abstract. In this paper, we prove a weaker form of a conjecture of Montgomery-

Vaughan on extreme values of automorphic L-functions at 1.
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¢ 1. Introduction

The automorphic L-functions constitute a powerful tool for studying arithmetic, algebraic
or geometric objects. For squarefree integer N and even integer k, denote by Hj (V) the set of
all newforms of level N and of weight k. It is known that

. k-1 2/3

(1.1) [HL(N)| = T‘P(N) +O((kN)*?),

where p(N) is the Euler function and the implied constant is absolute. Let m > 1 be an integer
and let L(s,sym™ f) be the mth symmetric power L-function of f € Hj (V) normalised so that
the critical strip is given by 0 < e s < 1. The values of these functions at the edge of the critical
strip contain information of great interest. For example, Serre [18] showed that the Sato-Tate
conjecture is equivalent to L(1 + i7,sym™f) # 0 for all m € N and 7 € R. The distribution of
the values L(1,sym™ f) has received attention of many authors, including Goldfeld, Hoffstein &
Lieman [2], Hoffstein & Lockhart [7], Luo [12], Royer [14, 15], Royer & Wu [16, 17], Cogdell &
Michel [1], Habsieger & Royer [5] and Lau & Wu [10, 11]. In particular, Lau & Wu (Theorems
2 and 3 of [10], and Corollary 2 of [11]) proved the following results:

(i) For every fixed integer m > 1, there are four positive constants A and Bt such that
for any newform f € Hj (1), under the Great Riemann Hypothesis (GRH) for L(s,sym™ f), we
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have, for k — oo,
(1.2) {1+ 0(1)}(2B;; logy k)~Am < L(1,sym™f) < {1+ o(1)}(2B;; log, k).

Here (and in the sequel) log; denotes the j-fold iterated logarithm. For most values of m, the
constants Aﬁ and Bi can be explicitly evaluated, for example,

Al =m+1, Bl =¢€7 (m € N),
Ao =m+1, B, =e'¢(2)7! (odd m),
47 =1, By = e¢(2)?,

Ay =1 By =€'Br,

where ((s) is the Riemann zeta-function, v denotes the Euler constant and Bj~ is a positive
constant given by a rather complicated Euler product (cf. [10], (1.16)).

(ii) In the opposite direction, it was shown unconditionally that for m € {1,2,3,4} there
are newforms f= € Hj (1) such that for k — oo,

(13) { L(L,sym™ f£) > {1+ o(1)}(B;; log, k)%,

L(1,sym™ f;) < {1+ o(1)}(By, logy k)~

(iii) In the aim of removing GRH and closing up the gap coming from the factor 2 in (1.2)
(comparing it with (1.3)), an almost all result was established. Let € > 0 be an arbitrarily
small positive number, m € {1,2,3,4} and 2 | k. Then there is a subset E} of Hj (1) such that
E;| < Hi(1)e~ 050" *™% and for each f € Hi(1)~E:, we have, for k — oo,

(1.4) {14 O(ex)}(By, logy k)~ < L(1,sym™ f) < {1+ O(ex) } (B logy k),

€

where ¢j, := (log k)¢ and the implied constants depend on e only.

By comparing (1.3) with (1.4), the extreme values of L(1,sym™f) seem to be given by
(1.3). Clearly it is interesting to investigate further the size of exceptional set E;. In the
case of quadratic characters L-functions, Montgomery & Vaughan [13] proposed, based on a
probabilistic model, three conjectures on the size of exceptional set. The first one has been
proved recently by Granville & Soundararajan [4]. As Cogdell & Michel indicated in [1], it
would be interesting to try to get, as close as possible, the analogues of the conjectures of
Montgomery-Vaughan for automorphic L-functions. The analogue of Montgomery-Vaughan’s

first conjecture for the automorphic symmetric power L-functions can be stated as follows.

Conjecture. Let m > 1 be a fixed integer and

Fi(t,sym™) := [Hj(1)[ 7 > 1,
FEHE(1), L(1,sym™ £)>(Biht)Am
Gr(t,sym™) := [Hj (1)~ > L.

FEHE (1), L(Lsym™ f)<(Bpt)~4m
Then there are positive constants ¢; = ¢;(m) (i = 1,2) such that for k — oo,

efcl(log k)/ logs, k < F, (10g2 k, Symm> < efcg(log k)/ log, k7
(1.5)
e—cl(log k)/logs k < Gy, (10g2 k, Symm) < 6—02(10g k)/logy k
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The aim of this paper is to prove a weaker form of this conjecture for m = 1. In this case,

we write, for simplification of notation,
L(Saf) :L(S’Symlf)a Fk(t) :Fk(tasyml)a Gk(t) :Gk(tasyml)‘

In view of the trace formula of Petersson ([8], Theorem 3.6), it is more convenient to consider
the weighted arithmetic distribution function. As usual, denote by

T(k—1)
(4m)*= L f]

the harmonic weight in modular forms theory and define the weighted arithmetic distribution

Wf =

functions

A= Y o) 3 o,

feH; (1) FEH; (1), L(1,f)>(e7t)?

- —1

Gi(t) := ( Z Wf) Z wr.
feH; (1) Fen; (1), L(1,f)<(6m—2e7t) =2

By using (1.1), the classical estimate

(1.6) > wp=140(k/0)
feHE(1)

and the bound of Goldfeld, Hoffstein & Lieman [2]:
(1.7) 1/(klogk) < wy < (logk)/k,

we easily see that

(1.8) { Fi(t)/logk < Fi.(t) < Fi(t) logk,

Gi(t)/logk < Gi(t) < Gi(t)log k.

This shows that in order to prove (1.5) it is sufficient to establish corresponding estimates of
the same quality for Fy(t) and G(t).

Our main result is the following one.

Theorem 1. For any A > 1 there are two positive constants ¢ = ¢(A) and C = C(A) such that
the estimate

1.9 Ao -+ aoren { - (1+0(3))}

holds uniformly for k > 16,2 | k and t < T(k), where 7y is given by (1.24) below, |0| < 1 and

(1.10) Ag(t) = 0e!=TO=C ()T (k)12 + O (e + (log k) =),
' T(k) := logy k — 2 log, k — log, k — 3C.

In particular there are two positive constants ¢; and co such that

(1-11) e—c1(logk)/{(logy k)7/?logs k} < Fy (T(k)) < e—c2(logk)/{(log, k)7/2 logs k}
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The similar estimates for Gy(t) and Gy(T(k)) hold also.

Remark 1. The estimates (1.11) of Theorem 1 can be considered as a weaker form of
Montgomery-Vaughan’s conjecture (1.5) for m = 1, since T'(k) ~ log, k as k — co. Moreover,
if we could take T'(k) = log, k in (1.11) then (1.9) would lead to the Montgomery-Vaughan’s
conjecture (1.5). Hence we fail from a shift

5
3 logs k + logy k + 3C.

It seems however to be rather difficult to resolve completely this conjecture. One of the main
difficulties is that there are no analogues of the quadratic reciprocity law and Graham-Ringrose’s
estimates for short characters sums of friable moduli [3], which have been exploited by Granville
& Soundararajan [4].

In order to prove Theorem 1, we need to introduce a probabilistic model as in [1]. Consider
a probability space (£2, 1), with measure u. Let SU(2)h be the set of conjugacy classes of SU(2).
The group SU(2) is endowed with its Haar measure uy and

sur ={ (4 ):oeion}/~

is endowed with the Sato-Tate measure dug(6) := (2/7)sin?0d6, i.e., the direct image of un
by the canonical projection SU(2) — SU(2)h. On the space (€, 1), define a sequence indexed by
the prime numbers, g%(w) = {gg(w)}p of random matrices taking values in SU(2)h, given by

W0 (w) 0 i
B(w) = [ €
gp(w) T ( 0 eiﬁp(w)> )

We assume that each function gg(w) is distributed according to the Sato-Tate measure. This

means that, for each integrable function ¢ : SU(2)b — R, the expected value of ¢ o gg is

Boogh) = [ vogiant)= [To( (7 O0))- ermsntoan

Moreover, we assume that the sequence g%(w) is made of independent random variables. This
means that, for any sequence of integrable functions {G, : SU(2)h — R}, we have

(1.12) E(HG;DO!]E)) ::/QHGpogg(w)d,u(w)

= H/Q Gy o gh(w) dp(w)
:H/Ow(;p((e: 691.9)) (2/7)sin? 0.d6.

Let I be the identity matrix. Then for Re s > %, the random Euler product
s -1
L(s, g% (w)) := Hdet (I—p gf,(w)) =: HLp(s,gh(w))
P P

turns out to be absolutely convergent a.s.
Now we define our probabilistic distribution functions

{ D(t) = Prob({L(l,gh()) > (e"’t)Q}),
U (t) == Prob({L(1,4%()) < (6n~2e7t)=2}).

We shall prove Theorem 1 in two steps. The first one is to compare F(t) with ®(t) (resp.
G (t) with W(t)).
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Theorem 2. For any A > 1 there are two positive constants ¢ = ¢(A) and C = C(A) such that
the asymptotic formulas

(1.13) Fe(®) =) {1+ Akt)}  and  Gi(t) = U(){1 + Ag(t)}
hold uniformly for k > 16,2 | k and t < T'(k), where Ay (t) and T'(k) are defined by (1.10).

The second step of the proof of Theorem 1 is the evaluation of ®(¢) (resp. ¥(¢)). For this,
we consider a truncated random Euler product

L(s, " (w);y) := [ ] Lo(s, *(w))

p<y

and the corresponding distribution functions

We have
(1.14) O(t) = O(t, 00) and U(t) = (¢, 00).

We shall use the saddle-point method (introducted by Hildebrand & Tenenbaum [6]) to
evaluate ®(¢,y) and U(¢,y). For this, we need to introduce some notation. For s € C and y > 2,
define

(1.15) E(s,y) == E(L(l,gb(w);y)s) and E(s) := E(s,0),

where E(-) denotes the expected value. We define also

(1.16) (s,y) :=log E(s,y), On(s,y) = %(s,y) (n>0).

According to Lemmas 2.3 and 8.1 below, there is an absolute constant ¢ > 2 such that for
t > 4logc and y > ce?, the equation

(1.17) $1(k,y) = 2(logt +7)

has a unique positive solution k = k(t,y) and for each integer J > 1, there are computable

constants vg, 71, - - -, s such that the asymptotic formula
J
; 1 e't
— ol Ji
e o (i)
j=

holds uniformly for ¢ > 1 and y > 2¢?, the constant 7y beign given by (1.24) below.
Finally write o, := ¢ (k,y).
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Theorem 3. We have

uniformly for t > 1 and y > 2et.
Theorem 4. For each integer J > 1, we have

J

a
. O(t,y) = - -
(1.19) () =esp { n[; o+ 0 ()| |
uniformly for t > 1 and y > 2e*, where the error term R;(k,y) is given by
(1.20) Ry(k,y) L | &
. K,Y) 1=
PRI Qlog k) 7HT T ylogy
and
© /h ! )
(1.21) a; ::/ <_u)> (logu)?~* du
0 u
with
2 ™
log (—/ e2ucost gin? 9d9) if 0<u<l,
T
(1.22) h(u) = 0

2 s
log (—/ 62“c°5051n29d9> —2u if u>1.
™ Jo

As a corollary of Theorem 4, we can obtain an asymptotic developpment for log ®(t,y)
in t~!. In particular we see that the probabilistic distribution function ®(¢) decays double
exponentially as t — oo.

Corollary 5. For each integer J > 1, there are computable constants af,...,a"; such that the

asymptotic formula
(12 vty =exp{ ~ [ S P 05 (Rt ) |
j=1

holds uniformly for t > 1 and y > 2e*. Further we have

1 [ (u) % )
. = — =1 5= — — — 1 .
(1 24) 70 9 /0 u du, ap ) as 70 2 /0 u2 ( Ogu) du

In particular for each integer J > 1, we have

(1.25) o(t) eXP{ et%[il%JrO'](H%)H

uniformly fort > 1.

Remark 2. (i) The same results hold also for U(t,y).
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(ii) Taking t = logy k and J = 1 in (1.25) of Corollary 5, we see that the probabilistic
distribution function ®(¢) (resp. ¥(t)) verifies Montgomery-Vaughan’s conjecture (1.5). But
(1.13) is too weak to derive this conjecture for Fj(t) (resp. Gi(t)). This means that we must
take T'(k) = logsy k in Theorem 2, which seems be rather difficult.

(iii) Our method can be generalized to prove that Theorems 1 and 2 hold for L(1, sym™ f)
when m = 1,2,3,4 and that Theorems 3, 4 and Corollary 5 are true for L(1,sym™g%(w);¥)
when m > 1.

Acknowledgements. We began working on this paper in November 2004 during the visit of
the first author to 'Institut Elie Cartan de Nancy, and finished in January 2006 when the third
author visited School of Mathematics and System Sciences of Shandong University. We are
indebted to both institutions for invitations and support. The second author wants to thank
the CRM at Montréal for its invitation. Finally we would express our sincere gratitude to Y.-K.
Lau of the University of Hong Kong for valuable discussion.

§ 2. Expression of E(s,y) and existence of saddle-point

The aim of this section is to prove the existence of the saddle-point «(¢,y), defined by
equation (1.17). The first step is to give an explicite expression of E(s,y), which is (1.24) of [1].

For the convenience of readers, we state it here as a lemma.
Lemma 2.1. For prime p, real 0 and complex number s, we define
. ) _ 2 [T
(2.1) D,(0) := H (1- 61072])6])71) ! and E,(s) :== —/ D,(0)* sin? 6 d6.
0<j<1 o
Then for all s € C and y > 2, we have
(2.2) E(s,y) = [[ Bo(s)
Py

Proof. Taking
Gp(M") = {det (I—p* M) if p<y
1 otherwise
n (1.12), we get

E(L(s, g°( = [[E(Zs(s, gi(w))*)

Py
=] / det (1—p~*g5(w)) " dp(w)
Py
fH / 1—2p % cos+p~ 25/)7Ssin29d9.
Py
Taking s’ = 1 and noticing (1.15) and (2.1), we get the desired result. O

Lemma 2.2. For all p and ¢ > 0, we have

E}(0)Ey(0) — Ej(0)* > 0.
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In particular for all 0 > 0 and y > 2, we have ¢2(o,y) > 0.

Proof. By using the definition (2.1) of E, (o), it is easy to see that

E}(0)Ey(0) — Ej)(0)* = = / D, (0)? log® D,() sin?  d9 / D, () sin? 0 do
0

_ <;/ Dp(Q)UlogDp(G)sin29d9>2

= / / Dy (61)° Dpy(02)° (log® Dy(61) — log Dy (61) log D,y(62)) x
X sin 91 SlIl 92 d91 d92

In view of the symmetry in 6; and 63, the same formula holds if we exchange the roles of ; and
0. Thus it follows that

D,(61)\ . )

2

EI/)/(O')EP (O’) — p = 7'(‘2 / / D 91 92) 10g <DZ(92)> Sln2 91 Sln2 92 d91 d92
This proves the first assertion and the second follows immediately. ([

Lemma 2.3. There is an absolute constant ¢ > 2 such that for t > 4logc and y > ce®, the
equation ¢1(o,y) = 2(logt + ) has a unique positive solution in o. Denoting by n(t,y) this
solution, we have k(t,y) < e uniformly for t > 4logc and y > cel.

Proof. According to Lemma 4.3 below with the choice of J = 1, we have
¢1(0,y) = 2(logy o +7) + O(1/log o)
for y > 0 > 2. Thus

B(ce’,y) = 2log(t + logc) + 2 + O(

> 2logt + 27,

t+logc>

1
d)(Cilet, ’y) = 210g(t — 10gC) 4+ 2’)/ + O(m)
< 2logt + 27,

provided that c is a large constant and ¢ > 4logc. On the other hand, in view of Lemma 2.2, we
know that for any y > 2, ¢1(0,y) is an increasing function of ¢ in (0,00). Hence the equation
o1(o,y) = 2(logt + 'y) has a unique positive solution r(t,y) and c~te! < k(t,y) < ce' for
t > 4logc and y > cet. This completes the proof. (I

§ 3. Preliminary lemmas

This section is devoted to establish some preliminary lemmas, which will be useful later.

Lemma 3.1. Let j > 0 be a fixed real number. Then we have

(3.1) / e?eos9(1 — cosf)7 sin? 0 df =; e*u~0+3/2) (u>1).
0
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The implied constant depends on j only.

Proof. First we write
Pig ] /2 ] )
/ 62““’59(1 — cos9)’ sin?0df = / (62““’59(1 —cosf) + 6_2““’5‘9(1 + cos 9)3) sin® 0 dé
0 0
1
= / (e2(1 —t)7 + e 2 (1 +t)7) (1 — ) /2 dt
0

1 1
x/ e2ut(1—t)j+1/2dt+/ e~ 2ut(1 —t)1/2 dt.
0 0

By the change of variables u(1 —t) = v, it follows that

1 u
/ e?ut(l o t)j+1/2 dt = 62uu7(j+3/2) / 67271’Uj+1/2 dov
0 0

2uy,~(j+3/2)

e

1 1
/ e" 21— )2 dt < / e 2 dt < ut
0 0

We obtain the desired result by insertion of these estimates into the preceeding relation. (]

Lemma 3.2. Let j > 0 be an integer and
2 (7 - i .9
(3.2) E, (o) = — D, (0)° (1 — cos )’ sin* 6 d6.
T Jo

(In particular Ep, o(c) = Ep(0).) Then we have

2i+3 1 1N\? 4u]7
E, (o) = / {(1 - —> + _u} W2 (1 —w) /2 du
™ Jo p p

and the estimate

(3.3) Ey;(0)/Ey(0) < (p/o)

holds uniformly for all primes p and o > 0. Further if p > o > 0, we have
(3.4) E,(o) < 1.

The implied constant in (3.3) depends on j only and the one in (3.4) is absolute.

Proof. By the change of variables u = sin®(0/2), a simple computation shows that the first
assertion is true. Obviously (3.3) holds for j = 0.
Now assume that it is true for j. An integration by parts leads to

Ey(0) >; <%>j/01 [(1 %>2+ %u} 7qu+1/2(17u)1/2du
= G {00 3] Tl

1\*  4u]™ i+1+1/2 1/2
x|(1-=) +—=] /21— w2 du.
p
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On the other hand, we have
1\? 4u] ‘4o 1 1\ 240 _ 160

O<u<l = [(1-=) +—| —4—0——>(14+-) —>—"7.

p p p 2(1—-u) P

Inserting it into the preceeding estimate, we see that

o\ttt 1\? 4u]™7 .
E, (o) > (—) / [(1——) +—] W21 — )2 du
p(0) >; . ; ’ ) ( )

g g+
=j (;) Ep j+1(0).

Thus (3.3) holds also for j + 1.
Since (1+1/p)=2 < D,(0) < (1—1/p)~2 for all primes p and any 6 € R, we have D,(0)? < 1
uniformly for p > o > 0 and 6 € R. This implies (3.4).

Introduce the function

(3.5) g(u) :=log <% / et eostgin? 9d9) (u>0)
0
and let h(u) be defined as in (1.22). Clearly we have
(3.6) h(u) = g(u) if 0<u<l,
' g(u) —2u if u>1,
(3.7) b (u) = {gl(u) rosus<t
' g (u)—2 if u>1,
(3.8) R'(u)=g"(u) (u>0,uz#1).

Lemma 3.3. We have

2 if 0<u<1
(3.9) h(u) = {“ BousTss
log(2u) if u>1,
] if 0<u<1
3.10 B (u) < N ’
( ) () {ul if u>1,
1 if 0<u<1
3.11 B (u) < N ’
( ) () {u2 if u>1,

n if 0<u<l,

(3.12) R (u) =< { L

u if uw>1.

Proof. The last three relations are trivial. We will prove only the first four estimates.
When 0 < u < 1, we have
2. (ucos @)™
2ucosf __
¢ o Z n! )

n=0

;From this we deduce that

(3.13) h(u) = log (% i %T /OW(COSG)" sin? 9d9)

n=0

_ 2 (20D
1°g<1+e_1 @i+t )
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where we have used the following facts:
/ (cos 0)**F1sin? 6 do = 0
0

and
1 if £=0,

2 iy
z 0)% sin® 0 do = 20 — 1)!!
w/o(cos) S RO oy

20+ 2)!! =

Now we easily deduce, from (3.13), the desired results in the case of 0 < u < 1.

11

The estimates of (3.9)—(3.12) for u > 1 are simple consequences of (3.1), by noticing the

following relations

/ e?ucosf(1 — cos ) sin? 0 dd
92 0

b (u) = — = ;
/ e** <% sin® 9 df
0
/ e24eos9(1 — cosf)?sin? 0 d / e*<*5%(1 — cos 0) sin®  dg
h//( ) — 440 - — 4 0 =
/ e?u cos 6 sin2 0de / e2u cos 0 Sin2 0do
0 0

This completes the proof.

§ 4. Estimates of ¢,(0,y)

The aim of this section is to prove some estimates of ¢, (o, y) for n =0,1,2, 3,4.

Lemma 4.1. For any fixed integer J > 1, we have

J
(4.1) do(o,y) = 0{2 logy o + 27 + Z (I:gj’g)j +0;(Rs(a, y))}

uniformly for y > o > 3, where R ;(o,y) is defined as in (1.20) and

(42) bj,O = /OOO h’(,(LZ) (logu)j_l du.

Proof. By the definition (2.1) of D,(6) and the one of E, (), it is easy to see that for p > o'/2,

we have

cos g
(4.3) D, ()7 = /P 9{1 - o(p) }

(4.4) E,(0) = {1+O(%)}z/ 2/ 030 142 g 49,
p ™

0

i From these, we deduce that

(4.5) Y. logByo)= Y g(o/p)+0(c"?/logo)

ol/2<p<y ol/2<p<y
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where g(u) is defined as in (3.5).

In order to treat the sum over p < o, we write

Ep(0) = (1-1/p)"*7E;(0),

T _ —2N —0
(o) ;:3/ {1+M(1—1) } sin® 0 do.
™ Jo p p

By using the change of variables u = sin?(#/2), we have

where

Ei(0) = 8 /OF {1 + é(1 - %>2sm2(9/2)}0 sin?(0/2) cos?(6/2) do

™ p
g [P/ 4 N2 )77
2—/ {1+—(1——) u} Vu(l —u)du
™ Jo p p
8 8\ 7 [P/
2—(1—1——) Vu(l —u)du
iy g 0

3/2
> 0(3) :
g

where C' > 0 is a constant. On the other hand, we have trivially (o) <1 for all p and o > 0.
Thus |log E(0)| < log(a/p) for p < o'/ and

(4.6) Z |log E;(0)| < Z log(o/p) < o/2.

p<ol/? p<ol/?

Combining (4.5) and (4.6), we can write

Y logEy(0) =20 Y log(1—1/p)~" + > g(o/p)+O0(c"/?).

p<y p<ol/2 ol/2<p<y

In view of (3.6) and the following estimate

Z (20log(1 —1/p)~' — 20/p) < Z o/p* < o'/?/loga,

ol/2<p<c ol/2<p<o

the preceeding estimate can be written as

(4.7) > logEp(0) =20 Y log(1—1/p)~" > ho/p)+0('?).

p<y p<o 01/2<p§y

By using the prime number theorem in the form

(4.8) Z / 1Ogv -8 logt),

p<t

it follows that

(4.9) 3 h(%)/y hl(;/f) dt + Ry,

1/2
ol/2<p<y 7
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where

Yy /
RO = h(g)SS\/logy + h(o_l/2)674\/loga +/ O'|h (;/t)|ef8\/logt dt
)

ol/2

—24/logt y —84/logt
R e Al A
g

ol/2
< ef\/loga

by use of Lemma 3.3.
In order to evaluate the integral of (4.9), we use the change of variables u = o/t to write

o172

y
/ Mo/t g / _ W),
s1/2 logt oy u?log(o/u)
1/2
_ [ h(w) ,
B 0/071/2 u?log(o/u) du+O(Ry)
where ,
o)y o—1/2
R{ = a/ T (A du + a/ s [h(w)] du
o wlog(o/u) ) dlog(o/w)

o2 o1/2

+ .
ylogy  logo
On the other hand, we have

1/2

‘ h(u) 1 ‘ h(w) "
/071/2 u?log(o/u) “= loga/(, 172 (1 — (logu)/log o) d

1/2
7 h(uw) 1 1
log u)’~ — ).
; loga /,rl/z a2 (o8 du+0((10g0)"“)

—1/2
)

1/2

Extending the interval of integration [o 0/?] to (0,00) and bounding the contributions of
(0,071/2] and [¢/2, 00) by using (3.9) of Lemma 3.3, we have

1/2 .
A S log o)?
/ ( )(1 gu) ™ du = j70+0((ag1/2) )

—1/2 u2

Combining these estimates, we find that

(4.10) 3 (p) {ibg +0J(RJ(ay))}

ol/2<p<y

Now the desired result follows from (4.7), (4.10) and the prime number theorem in the form

(411) > log(1-1/p)~" =10g20+7+0(e*2\/@)_

p<o
This completes the proof. (I
Remark 3. In view of (1.3), we can write (4.1) as
J
n
bo(0,y) = a{ lox(B og ) + 3 g0 4.0, (R m}
j=1

uniformly for y > o > 3. In the case ¢ < 0, a similar asymptotic formula (with A7, B; and
corresponding b}, in place of AT, Bf and b; () can be established uniformly for y > —o > 3. As
indicated in the introduction, Lemma 4.1 can be easily generalised to the general case m > 1.
Thus we give an improvement and generalisation of Corollaries A and C of [15], of Theorem B
of [5], and an improvement of Theorem 1.12 of [1]. It is worthy to indicate that our method

seems to be simpler and more natural.
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Lemma 4.2. We have

1

log D,,(0) + O<—) for all p and o > 0,
/ g
Ey(9)

(4.12) P~ =

Ep(0) 1/01 D,(0)+0 1+U oS g1/2

—g'| = -+ —= | i

29 p Og P p2 p3 p_U ’

where g(u) is defined as in (3.5).

Proof. First we write

413 D “log D, (#) sin® 6 d0
( ) gLlp

=E,( )1ogD()+R/,

where
(4.14) / D,(0)° log (g gi)sinQOdH.
Since
s () = o (G| = i =

it follows from (3.3) of Lemma 3.2 with j = 1 that

B Bl 1
Ey(0) ~ pEp(o) o

for all p and o > 0. This implies, via (4.13), the first estimate of (4.12).

We have
log Dy(6) = (cos6)(2/p) + O(1/*)
= (cos0) log D,,(0) + O(1/p?).

Inserting it and (4.3) into the first relation of (4.13) and in view of (4.4), we can write, for
1/2

2 (7 1
E (o) = {1 + O(%) }—/ 62(“/’))“’59{(005 0)log D,(0) + O(—Q) } sin? 0 do
p T Jo p

2 (7 E
= {1 + O(%) }—/ e2(7/P) 030 (c050) sin? 6 df log D, (0) + O(—p(f)).
p T Jo

p

p=>o

(From this and (4.4), we deduce

2o~ {1 o(3) a7 (5) w0+ o)

which implies the second estimate of (4.12). This completes the proof. (]
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Lemma 4.3. Let J > 1 be a fixed integer. Then we have

bj,l
(loga)?

J
$1(0,y) = 2logy 0+ 27+ > +0,(R;(0,y))
j=1

uniformly for y > o > 3, where the constant b; is given by

[ee} h/ .
(4.15) big = / () (og 1)1 du
0 u
and Rj(o,y) is defined as in (1.20).

Proof. We have
¢1(0,y) =Y Ep(0)/Ey(0).

p<y

Using the first relation of (4.12) for p < /% and the second for 0%/3 < p <y, we obtain
= log D = (Z)10gD o -
$1(0,y) = Z 0g p(0)+§ Z g ; og Dp(0) + o173 )
p<o?/3 02/3<p<y
In view of (3.7), the preceeding formula can be written as
4.1 =Y logD (D og(1-1) 4o 2
(4.16) ¢1(0,y) = Z og Dp(0) + Z o)l =3 +O0\ o3 )
p<o 02/3<p<y
Similarly to (4.10), we can prove that

(4.17) 3 h’(f) log (1 - %)_1 - Z bil 0s(Rs(0,y)),

J
02/8<p<y i=1 (logo)

15

using (3.10), (3.11) and (4.11) instead of (3.9), (3.10) and (4.8). Now the desired result follows

from (4.16), (4.10) and (4.17).

Lemma 4.4. We have

1
O(—) if p§01/2,
E)(0)Ey (o) — E:/D(O')2 _ o2

Ep(0)? ] 1 11
" 3o (5) ro(mn{zg o)) o vme

where g(u) is defined as in (3.5).

(4.18)

Proof. First we write

2 [T . ,
(4.19) E)(0) = ~ /O D, (0)? log® D,(0) sin?  d9
= Ep(0)log” D,(0) + R”,

where o [
R':=Z= / Dp(9)0(10g2 D,(0) — log® D,,(o)) sin® 0 df.
0

™
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Using (4.13) and (4.19), we can deduce
E}(0)Ey(0) — Ep(0)* _ R"—2R'log Dy(0) ( R )2
Ep(0)? Ep(0) )]
where R’ is defined as in (4.14).

(From the definitions of R’ and R”, a simple calculation shows that

2 [T - Dyp(9) ..
R" — 2R log D,,(0) = - /0 D, (6)° log? (%)snﬁ@d@.

log? <Dp(9)) = log? <1 L 20 cos9)> _4(1 — cos6)? +O<(1 cos@)2>7

(p—1)? p? P

(4.20)

4 E
R" —2R'log Dy(0) = = Ep2(0) + O(%m),
p p
where E, (o) is defined as in (3.2). By using (3.3) with the choice of j = 2 and the trivial
estimate E,2(0) < 4E,(0), we deduce

R" —2R'log D,(0) 4 E, (o) ( . { 11 })
4.21 P =_0 +O0( miny —, —= ¢ .
(421 By (o) 72 By(0) 2 7

Similarly we have
D (9)) ( 2p(1 —cos@)) 2(1 — cos ) ((1 —cos@))
log (222 ) = —log [ 1 + = +o( —22),
g(DAm ’ (b =17 :
and therefore

2 E
R = =2 Epa(0) + o( ”’12(0)

N———

Now (3.3) with j = 1 and the trivial estimate E, 1(0) < 2E,(0)
Epa(0)®

422 () =7 (25 vo(Fer)
() ool )
Inserting (4.21) and (4.22) into (4.20) and in view of (4.14), we deduce

E!'(0)E,(0) — E!'(0)? 4 1 1
4.23 L L = —h O( min{ —, —
(42 Ep(0)? o)t (mm{a%’ p3}>
for all p and o > 0, where

imply

2
o= ()
P P
When p < 0'/2, the inequality (3.3) of Lemma 3.2 implies that h,(0) < (p/c)?. (From
this and (4.23) we deduce the first estimate of (4.18).
If p > 0/2, we can use (4.3), (3.11) and (3.8) to write

o= E)fo(2)}
-(2) ofm(32))

Inserting it into (4.23) and in view of Lemma 3.1, we get, for p > o'/2,

SOELREE Lr(G) ol )

This completes the proof. ([
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Lemma 4.5. Let J > 1 be a fixed integer. Then we have

0( {Z

5+ 0y (Ry(o, y))}

uniformly for y > o > 2, where

bjo ::/ R (u)(logu)? ! du.
0
In particular by o = 2.

Proof. jFrom Lemma 4.4 and (3.8), we deduce easily that

Pa(0,y) = Z E)(0)Ey(0) — E,(0)

p
ot Ep(0)?

_ 9"(a/p) 1
B Z p? +0 03/21log o

ol/2<p<y

_ h"(o/p) 1
B Z p? O o3/2logo )

ol/2<p<y

Similarly to (4.10), we can prove that

3 h”(O’/p { Z

ot/2<py J=1

=+ 0y (Ry(o, y))}

by using (3.11), (3.12) and (4.8). Now the desired result follows from the preceeding two

estimates.
Finally
/ h" (u) du + / h" (u) du
=Rr(1-)=h(1+)=Hr(1-)— (F(1-)—-2) =2.
This completes the proof. (I

Similarly (even more easily, since we only need an upper bound instead of an asymptotic

formula), we can prove the following result.

Lemma 4.6. We have
(4.24) bn(0,y) < 1/(c" tlogo)  (n=3,4)

uniformly for y > o > 3.

§ 5. Estimate of |E(x +i7,y)|

Lemma 5.1. For any § € (0, i), there are two absolute positive constants c1, cy and a positive
constant cs = c3(d) such that for all y > o > 3 we have

1 if |7] <co'/?logo or |1| > y'/?,

e=e2m’/lologa)’] jf 1512 l0go < |7 < 0,

5.1) ‘E(o + w,y)‘

E(o,y)
e—csll’ if o<|r| < yt/o
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Proof. First we write
2 [T s
= / (Dp(0)~") " sin* 6 do
0

2 (7 sin” 6 1y 1-s
2| aomemy Ao

Since (D,(0)71) = 2p~!sin6, after a simplification and an integration by parts it follows that

S
N
»
N
I

p T o
EP(S) = m/o Dp(t?) 1 C089d9
—_P /M2 {Dy(0)°* " — Dy(m —0)* "} cos0db
m(s—1) Jo P P '
This implies that

(5.2)

O'lHE;(S)
s—1||E} (o)

with /2
Ey(s) = /0 {D,(0)*"" — Dy(m — 0)*"'} cos 6 db.

1° Case of o'/% < |7| < y1/9
Write
/2
Ey(s) = / Dp(0)*~ {1 = A,(0)°* "} cos 6 db
0

with

A(0) = 1—2p~tcosf +p2
P 14 2p~tcosf + p2°

It is clear that for all p, the function § — A,(0) is increasing on [0, 7/2]. It follows that
/4
Ey(0) > / Dp(0)7 {1 = A,(0)7 "} cos 6 db
0
/4
> {1- Ap(w/4)°'—1}/ D,(0)7 ' cos 0 db
0

for all p and o > 1. This implies that

1 /4 1
5.3 _ D, (071 COS@de‘ <
(5:3) ’E;<a>/o »(6) T A, (rjd)7

Similarly since the function 6 — D, (6)°~! cos is decreasing on [0, 7/2] for all p and o > 2, we
can deduce, via (5.3), that

1 /2 1
5.4 —/ D, (0)° 1 COS@do} < —
(54) ‘E;(a) Ly @) T A, (n/d)

(From (5.3) and (5.4), we deduce that

2
< )
= T= A,/

‘ By (s)
E;(0)
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It is easy to verify that for all p > o > 2, we have

o—1 o—1
5 1 1
A,,G) §(1—£+—2) <1-2—-

p p 4p

Combining these estimates with (5.2), we obtain

By multiplying this inequality for o < p < |7|° (< y) and the trivial inequality |E,(s)| < |E,(0)]
for the others p, we deduce, via the prime number theorem, that

}ggig;‘gexp{ S loglrl+4 Y logp}

o<p<||® o<p<|T|®

< e~ {1/6—4+o()}|7|°

2° Case of ¢;0'/?logo < |1| < o'/?

1/2

Forp>o > 2, we can write

/2
£, (s)| < / {Dy(0)"" + Dy(m — )"} cos0db
0

/2
_ {1 T O<}%) }/ (62[(0—1)/;)] cost 4 o=2((o—1)/7] cose) cos 0 do
0

and

/2
B2 (0)] = /0 [D,(8)7" — Dy(m — 0)7'} cosfdh

/2
_ {1 n O(%) }/ (c2lo=D)/pleost _ o=21(o=1)/plc030Y 0o 9 .
p 0

(From these, we deduce that

Ex(s) o 1
p 1/2
’ ‘§{1+O(p2+ea/p)} (2<o/*<p<o)

(5.5) T

where we have used the following facts
/2 /2
/ 2l@=1)/pleos0 50 49 > /P and / e 2Mo=1)/pleost o590 <« 1.
0 0
Inserting (5.5) into (5.2), for 2 < o!/2 < p < o we obtain

E,(s) s—1 o 1
e

Ey(0)
{GTZ/G'QJrCG/PQJrCe"/’) if 3 S |7_| S o,
<

e B OB /) Co P RO < (| < g

< exp{ — log

where C' > 0 is an absolute constant.
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Now by multiplying these inequalities for o/(4logo) < p < o/(2logo) and the trivial
inequality |E,(s)| < E,(c) for the other p, we get

E(s,y) ‘ { (T2 S
<expy — Z o2 p>  edlr
a/
‘E(va) o/(4logo)<p<o/(2logo) ’ P o
72 10C
< ~“\ oz — 100~
< exp { (8a(log 0)? 0C ologo) }

cend T
= oxp o(logo)?

logo < |7| < o, and

if ¢rol/?

(5.6) ‘gé;g;’ < exp{ T ) [% log (1 * ;_z) N % - e"%} }

4log 0)<p<o/(2log o)

2 10C
<expd — |——1log (1+ =5 ) —10C —
8logo o ologo

< exp{ — 03|T|6}

if o < |7| < o'/%. This completes the proof. O

§ 6. Proof of Theorem 3

We follow the argument of Granville & Soundararajan [4] to prove Theorem 3. We shall
divide the proof in several steps which are embodied in the following lemmas.

The first one is a classic integration formula (see [4], page 1019).

Lemma 6.1. Let ¢ >0, A >0 and N € N. Then we have

" 0 if 0<y<e M,

(6.1) L[ (1Y ds 0,1 I’f *MZV/<€ 1

' 21 C,iooy s s €0.1] ife Sy<5b
1 if y>1.

The second one is an analogue for (3.6) and (3.7) of [4] (see also Lemma 3.1 of [20]).

Lemma 6.2. Lett > 1,y > 2e’ and 0 < A < e~t. Then we have

1 [T E(s,y) e* — 1 ds N
6.2 P(t < — ! — < O(te™
(62) )< 5 [ T <),
1 [T B(s,y) e —1 .\ ds
6.3 d(te N y) — D(t,y) < =— ’ As e A 2
(63) (e ) =0ty < oo [ EE e () S

Proof. Denote by 1x(w) the characteristic function of the set X C Q. Then by Lemma 6.1 with
N =1 and ¢ = k, we have

L [H L1, g w)sy) e — 1
Lwe:L(1,gt@)m)> (@2} (@) < Q_M/nfioo < (e7t)? As? ds.
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Integrating over 2 and interchanging the order of integrations yield

(I)(t,y)g/ﬂ{%/,:j (L(l,(gji;uz);y))sexisglds} a()

1 A B(s,y) et — 1
- 2mi evt)2s  \s?

This proves the first inequality of (6.2). The second can be treated by noticing that

K—100 ( ds-
)

LiveaL(1Lg2w)in)> (2} (W) = Lweai(1,g8w)im) > (e76)2} (@)

T Lwen:(ert)2>L(1,65 (@)iy) > (e1-3t)2} (@)

1 et <L(1,g“(W);y))5€“ -1

>
~ 2mi (et)? As?

ds.

K—100

(From (6.2), we can deduce

1 [rriee E(s,y) et —1 1 [t E(s,y) e —1
d(te ™, y) — (t,y) < — : - — : d
(te™"y) (ty) < 2 Jpliso (€Y7AL)25 AS2 ° 7 omi /K_ioo (e7tAt)2s  As? y
1 [ B(s,y) e —1, A
=5 ; *—e M) ds.
2mi /,{,ioo (ent)?s  As? (e ) ds
This completes the proof. ([

Lemma 6.3. Lett > 1,y > 2¢' and 0 < kA < 1. Then we have

1 K+ik E(S y) e)\s -1 E(H y) 1Og’i
: ds = : 140( kA _
2mi /,«Fm (e7t)*  As? § K\ 2mog(eVt)?r O\ K

Proof. First we write, for s = k + 47 and |7| < k&,

E(s,y) = exp {UO +i01T — %72 - 1%73 + 0(0474)},

e — 1 1 7 72
- ={1-= Ol KA+ —= | ».
As2 n{ IiT+ (H +n2)}

Since o1 = logt + v, we have

E(s,y)e -1  E(ky) /2)72 i 03 5
= o2/ — -2 O(R
(ent)2s s fﬁ(th)Qne HT ! 6 T ( (T))

with
R(7) := kX + k727% + oyt 4 027C.
Now we integrate the last expression over |7| < & to obtain

1 [T B(s,y) e —1 E(k,y)

(6.4) ! ds = /’i e_(”2/2)72{1 + O(R(T)) } dr,

omi ). . (€71)25 As2 - 2mk(ent)2e

where we have used the fact that the integrals involving (i/x)7 and (io3/6)7 vanish.
On the other hand, using lemmas 4.5 and 4.6 we have

® 2 1
[ (Eeofon{ L))}
—K g9 2

K+1ik 2
> 1 1
~(2/D7°R(7)d A =S4
/HK ¢ (r)dr < —— (n ot o

1 log k
A .
< = (m + p )

Inserting these into (6.4), we obtain the desired result. O
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Lemma 6.4. Let 6 and c3 be two constants determined by Lemma 5.1. Then we have

Ktioco As
E(s,y) e —1 E(,y)
6.5 q R
(05) /nim (e7t)?s  As? o< Ky/O2(e7t)2r b
K+i00 E(S y) eks -1 E(H y)
66 ? As . —)s d 7’R
o0 . T @ e e PN e

uniformly for t > 1, y > 2¢e!, k > 2 and 0 < Ak < 1, where
Ry = A lemesr” 4 A K/ logn)l/Qy’l/‘s,
Ry := Ak(log n)l/Q 4+ e (/2R A Hk/log ,1)1/2y*1/5_

Proof. We split the integral in (6.5) into two parts according to & < |7| < y*/® or |7| > y!/9.
Using Lemma 5.1 with o = x and the inequality (e*® —1)/s?> < 1/72, the integral in (6.5) is

E(k,y) e—csr’ 1
< (e7t)2F )\ P +y1/6 )

which implies (6.5), in view of Lemma 4.5 with J = 1.

Similarly we split the integral in (6.6) into four parts according to

1/2 logk < || < &, k<] < yl/‘s, |7| > yl/‘s.

I7| < ci6'2logh,  ck
By Lemma 5.1 with 0 = k and the inequalities

(e* —1)/As < min{l, 1/(\|7))}, (€™ —e™)/s < min{\, 1/|7[},

the integral in (6.6) is, as before,

- ig’;gﬁ) (/\Iil/2 log k + e=car’ | )Flyfl/‘s),
which implies (6.6), as before. O
Now we are ready to complete the proof of Theorem 3. Lemma 6.3 and (6.5) of Lemma 6.4
give
Ktioco As _
(6.7) o / » if;’)i’ﬁ S ds=- %}Zit)Qﬁ {1+0(r)}
where

R

_ logk A e—ear’ 4 (fﬁ/i\ogm)lpy_l/‘s-
K

Taking A = x~2 and noticing y > 2e* < x and 1/§ > 4, we deduce
(6.8) R < t/e".

Combining (6.7) and (6.8) with (6.2), we obtain

(6.9) B(t,y) < &%{1 +o<i>} < B(te,y)
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uniformly for t > 1, y > 2e? and 0 < A < et
On the other hand, (6.3) of Lemma 6.2 and (6.6) of Lemma 6.3 imply

D(1e) ~ 0(1) « —Ar D (anftog g2+ (LB (o] g )

Ky/O2(eVt)2" ecsrd Myl/o
E(k,y) 12, (K/logk)'/?
=W N k(] /2 4 XM P
< W@(evt)%( (o ) T

when ¢~/ =1/2(log k) ™1 < A < k™. Since ®(te=*,y) — ®(t,y) is a non-decreasing function
of A\, we deduce

(610) Bt y) — Blty) « —oo ) ()\Fa(log w2 . L/ log )% n(log 5)1/2)

K/\/OTQ(Q’Yt)QN eCar?’ yl/(26)
uniformly for ¢t > 1, y > 2e* and 0 < A < e~ *. Obviously the estimates (6.9) and (6.10) imply
the desired result. This completes the proof of Theorem 3. (I

§ 7. Proof of Theorem 4

Using Lemmas 4.1 and 4.5, we can write

J
bjo
:exp{ﬁ(QlogQFa—Zlogt—i—z L= +OJ(RJ(H7?J)))}-
= (logr)/

On the other hand, Lemma 4.3 and (1.17) imply that

b‘%l
(log k)J

J
2log, K+ 27+ Y +0;(Ry(r,y)) = 2(logt + 7).
j=1

Combining these estimates, we can obtain

E(k,y) T bii—b

) 5,1 — 05,0

S o (ov1\2r - - 4+ O;(Rj(k, .

N D L [Z e+ Ot

In view of (1.21), (4.2) and (4.15), we have bj1 — bj 0 = a;. This completes the proof. O

§ 8. Proof of Corollary 5

We first prove an asymptotic developpment of k(¢,y) in t.

Lemma 8.1. For each integer J > 1, there are computable constants 79,71, ..,y such that
the asymptotic formula

J .
(5.1 i) == 14 32 40,3 0) )

j=1
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holds uniformly for t > 1 and y > 2e?, where
1 et
Ry (t _
N( y) tNJrl +y10gy
Further ~y, is given by (1.24) and v, = —%b%l — ibzl-
Proof. By Lemma 4.3 and (1.17), we have

J+1
b.
(82) 2 logt =2 10g2 K+ Z (1Oé1;)] + OJ (R-]+1(K7 y))a
j=1

where R;(k,y) is defined as in (1.20). ;From (8.2), we easily deduce that

J+1

= (log k) H exp { Z ll;g ) } exp {0 (Rys1(k,y))}

= (log &) ﬁ { ]f m%, <ﬁ>m +0;(Rys1(%,9)) }

j:l ’ITLJ'ZO

Developping the product, we get

J+1 b/
= (log ,i){ Jz: m + 0 (Rt (s, y))}

where
pm L p I
by = Z 1,1 J+1,1
J (2m1)”(2mj+1)”

m12>0,...,m 4120
my+2ma+---+(J+1)myp1=j

mi1 UL
b1,1 B 'bj,l

- Z m... VIR
1 00 @2m)!--- (2m )N
mi1+2mao+--+jm;i=j

Since by = 1 and b = b1.1/2 = 79, the preceeding aymptotic formula can be written as

(8.3) tflogfi+’yo+z ”1) + 0 (Ry(ty)),

where we have used the fact that x(t,y) < e’ (see Lemma 2.3) and (log k) Ry4+1(k,y) < R%(¢,y).
With the help of (8.3), a simple recurrence argument shows that there are constants ~;,
such that

J ’

o .
(8.4) t:logn+zt—j+OJ(RJ(t,y)).
=0

In fact taking J = 0 in (8.3), we see that (8.4) holds for J = 0. Suppose that it holds for
0,...,J —1,ie.

tflogK’+ Z _+O z—j—l(tay)) (]:077‘]71)7
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which is equivalent to

J—j ’ R* . t
(8.5) logm:t{l—zvzil—i—O( le(w))} (j=0,...,J=1).
i=1

t

This holds also for j = J if we use the convention:

-1
Z =0 and R* | (t,y) =1,
i=0

since logk = t + O(1). Inserting it into (8.3), we easily see that (8.4) holds also for J. In
particular we have v] = by = b3 | /8 + by 1 /4.
Now (8.1) is an immediate consequence of (8.4) with

’Y{ml DY / m"
= _qymatetmy J__
’ m1>oZm,>o -y matsemy!
my+2ma+e+JImy=j
This completes the proof. (I
Now we are ready to prove Corollary 5.
Using (8.5), we have
J J=i * —j
aj; a; Yi—1 R;_ 1 (ty)
8.6 I _ — 21— =2 4 Oy | —L—
LU Y A At Ve G
j=1 j=1 =1
_ ! P O R*}72(t7y)
“lut 12 ’
j=1

where the p,, are constants. In particular we have p; = a; = 1 and ps = vy + as.
Now Theorem 4, (8.1) and (8.6) imply the result of Corollary with

j—1
ai =p1 =1, G;ZPJ‘-FZ%Pj—i (j=2).
i=1
This completes the proof of Corollary 5. O

¢ 9. Proof of Theorem 2

For each 7 € (0, 3), define
Hi(Lin) = {f € Hz(1) : L(s, f) # 0, s € S},
where S:={s:=0+it: 0 >1—n, |7 <100k"}U{s:=0+it: 0 > 1,7 € R}, and
Hy; (1) := HE()NHG (1 m).
Then we have (see [10], (1.11))
(9.1) |H, (1;m)] <, K°17.

Our starting point in the proof of Theorem 2 is the evaluation of the moments of L(1, f).

For this, we recall a particular case of Proposition 6.1 of [10].
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1

Lemma 9.1. Let n € (0,3-) be fixed. There are two positive constants ¢; = ¢;(n) (i = 4,5)

» 31
such that
(92) Z wa(Lf)s = E(S) +O77(6_C4 log k/ log, k)
fEHS (Lm)
uniformly for
(9.3) k>16, 2|k and  |s| <27}

with
Ty, := c5logk/(log, klogs k).
Here E(s) is defined by (1.15).

Let x(t,y) be the saddle-point determined by (1.17) and & := k(t,00). For k > 16,2 | k,
A >0, N € Nand t > 0, introduce the two integrals

Kt+100 s s 9N
Lk aN) =1 [ 3 wf<L(1,f)> (eA 1) ds

2T imioo FEH (15m) () A s
Ky +i00 s 2N
Lkt A\, N) = QLM H:OO (i({;l <6A)\S_ 1) ds
Lemma 9.2. Let 7 € (0, 545] be fixed. Then we have
(9.4) Fio(t) + O, (k7%) < Li(k,t; A, N) < Fy(te™N) + 0, (k75/°),
(9.5) O(t) < Ly(k,t; A\, N) < O(te™ )

uniformly for k > 16,2 | k, A >0, N € N and t > 0. The implied constants depend on 7 only.
Proof. By exchanging the order of sommation and by using Lemma 6.1 with ¢ = k;, we obtain

P s N
wp [T L1, f) ers — 1\ N ds
Li(k,t;\,N) = — —
1k, A N) Z 2ﬂiA ((e"ﬁf)2 As s’

—100
feH! (1;m) !

Z Z Wg.

FEHT (1im), L(1,£)>(e7t)?

In view of the second estimate of (1.7) and of (9.1), we reintroduce the missing forms

Li(k,t;\,N) > Z quJrO( Z wf)

FEHL(1), L(L,f)>(e7t)? FEHINH[ (13m)
> Z wr + O(kz_“r?’h7 log k:)
FEH; (1), L(1,f)>(et)?
Clearly this implies the first inequality of (9.4), thanks to (1.6) and (1.7).
Similarly, using Lemma 6.1 with ¢ = k¢, we find

Lk tEAN) < Y wpt > wy
feH (1m) fEHT (1im)
L(1,£)>(e"t)? (e7te ™ N)2<L(1,f)<(e7t)?
= Z U.)f.
fent(1m)

L(1,f)>(e7te™*N)?

As before, we can easily show that the last sum is < ﬁk(te_)‘N) + O(kz_5/6).
The estimates (9.5) can be proved in the same way as (6.2). (]
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Lemma 9.3. Let n € (0
Then we have

,Wlo] be fixed and ¢4 be the positive constant given by Lemma 9.1.
1+ e )2V Jog Ty,
(th)Q"it
E(Ht) +e—04(10gk)/10g2k 1 _’_ez\m 2N
(o)
uniformly for A > 0, N € N, k > 16, 2 | k and t < T(k), where T(k) is given by (1.10). The
implied constant depends on 7 only.

Ly(ky 2, N) — ok, £ 0, )| < =408 1)/ Tosa
(9.6)
+

Proof. By the definitions of I; and I, we can write

Li(k,t; A\, N) — I(k, t; \, N

1 [fretiee s er 1\ ds
= ( > wiL(1,f) —E(s))( - ) NEhES

Kt —100
‘ FeH (1)

In order to estimate the last integral, we split it into two parts according to |7| < T} or |7| > Tj.

In view of (1.18), it is easy to see that k; < T}, for ¢ < T'(k). Thus we may apply (9.2) of
Lemma 9.1 for s = k; + i with |7| < T). Note that |(e** —1)/(\s)] < 1+ e for s = Ky +iT,
which is easily seen by looking at the cases |[As| < 1 and |As| > 1. The contribution of |7| < T}
to [T (k,t; A, N) — Ia(k,t; A\, N)| is

1+ e”\'“)QN log T},

—c4(logk)/logy k (
(9.7) <Le GDEZ

Since x < Ty, for t < T'(k), we can apply (9.2) of Lemma 9.1 to write, for s = k¢ + i7 with
TeR,
| I EE)| <Y wrL(L ) + Ble)
FEH] (15m) FEH] (15m)
< 2E(ry) + 0(6—04(10gk)/10g2 k)
Thus the contribution of |7| > Ty to |I1(k,t; A\, N) — Iy (k, t; A\, N)| is

E(Kt) + 6—04(10gk)/log2 k 1+ e/\'“ 2N dr
< Y+)2K¢ / (Ai) I
(9.8) (et) 7> || ||
E(Ht) 4 6754(10g k)/log, k 1+ 6/\'1" 2N
< N(eyt)Qﬁt ( )‘Tk >
Combining (9.7) and (9.8) yields to the required estimate. 0

End of the proof of Theorem 2

For simplicity of notation, we write

Ij:=Ij(k,t; ,N)  and I :=Lik,te*™;\,N)  (j=1,2).

; ;
By using Lemma 9.2, we have
Fr(t) < I + O(k™5/%)

=L+ O(|I, — L]+ k~°/%)

< O(te M)+ O(|I — L] + k%)

<O(t) + [@(te ™) = B(t)| + O(|11 — Io| + k=)

(9.9)
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and
Fy(t) > I + O(k™5/9)
= I +O(|Iff — I | + k~5/9)
> & (te*N) + O(|If — If | + k~5/9)
> ®(t) — [0(t) — D(te )|+ O(|If — I | + k~°/°).

(9.10)

In view of (6.10) and Theorem 3, we have
|B(t) — D(te )| < D) { ANk, (log k) /2 4 e~ (c3/Dn )
for AN < e~t. Take
(9.11) A=e/T,  and N = [log, k.
Since T}, = eT(F)+8logs k+2C+loges it ig easy to see that
AN < em TR =20 (f)=1/2 and Ky < el
Inserting these estimates into the preceeding inequality, a simple calculation shows that
(9.12) |®(t) — ®(te V)| < d(1){!"TM=C (/T (k)2 + O(e~"")},

provided the constant C' is suitably large, where ¢g = ¢g(n,d) is a positive constant.
Similarly by using (6.10) with te*" in place of ¢, we have

|B(t) — B(teM)] < Dt ) AN kyrn (log Frgern ) /2 + e~/ L,
Since for t < T'(k) we have
te* t

te M = ¢ + O((log, k)3(log k)/ log k) and Keean X €9 x e,

the preceeding estimate can be writen as

|B(t) — ®(te V)] < 1a(te V) {et=TR=C (/T (k)2 + O(e 7666‘)}
< %@(t){et T(k)— C(t/T( ))1/2+O( —cpe® )}
+ 1) — d(teMN) | {e"TW=C (/T (k)2 + O(e~e"") },
from which we deduce that
(9.13) |B(t) — ®(teM)| < B(t) [ TE=C (/T (K))/? + O(e ") }.

By using Lemma 9.3 with te*" in place of ¢, we have

1+ ereern 2N Jog Ty,
(evte)‘N>2Kte>‘N

|Il+ - IQ+| < 6—04(10g k)/log, k (

+

E(HteAN)+€—c4(10gk)/log2k 1+€)\Hte)\N 2N
N (evterV)2mean ( AT ) :
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On the other hand, by using Theorem 3 and (1.25), it is easy to see that there is a positive
constant ¢ such that

E(Ht)
Ky 2mog(eVt)2re

for t < T'(k). Thanks to Lemma 4.5, the previous estimate can be written as

1/2 Ak 2N
1 1 LeAN
I — I < ®(t)— _fteN _re
N 10g RieAN /\Tk

®(1)
< log k)"

d(te™) < B(t) ~ S e—cse'/t s, g—co(log k)/[(logy k)7/? logs K]

(9.14)

Similarly we can prove (even more easily)
(9.15) I, — L] < ®(t)/(log k)™

Inserting (9.12) and (9.16) into (9.9) and (9.13) and (9.15) into (9.10), we obtain

Fio(t) < @(0){1+ ¢ O (1/T(k)? + O(e™ " + (log b))},
Fi(t) = @(t){1 - e T®O=C(1/T(k)) /2 + O (e~ + (logk) =) }.

Y

This implies the first asymptotic formula of (1.13) by taking 7 = 555 and & = <.

The second can be established similarly. This completes the proof of Theorem 2. ([

§ 10. Proof of Theorem 1

The formula (1.9) is an immediate consequence of Theorem 2 and (1.25).
Taking t = T'(k) in (1.9), we find that

(10.1) e=ci(logk)/{(logs k) ?logs k) [ (T(k)) < e~ c2(lo8 k)/{(log, k)7/? logs k}

where ¢ and ¢}, are two positive constants. Clearly (10.1) and (1.8) imply (1.11).
The related results on Gg(t) and Gi(T(k)) can be proved similarly. This completes the
proof of Theorem 1. O
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