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Abstract

In this paper, we study the large time behavior of solutions of a parabolic
equation coupled with an ordinary differential equation (ODE). This sys-
tem can be seen as a simplified N-dimensional model for the interactive
motion of a rigid body (a ball) immersed in a viscous fluid in which the
pressure of the fluid is neglected. Consequently, the motion of the fluid is
governed by the heat equation and the standard conservation law of linear
momentum determines the dynamics of the rigid body. In addition, the
velocity of the fluid and that of the rigid body coincide on its boundary.
The time variation of the ball position, and consequently of the domain
occupied by the fluid, are not known a priori, so we deal with a free bound-
ary problem. After proving the existence and uniqueness of a strong global
in time solution, we get its decay rate in L? (1 < p < o0), assuming the
initial data to be integrable. Then, working in suitable weighted Sobolev
spaces, and using the so-called similarity variables and scaling arguments,
we compute the first term in the asymptotic development of solutions. We
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prove that the asymptotic profile of the fluid is the heat kernel with an
appropriate total mass. The L estimates we get allow us to describe the
asymptotic trajectory of the center of mass of the rigid body as well. We
compute also the second term in the asymptotic development in L? under
further regularity assumptions on the initial data.

Keywords and Phrases: Fluid-solid interaction, heat-ODE coupled system,
large time behavior, similarity variables, heat kernel.

AMS Subject Classification: 35B40, 35K15, 35R35, 35K05, 34E05.

1 Introduction and main results

The aim of this paper is to describe the large time asymptotic behavior for a
coupled system of partial and ordinary differential equations. The system under
consideration is a simplified N —dimensional model for the motion of a rigid body
inside a fluid flow.

The governing equation for the fluid is merely the heat equation whereas the
motion of the solid is governed by the balance equation for linear momentum.
For the sake of simplicity, we assume the solid to be a moving ball of radius 1
occupying the domain B(t) of RY whose center of mass lies in the point h(t).
Thus, the system we shall deal with is the following one:

u — Au =0, x € Q(t), t>0,

u(x,t) = h'(¢), x € 0B(t), t>0,

mh"(t) = — | n-Vudo,, t>0, (1.1)
o90(t)

U(X, 0) = uo(x), X € Q(O), h(O) = h(), h,(O) = hl,

where Q(t) := RY \ B(t) and m > 0 stands for the mass of the ball. The vector
n(x,t) is the unit normal to 0€2(¢) at the point x directed to the interior of B(t).
In the above system the unknowns are u(x,t) (that can be seen as the Eulerian
velocity field of the fluid) and h(t). The coupling condition (1.1-ii) ensures that
the velocity of the body is the same as the one of the fluid on its boundary. The
equation (1.1-iii) results from the standard conservation law of linear momentum.

Let us stress the main differences between our model and a full model of
fluid-structure interaction, namely:

((u,— Au+u-Vu+Vp=0, xe€Qt), t>0,
divu =0, x€Qt), t>0,
— !
< u(x,t) = h'(t), x € 0B(t), t>0, (1.2)
mh"(t) = —/ Tndo,, t >0,
a90(t)
[ u(x,0) =ug(x), xe€Q0), h(0)=hy, h'(0)=h;,
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where 7' is the stress tensor in the fluid whose components are defined by

Ou;  Ou,
Tij(x,t) == —p(x, )05 + | — + =2 |,
Z]( ) p(X ) L) (ax] 8$Z
and p stands for the pressure. When N = 2, on account of (1.2-ii) and (1.2-iii),
the relation (1.2-iv) can be rewritten as:

mh"(t) = — 6Q(t[)n -Vu — pn| do,. (1.3)

Indeed, from (1.2-ii), we deduce that n- Vu” = (n* - Vu)! = 0, because u is
constant, equal to h', along 0B(t). Therefore, we obtain that 7n = —pn + n -
(Vu+ Vu”) and so Tn = —pn + n - Vu. That yields relation (1.3). Note that
the formulation (1.3) is quite close to (1.1-iii). In our model (1.1), the pressure
term has been neglected. Note that the convective quadratic non-linearity has
also been neglected in (1.1-i). However, this simplification is less relevant since
most of our developments can also be carried out in the presence of a non-linear
convective term. Thus, the main difference between system (1.1) and the more
realistic one (1.2) is that in (1.1), we neglect the pressure term. Extending the
results of this paper to the full system (1.2) is an interesting open problem.

The model (1.2) and other more complete and complex ones involving several
bodies with rotational motions, were extensively studied during the last years.
Concerning the existence and uniqueness of weak solutions, see for example [4],
[5] and [7], [8], [6] and [14], [13] and the references therein. Recently and inde-
pendently of the present work, M. Tucsnak and T. Takahashi in [18] in the whole
space and T. Takahashi in [17] for a bounded domain, proved the existence and
uniqueness of a strong solution for a more complete version of the model (1.2),
adding the rotational motion for the ball. Moreover, it was shown that the so-
lution is global in time provided the ball does not collide with the boundary of
the domain. Whether finite time collision occurs is one of the most interesting
and challenging problems in this field. Recently, the problem was solved in 1-d
by J.L. Vézquez and E. Zuazua [20] showing that finite time collision may not
occur.

In a previous paper by J.L. Vizquez and E. Zuazua [19], the large time be-
havior for a simplified one dimensional model of fluid-structure interaction was
analyzed. In this paper, a sharp description of the asymptotic behavior as time
goes to infinity of a point particle, which floats in a fluid governed by the viscous
Burgers equation was given. More precisely, it was proved that the velocity u of
the fluid behaves, for ¢ large, like the unique self-similar solution of the Burger’s
equation on R with source type initial data MJy. The constant M is defined by
M = fR ugdx + mhy, the functions ug and h; being the initial velocities of the
fluid and of the particle respectively. The present work is a natural extension of
this one to the case of several space dimensions. However, in the present paper,



the equation governing u is assumed to be linear although similar results could be
proved for a model including a convective non-linearity in the parabolic equation.

It is also of interest to compare our results with the existing ones on the
asymptotic behavior of the Navier-Stokes equations (without rigid-bodies) in [2]
and [3] (and references given there). In these papers it is shown that, roughly
speaking, the first order approximation is given by the heat kernel with an ap-
propriate total mass. The same result holds for the solution of the Navier-Stokes
equations in R? and R® (see [2] and [3]). One can expect the same result to be
true for the Navier-Stokes equations coupled with the motion of a rigid body (as
n (1.2)) but this result has not been proved so far.

Let us go back now to system (1.1) we are dealing with. It is a linear, free
boundary problem since the position of B(t) is to be determined. Applying the
change of variables v(x,t) = u(x + h(t),t) and g(t) = h'(¢), we can rewrite
system (1.1) using v and g as new unknown functions and the system turns out
to be non-linear but in a fixed domain, independent of t. Indeed, we get

vi—Av—-g-Vv =0, x € (), t>0,
v(x,t) = g(t), x€0B, t>0,
mg'(t) = —/ n - Vvdo,, t>0, (1.4)

a9
v(x,0) =vo(x), x€, g(0)=h,.

Here B stands for the fixed ball of center 0 and radius 1, 2 := RV /B and n(x)
is the unit normal to 0f2 at the point x directed to the interior of B.

In view of (1.4), it is clear that the N components of the fluid field (u or v)
are coupled through the unknowns (h or g) describing the motion of the solid.

Thus, although it might seem not to be the case, all the components of u are
coupled in (1.1).

1.1 Notations

Throughout this article, we shall use bold print notations for N—dimensional
vectors like x, y, u, v, ¢ whereas we keep the usual characters for real valued
functions : u, v, (. The generic notation v will be used for any of the components
v; of the vector v.

In the same way, L%(w), H!(w) will stand for L?(w)" and H'(w)" respectively,
w being a measurable subset of RY .

A N x N matrix is denoted [M]. Its entries are M;;, 1 < 4,5 < N and M,
stands for the :—th row. However, to shorten notation, we sometimes drop the
index 47 and denote generically by M any row of the matrix [M]. For instance,
according to these simplifications, the matrix identity [M] = UV” leads to the
vectors equality (equality of the rows of the matrices) M = UV and can also be
rewritten as IV scalar equalities M; = UV;. For vectors and matrices, the classical



_ N g\ M2 N L\ 1/2
Euclidean norms are defined |V| = (Zizl 1% ) and [[M]| = (Zi,j:l Mz-j) .
When V(x) and [M](x) are a vector valued function and a matrix valued function

1/p
respectively, on an open set w C RY | we denote: |V]|, = (Zfil L, Vfdx) and

Ml = (S ), Mg;.dx)l/p, for all 1 < p < co.

Non negative constants shall be denoted by C along the computations. The
value of C' can change from one line to the other. We sometimes use C; and
Cs when its values need to be followed along the computations. The notation
C, allows to emphasize the dependence with respect to p, the exponent of the
Sobolev or LP space we are working in. Finally, in some equalities, C'(t) will stand
for a real valued function such that |C(¢)| < C for all £ > 0.

L?(F,w) and H(F,w) stand for weighted spaces where F is a positive function
(the weight) on the subset w of RY. They are endowed with the scalar products
[, uvF (x)dx and [ Vu-VvF(x)dx+ [ uvF(x)dx respectively. To shorten no-
tations, we will write L?(F) and H'(F) instead of L?*(F,RY) and H!(F,R")
respectively when w = RV,

Finally, H'(w) is the closure of C (w) Sthe space of C'! functions with compact

support in w) for the norm ([ |Vul?dx)®.

1.2 The scalar version of system (1.1)

Any component (v, g;), i = 1,..., N of the solution (v,g) of system (1.4), that
we shall merely denote by v and g, is a vector valued function with two scalar
components, which solves:

vi—Av—g-Vu=0, x € (), t> 0,
v(x,t) = g(t), x €0B, >0,
0
myg'(t) = —/ —vdax, t>0, (1.5)

v(x,0) = vo(ﬁ), x €Q, ¢(0)=hy.

Note in particular that in (1.5), v satisfies a scalar heat equation. However, all the
scalar equations satisfied by the components v;, = 1,..., N are coupled through
the convective term and in particular, through the vector field g describing the
motion of the solid.

As far as the first term in the large time asymptotic development is concerned,
we shall prove that the term g - Vv can be neglected.

To simplify notations, we will sometimes work with these scalar functions

(v, 9).



1.3 Main results

Theorem 1.1 (Existence and uniqueness of solutions) For any (v, g) €
L2(Q) x RN, there exists a unique global strong solution (v,g) of system (1.4)
such that:

v € C ([0,400),L*(2)) N L? ((0, oo),Hl(Q)> and g€ C([0,400)).

The proof of this Theorem is quite classical and follows the same ideas as in [19].
A complete proof can be found in the self-contained version of the present article
[16].

If we integrate the first equation of system (1.4), use the Stokes formula and
the transmission condition (1.4-iii) on the boundary of the ball, we deduce that

M, = / vdx + mg, (1.6)
Q

is independent of time. This first momentum plays a crucial role in the description
of the large time behavior of v.This idea will be made more precise in the following
Theorem.

Let us introduce the weight function K (x) := exp (|z|?/4) and the constant
on, the area of the unit sphere, necessary to state the main results of this paper.
Note that ox /N is therefore the volume of the unit sphere.

Theorem 1.2 (First term in the asymptotic development) Assume that
vo € L*(K,Q) and go € RY. Then there exist constants C, > 0 depending on
the dimension N, on the mass m of the solid and on p such that the following
inequalities hold:

£7 (1 )|v(t) — MuG ()l < CoRa (1), (1.7)
t7|g(t) — My (4mt) "% | < CooRa(t), V> 1. (1.8)

In these estimates, G stands for the heat kernel on RY defined by G(t,x) :=
(47rt)_%exp (—|x|?/4t) , and the first asymptotic momentum M is given by M, :=
fQ vodx + mgy. The error functions Ry and Ry are given in the following tables:

m = O'N/N
N=2 N>3
| Ra(t) | [log(t)[t 2 | ¢ 2 (1.9)
I1<p<oo
[ Ru(t) | [log(t)|t™= | t~=

m # on/N
N =2 N >3
| Ry (1) | log(t)| 2t 4 v (1.10)
1<p<2 2<p< > I<p<N|N<p<oo
[Ra(0) [ [log(@)]t > | [log()[=e 357G [ 45 [ ¢ 500V




where:
N (p—1)(p—N)

2p(2p+N(p—1))
Remark 1.1 The embedding L?(K,Q) C LY(Q) ensures that M, is well defined.

6(N,p) = (1.11)

Remark 1.2 Note that the decay rates we obtain for g are the same as those for
v in the L®—norm. This is perfectly natural in view of the coupling condition in

(1.4-ii).

Remark 1.3 Theorem 1.2 provides different decay rates in the case m = oy /N
and m # oy/N. This appears naturally along the proof when analyzing the
behavior of v.:= v—M;G and g := g—M,G|sq. More precisely the estimates on
|mg' + fann - Vvdo,| depend on the mass m of the solid ball. This term decays
like t='/2=2 when m = o /N but only as t=¥/>=' when m # on/N.

According to Theorem 1.2, in a first approximation, v behaves, as t — oo, as
the fundamental solution GG of the heat equation. Note that this Gaussian profile
is multiplied by M := [, vodx + mgo which indicates that the fluid component
of the system absorbs asymptotically as £ — oo the initial momentum introduced
by the solid mass.

The values of R; in (1.9) and (1.10) of Theorem 1.2 are sharp for p = 2 and all
N > 2. This clearly appears when exhibiting the second term in the asymptotic
development of v in L?(Q) in Theorem 1.3 below. We do not know yet if the
error estimates for the L —norms with p > N are sharp or not. At this respect
it is important to observe that, despite the fact that the estimates we obtain for
p < N are similar to those that one obtains for the linear heat equation where one
gains an extra ¢~ /2 factor of decay when subtracting the fundamental solution,
our estimates deteriorate as p increases beyond the exponent p = N due to the
additional factor t/(V:p),

Remark 1.4 In Theorem 1.2 the dynamics of g is rather simple since, fort large,
the action of the fluid on the ball can be neglected. This can be easily predicted
by a scaling argument. According to the scaling properties of the heat equation,
given (v,g) solution of (1.4), it is natural to introduce vy(x,t) := AVv(Ax, \%t)
and gx(t) .= \Ng(N\2t), for all X > 0. Then, (vy, ) is a solution of the following
system:

Vit — Avy — /\7N+1g)\ -Vv, = 0, xe& Q)\, t >0,

va(x,t) = ga(t), X € 0By, t>0,

(/e == [ - Vvsdon, t>0,  (112)
GIN

vi(x,0) = MWve(Xx), x€Qy, (0) =AVhy,



where By, is the ball centered at the origin and of radius 1/\ and Q) = RN \ By.
Formally, as A — oo the convective term in the first equation vanishes, and the
equation for the acceleration of the ball tends to the trivial identity. Taking this
into account, the rescaled solution of the heat equation can be shown to converge
to the Gaussian kernel with an appropriate mass. Thus, denoting by v and g the
limits of v and g as A — oo, one expects as well that v(x,t) = M;G(x,t) and
g(t) = M;G(0,t), where My can be identified by the property of conservation of
momentum.

In view of Theorem 1.2, the solution u of system (1.1) behaves as follows:
u(x,t) - M;G(x—h(t),t) ast — oo, in all the L? spaces. Moreover, Theorem 1.2
yields precise estimates of the velocity of the ball, g := h’. Integrating these
relations, we deduce that:

e When N = 2: h(t) = (M, /4n)log(t) + O(1), and then, the ball goes to
infinity as ¢ — oo.

e When N > 3: |h(t)| < Cy, for all ¢ > 0, where Cjy depends on the initial
data. The ball remains in a bounded domain as t — oc.

Theorem 1.3 (Second term in the asymptotic development)

Let (vo,g0) € H2(Q, K) x RY s. t. volan = go. Then, as far as the L2—norm
15 concerned, we can improve Theorem 1.1: there exist two constants a > 0 and
b > 0 such that:

e When N =2,
[v = MiG — |log(1 +1)|[M3]VG — [M3]VG||raa) < C'[log(1 +1#) 't
(1.13a)

e When N > 3,
v — MyG — [Mu] VG2 < C |log(1 + )%t 5 579, (1.13b)

where a = a(N), b = b(N) and where the second asymptotic momenta [MJ], [M3]
and [My] are N x N matrices defined by

o When N =2,
1

and

[M2] := — / voxT dx — %MIMIT — / ( / (n-vV)de%) dt
Q (4m) 0 N

o[0T~ (MBI (1 + )27
0
(1.14b)



e When N > 3,

1 m 2
M, := — Tax — MM?T | —— — (4
(M) /QVOX T any {N—l SO

—/ (/ (n'VV)XTsz) dt+/ (1+t)*%7ﬁM1BTdt
0 \Jan 0

- Gor (LT LA BMY) (1) i B,
0 T2

w|2

(1.14c)

where

Bi=(1+1)2 o (g _ M1(4mg)—%) , (1.14d)
1s a bounded quantity. Moreover, all the integrals involved in the definition of

[M3] for N =2 and [My] for N > 3 are well defined.

Remark 1.5 The second term in the asymptotic expansion of the solution con-
tains some terms that may not be explicitly computed in terms of the initial data.
This is the case both in dimension N = 2 and N = 3. When N = 2, the defi-
nition of [M3] contains several time integrals that involve the solution (v,g) for
all time t > 0. The same phenomenon occurs (see Theorem 3, [22]) for scalar
convection-diffusion equations on the whole space RY .

It is convenient to display the results of Theorem 1.3 as an asymptotic develop-
ment as ¢ — oo in L?():

e When N = 2:

v(t) = M G(t) + | log(1 + t)|[M3]VG(t) + [M3]VG(2)
+ O (|logt[’t™"7%) . (1.15a)

e When N > 3:

N_ 1

v(t) = MiG(t) + M VG() + O (Jlog 1"t~ F737) (1.15b)

For the solution © of the heat equation on the whole space RY, with initial data
7y € LY(RY, 1 + [x|?), we have the asymptotic expansion in L2(RY):

3(t) = MiG(t) + M, - VG(t) + O (t—%—l) , (1.15¢)

where J\Z = IRN Updx and MQ =— fRN Doxdx. Comparing (1.15a) for N = 2 and
(1.15b) for N = 3 with the known results for the heat equation (1.15c) we observe

9



some slight differences due to the presence of the solid mass. In dimension N = 2
the main difference is due to the presence of a time logarithmic multiplicative
factor on the second term of the asymptotic expansion involving VG. This was
already observed to be the case in [22] for the quadratic convective nonlinearity
in dimension N = 2. We also see the presence of this time logarithmic factor on
the error term. The main difference in the case N = 3 comes from the definition
of the factor [My] multiplying the second term VG, which reflects the coupling
between the heat equation and the solid mass.

1.4 Sketches of the proofs of Theorems 1.2 and 1.3

The first step to prove Theorem 1.2 consists in establishing the decay rate of
the solution (v, g) of system (1.4) in L? (1 < p < 00). We get this result
componentwise by multiplying the heat equation by non-linear functions of v,
integrating by parts and using Holder, Sobolev and interpolation inequalities.
The problem is then reduced to solve an ordinary differential inequality and the
conclusion arises by exhibiting a suitable super-solution.

In a second step, we introduce v(x,t) := v(x,t) — M;G(x,t) for all x € Q
and g(t) := g(t) — M, J(t) where J(t) := G(t,X) |xecan = (4mt)~N/2e~1/4  Since
G is the fundamental solution of the heat equation, ¥ solves in © x (0, 00):

vi—Av—-g-Vv=M,g-VG. (1.16)

Simple computations yield J'(t) = (47) N2t~ N/2"1e"1/4 (_N/2 + 1/4t), for all
t >0 and also [, %Sdo, = 1/2(4m) =N 2gyt=N/?=1e=1/* Thus, with the correct-
ing term,
1 1 1
e(t) == §m(47r)_%t_%_16_47 (%V - N+ 2_t> : (1.17)
it follows that mJ'(t) = — [,, 28do, + £(t). Therefore, the ODE governing the
evolution of g reads as follows:

mg' = —/ n - Vvdo, — Me(t). (1.18)
G

In order to prove that MG is the first term in the asymptotic development of v,
we have to prove that v decreases faster than v and G separately do. The decay
rate for v is obtained by using the same arguments employed when analyzing
the decay rate of v. However the proof is technically more involved due to the
presence of the correcting terms on the right hand side of (1.16) and (1.18).

In a third step, we rewrite equations (1.16) and (1.18), using the so-called
similarity variables and rescaled functions. Working in weighted Sobolev spaces,
we determine the decay rate of v.= v — M;( in these similarity variables. Ex-
pressing this result in the classical variables, we prove, in particular, the decay
of the L! norm of v.

10



The conclusion of Theorem 1.2 follows by interpolation of the L estimate
with the L' decay of the solution.

The outline of the proof of Theorem 1.3 is the following: we begin by determin-
ing the expressions of [Ms] distinguishing the dimension N = 2 and N > 3, using
scaling arguments and similarity variables. Then, following in similarity variables,
we compute the decay rate in L?(K) of v—M;G —|log(1+1)|[Mi]VG — [M2]VG
when N =2 and of v — M;G — [M]VG when N > 3. The expressions of these
results in classical variables yield the conclusion of Theorem 1.3.

1.5 Plan of the paper

This article is organized as follows: at the beginning of the following section, we
give some basic estimates like, for example, the energy dissipation law. Then, we
study the decay rate in L? of a solution of a generalized version of system (1.4).
This system is similar to (1.4), but a little more complex because it contains
some additional non-linear terms. As an application of these results, we deduce
the decay rate of the solution v of system (1.4), as well as the decay rate of
v = v — M;G. The decay of the L' norm is proved in section 3 by classical
parabolic techniques, using similarity variables and scaling arguments. However,
in our case, the presence of the second unknown g requires special care. These
arguments allow us to perform the proof of Theorem 1.2, combining the decay
rate of the L' norm with the results of section 2.1. Afterwards, in section 4, we
identify the second term in the asymptotic development in similarity variables
and give the proof of Theorem 1.3.

2 Decay rates

From now on, we shall work with the scalar functions v and ¢ introduced in
subsection 1.2 to denote any of the components v;, g; of the vectors v, g.

2.1 Basic a priori estimates

Energy dissipation:
Multiplying by v and integrating by parts the first equation of system (1.5), we
find:

% [/§2v2(t,a:)dx+m|9(t)|2] +/0t/Q|Vv|2dxds
-1 [ / o0, )dx +mlg(O)P| . (2.1)

L? estimates:
In the same way as above, we multiply the equation by j'(v), with j a real valued

11



convex function and we integrate with respect to x to obtain:

o | [+ mita]| = - [ 1vorr o

If we choose for j(v) an approximation of the function |v|P, we deduce that the
quantity

jé\UPdX-FnﬂgV, (2.2)

decreases in time whenever vy € LP(Q) for all 1 < p < oo. The first step in the
analysis of the large time behavior of (1.5) consists in establishing the decay rate
of the solution. But, instead of studying directly (1.5), we prefer considering the
following more general framework in which the same decay properties hold.

2.2 General decay results

We consider, in this subsection, any smooth global in time solution (v, g):
v e C ([0,00), L)) 1 L* ((0, 00), H!(©) ) 1 L((0, 50), L' (%),
g € C ([0,00),RY),

of the following non-linear system:

(vi— Av —[Ulg—V(t) - Vv =g,(x,1), in Q x (0,00),
v=ag, in 09 x (0, 00),

mg'(t) = — /aQ n - Vvdo, + €4(t), on (0, 00), (2.3)

/\\

[ v(0) =vo, (0) = g,

where [U](x, t) is a matrix valued function and V(t), €1(¢) and €5(¢) three vector
valued functions which will be specified later.

In the sequel, we will apply the results obtained for the general system (2.3)
in the following particular cases:

Application 1 If we specify [U] = [0], V = g, €1 = 0 and &3 = 0 we obtain
system (1.4). This case will be considered in subsection 2.3, Proposition 2.2.

Application 2 In view of equations (1.16) and (1.18), (¥, g) solves system (2.3)
with V.= g, [U] = [0], &1 := Myg - VG and ey(t) := —Me(t) where €(t) is
defined by (1.17). This case will be treated in section 3, Proposition 3.1.

In the following Proposition, we describe the decay rate in LP of the solution
(v,g) of the general system (2.3).

12



Proposition 2.1 Let us denote:

1
01 :=2N sup (||v|1 +m|g|) and €,(t) := max <||61||p, —|€2|) ) (2.4)
t€(0,00) m

Fiz 1 < p < 0o and assume also that there exists Cp, > 0 and oy, > 0 such that
the functions:

91(8) = t|[U]ll, and 9a(t) = e,(t)t> (-3)F1, (2.5)
fulfil the estimate:
D1(t) +02(t) < Cp (1+¢7%), VE>0. (2.6)

Then, any smooth solution (v,g) of system (2.3) satisfies the following decay
properties:

Ivll, < C@)ot 2073), gl <)ot 2073), ve>1, (27

where §, 15 a positive constant defined by:
N(p—1)

2p+N(p—1)
dp 1= 01 max (likcvzn)“’(l_p)’[l Supﬁz(t)] aSUpﬁl(t)g(l_;’) - (28)

1 te(1,00) te(1,00)

Moreover, the constant C(p) in estimates (2.7) depend onp and N only. Assume
furthermore that:

C, and oy, in (2.6) are uniformly bounded for all p large enough. (2.9)

In this case, estimates (2.7) remain valid for p = oo with §, as in (2.8) with
p = 0.

Remark 2.1 The following comments are in order:

e In view of the definitions (2.5), it is obvious that ¥ and Yo depend on
p. Nevertheless, to shorten notations, we have not made this dependence
explicit.

e We do not make any assumption on the decay properties of the potential V
because the term 'V - Vv vanishes in all the estimates, since V depends only
ont.

e The decay rate (2.7) we obtain for v coincides with the one of the solution
of the heat equation on RY and with those of the 1-d model for fluid-solid
interaction in [19].

13



Proof of Proposition 2.1: We treat only the case 1 < p < oo. The case
p = oo is obtained applying an iterative argument inspired by a work of L. Véron
[21] and used in [19] for a fluid-solid interaction model. We refer to [16] for de-
tails. We proceed componentwise, using the rules of notation of section 1.1: v
and ¢ stand for any component v; and g; of v and g. The corresponding first
momentum will be denoted by M; although it stands for the quantity M ;.

Multiplying the equation (2.3-i) by v|v|P~2 and integrating by parts, the term
Jo V- Vu|v[P"2vdx vanishes according to Green’s formula and we get:

1d 4 P — 1 P
e llol + mlg) = 22w g + 1), (2.10)

where I(t) := [, 8- Uv|v|P7%dx+ [ e1v|v[P72dx +e2g]g[P~? = L, (t) + L(t) + I3(2)
can be estimated as follows:

Lemma 2.1 There exists a constant C' > 0 depending on m and N only, such
that, for allt > 0:

1@)] < CUUl [0l +m (max|gil) ] + Cep(t) [olly +mlgP] ™. (211)

Proof of Lemma 2.1: Concerning I;, we have [I;(t)| < [,|g - Uljv["~ldx <
Jo, N2 (max|gi|> |U||v|P~'dx. Applying Hélder’s inequality we get |I;(t)] <
N2 (max |gi]) [[U]llv]lz " and since
p
(max |gi]) 1015 < € [llo]ls + m (max]il) "]
it comes: »
L@ < CIU, [0l +m (max|gl) |, ve>o. (2.12)

For I, one checks easily, by Holder’s inequality that |I5(t)] < [le1]lpllv][p™" <

lerllpllvlb~" and I satisfies |I5(t)| < |ea[g[P~" < |ea||g[P~". Using the notation
(2.4), these results yield |Io|+|I3| < ¢, [[|[v][2~" + |g|P~"]. The function z ~—» z'~'/7
being concave, we get:

L]+ 5] < Ce [[lellg +mlgl?) ™, Vi >0, (2.13)
with C' = C(m). Putting together (2.12) and (2.13), we obtain (2.11). [

Going back to equation (2.10), we give now estimates for the term involving
the gradient of [v]%.

14



Lemma 2.2 For any N > 2 and p > 1, we have:

P(LF%)
Joflp> """

< CO|IV[l2l3, (2.14)

2p

[llvlls + mlg|]¥=D

(mlg|)*¥& D

»— < C|Vol?[5, V>0, (2.15)
[[[o]ls + m[g[]¥@-D

where the constant C' > 0 depends on N and m only.

The proof of this Lemma is quite similar to the proof of Lemma 1 in [12]. The
complete proof is given in [16].
Observe now that, by a convexity argument:

2 2
[l[o][2 + mlgl") 760 < 256 |[lo]p V) 4 (mlgr) e | (2.16)

Using the inequalities (2.14) and (2.15), one obtains:

] 1+ 2 2 2p

[llvlly + mlgl?] " ¥@=0 < C25e=D[jv]ly + mlg[]¥e=D ||V |v]2]]3, (2.17)

with C' uniform with respect to p. In view of the definition (2.4) of §;, we get
|lv||1 +m|g| < 6:1/2N, and then

2p
1+# 61 N(p-1) P
ol + mlgP) 0 < 0 (5)™ w0l @ay

where C' does not depend on p. In all the sequel we will be very careful on how
the constants in the estimates depend on ¢; and p. Introducing the functions:

1 1
X, = [[ollz+mlgl]"" and Y, := vz +mlgP]"?,  (2.19)
we can summarize (2.10), (2.11) and (2.18) by:

1 (p—1) (6 “NGED PN p
Loy + D () TR el [l + m (mal) ]

— Cep X271 < 0. (2.20)

This last inequality holds for each component v and g of v and g. Adding together
these N inequalities, we get for all ¢ > 0:

1 —1 ) _N(127p—1) N 2
S0+ 0P (F) T S g i

p N =1
N p N 11

— il [vainszv (max|gl)"| = Cep D [llslly +mlgiP] > < 0.
=1 =1

(2.21)
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+2—P 2
A convexity argument yields Y},p N < N¥G-D ZZ]\LI [||v,||£ + m|gi\p] BRIy
and then, since

2p . 2p
2 PrHNroT 2 2 p+ P
5 VoY, Y*U = (§/N) Ne-D N Ne-1Y, Y&7U

2p

2p 2
we have 6,300 Y, O < (6, /N) TG DX [fuil]f + mlgil?] YO . One

1
proves as well, by concavity of the function z — z'~ 7, that:

N

N 1=
1-1 _
> llville +mlgir] "7 < C [Z [Jvi |5 + mlgi\”] = CYP T, (2.22a)
i=1

=1

1

with C := N'/7 < N. On the other hand, since (max |gz|> < (Zfil |gz-|p) > for
all 1 < p < oo, we deduce that:

N
P

Z [|vi][5 +mN (max|gi|> < NYP. (2.22Db)

i=1

Relations (2.22) together with (2.21) yield, for all ¢ > 0:

1 S1) a2 2
]_)(}/;)p)l 4 0(1)2772)51 N(p-1) }/;)p'i'N(P—l) _ C”[U]”p}/;)p _ Cep}/;)p—l S 0. (223)

According to notations (2.5) of Proposition 2.1, (2.20) reads:

1 —1) 2
5(Y;’)’ +ol 2 )51 Ty N _ oyt vp — o (73) Tl yrt <,

for all £ > 0. Multiplying both sides by Y, 7, it comes:

! _N(2p—1) 1"'1\7(211—1) -1 —ﬂ(l—l)—l
Y;) + C(p)51 P va P —Ct 191Y;, —Ct > P ’192 < 0, (224)

with C(p) := C (p — 1)/p®. We introduce then the function Z, defined on (0, c0)
by Z,(t) = C,pb, (N/2 + yyt=o2) NP 4=N/20-1/p) where §, and a,, are the
constants defined by (2.8) and in the hypothesis (2.6) respectively and y; and C,
are as follows:

y1 := sup 91 (t)t* + 87 sup Va(t)t, (2.25a)
te(0,1) te(0,1)

16
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C(p) and C being the constants in (2.24). The assumption (2.6) of the Proposition
ensures that 7, is well defined. Direct computations yield:

7+ C(p)s, o gD _ cytg 7~ o Y009, — By, (2.26)

for all ¢ > 0, where F'(t) is defined on (0, c0) by:

Foy =20 X (1-1) 22t | (o a,,>wém_%(f;(1-;)

t 2 p) te 6, Nty /tow)

N [ . 6\ 70D C(Cy5,)!
+C(p)5 (Cpéj) — O, — - ( P p)ﬂ(l_l),ﬁ2 . (227)
' (5 +m/tor) "

We are going to prove that any solution Y}, of (2.24) is a sub-solution of (2.26)
and hence, by Theorem 1.5.3 of [15], that:

Y,(t) < Zy(t), Vt>0. (2.28)

Observe that ¢+ 2 (""3) in the definition of Zp is the term we need in the right
hand side of (2.28) in order to conclude the proof of the decay rate (2.7). The
term added in the expression of Z, in which ¢t~ appears has no incidence on the
asymptotic behavior as t — oo, but it is required to get (2.28) in the neighborhood
of t = 0. Thus, it is sufficient to prove that:

F(t)>0, Vt>D0. (2.29)

Note that the term ¢ 'Z,, in the definition (2.27) of F(¢), is positive. Since
N/2(1—1/p)/(N/2+ vit~%) < 1, we obtain also that:

C(p) (67 10 ) )N(p N — ﬂ > C(p)(67 10 ) )N(p D — o
Y5 Fmter) T g
On the other hand (N/2 —|—fylt—%)_%(1_i) < 1, because N > 2, and C;! < 1

(obvious with the definition (2.25)) and N/2 > 1. Hence, to get (2.29), it is
sufficient to prove that:

_ 0 N(p 1)
cw (G) " "o,

Dividing in (2.30) by max {N/2,C(p),C} > 1, the problem is reduced to prove
that:

N m
3 e

) N(p
+O(p )(c ,,> —0191—59192>0 (2.30)

p61 »

o [0 D — o] 4 G G 1= 0y=10 20, (23
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for all t > 0, where 0 < C < 1 is defined by

¢ = C(p) max {g,C(p),C}_l. (2.32)

We proceed in two steps proving first that (2.31) holds on (1,00) and then on
(0,1).

The case t € (1,00):

__N@-1) N(p—1)
According to the definition (2.8), we have 6, > 6:0, 7 ® Dsup 0y(t) HFe-1,
te(1,00)
We deduce that, for all ¢ > 1:
~ 2p ~ — 2p — 2p 2p
C(Cp6,18,) V=1 > CCp® V6, ED qup 9, (t) VG- (2.33a)

te(1,00)

57195 < 6,71 sup Ua(t) <6, PTVPTY sup 9y(t) NG (2.33b)
te(1,00) te(1,00)

Combining (2.33a) and (2.33b), we get, for all ¢t > 1:
C(Cy075,) V=0 > CCF e 571, (2.34)

Comparing the definitions (2.25) and (2.32) of C, and C, one remarks that C, =
(3C~1)M/2 and therefore that CCP/NP~ = 3(3C-1)1/-1. Since 0 < C < 1,
this implies:

CCr*" >3, (2.35)
and (2.34) becomes:
1~ - 2 -
gC(C,,,é1 1,) Vo > 6,1y, VE> 1. (2.36a)

N
2

On the other hand since, by the definition (2.8), 6, > 01 Supe (1 o) Y1 (%) (1*%),

we have also C(C,0;16,)2/N®=1 > CC2/N®~Vy, forallt > 1. As a consequence
of (2.35) we get:

1~ _ 2p
gC(C,,al—l(s,,)w—l) >, Vt>1. (2.36b)

Finally, once again, according to the definition (2.8), 4, > (1 + «,)N/2(1=1/P)§,
what leads to C(C,8;'6,)2/N®-1) > CCP/N®1(14+,), and hence, with (2.35):

1~ 2p
gC(C,,é;lép)N(rw > (14a,) > 1. (2.36¢)
Summing together the three relations (2.36), we get:

C(07'C,) oo — 1=y — 5,10, > 0, VE> 1.
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We deduce also, from (2.36¢) that C’(éflc_’pép)mip—l) —a, >0 for all ¢ > 0, what
allows us to conclude that (2.31) is true for all ¢t > 1.

The case t € (0,1): We must now establish the estimate (2.31) on the interval
(0,1). Since t* > 0, (2.31) is equivalent to:

[ 5\ NED
C’(de—’;> —

According to (2.36c) we have C (C'pép/él)Qp/N(p_l) —12>0, as well as

~ N(il27p*1)
Y1 + C't (Cp(s—p> — t% — 9t — (5],_1192750”' > 0.
1

C (Cyb,/5,)/ NV _ g > 1.

From the definition (2.8) of §,, we deduce straightforwardly that 6, > ¢;. Hence,
it remains only to check that:

1 — 01t — 6 M9yt >0, VO <t <1, (2.37)

what is obvious in view of the definition (2.25) of ;. The proof is then completed
for p < oo. |

2.3 Decay rates

We are now in a position to prove the following Proposition, as announced in
Application 2:

Proposition 2.2 Assume that the initial data (vo,go) € L2(2) x RN of system
(1.4) are such that vy € L'(Q). Then:

_N_1 N
IV(@®)llp < Clllvolls + mlgollt7" 7% and |g(t)] < C[[[voll + mlgollt 2,
for all t > 0 and for all 1 < p < oco. The constant C' > 0 in these estimates
depends on p, m and N but is independent of the initial data.

Remark 2.2 The complete asymptotic analysis will show that these decay esti-
mates are sharp. The decay rate of g is a consequence of the L™ estimate of v,
because of the transmission condition v = g on the interface 0S2.

Proof : As explained in Application 1, we only have to apply Proposition 2.1,
setting V = 0, [U] = [0]. Condition (2.6) is trivially satisfied. The decay prop-
erty (2.2) ensures that, since vq is in L}(2), we have [|v||; +m|g| < ||vol|1 +m|go].
Therefore, in this case, we can set d; = 2N(||vo||1 + m|go|) and the proof of the
Proposition is then completed. |
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3 The first term in the asymptotic expansion

This section is devoted to the proof of Theorem 1.2.

As we have pointed out in section 1.3, the first momentum M;, defined by
M, := [, v(t)dx 4+ mg(t), is constant in time. The role played by this quantity
in the descrlptlon of the large time behavior of v is made precise in Theorem 1.2.
Actually, M;G(t) is the first term in the asymptotic development of v.

In application 2 we have defined v := v — MG and g, the trace of v on the
boundary of 2. The pair, (v, g) solves:

—Av—g-Vv =gy, x € €, t >0,
v(x,t) = g(t), x € 0B, t>0,
mg'(t)=— | n-Vvdo, + ey(t), t>0, (3-1)
o9

V(x,0) :=Vo(x) =vo(x), x€Q, g(0):=go=h,

where €1 := Mg - VG and €5 = —M;¢ (see (1.17)). The following Proposition
concerns the decay rate of v and g:

Proposition 3.1 Assume that the initial data (vo,g0) € L*(Q) x RY of (1.4)
are such that vy € L*(Q). Then define, for all t > 0:

01(8) := 2N sup [[v(s)lr + m/g(s)l] (3-2)

and also set, for allt > 1 and all 1 < p < oo, distinguishing the values of the
mass m of the ball:
ON
Wh = —:
enm = -
N(p—1)

(1_;,)< v (@Il + mig(®)]] )2”””_”

51 (t) t% min{%-{—N,l——}

oz

8,(t) = 6, (t) max (1 N g)

(3.3a)
When m # OWN:

(1——) v ) mlg 2p+N(p)1)
g0 s (10 5) 1 (10 o) T

Then, 61(t) is bounded on [0,00) and for any ty > 1, the solution (v,g) of (3.1)
satisfies the following decay properties:

)=

@), < Co,(t)t™ 27 and [g(t)] < Coulte)t %, VE>to+1.  (3.4)
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Remark 3.1 We shall prove later that ||v(t)||1 + m|g(t)| goes to 0 as t — oo
and hence that also 61(t) and 6,(t) go to 0 as t — oo. Then, choosing to = t/2
we will be able to improve the decay rate of ||v(t)||, and |g(t)|.

Let us define )

K(t, %) := exp (ﬁ) : (3.5)

and recall that K (x) := (0, x). Since K is radially symmetric, we will sometimes
use the notation K (r) with r = |x| € R, instead of K(x).

In the sequel, we will perform the proof of the following Proposition, improving
the decay rate of ¥ given in Proposition 3.1 for particular values of p.

Proposition 3.2 Let vy be in L?(K, Q). Then the solution (v,g) of system (1.4)
satisfies the estimate:

|2

When N=2: ||v—MG|, < Cllog(1+)t-> =53 vi>1, (3.6a)
When N >3: |lv— MG, <ct >0 ¢>1, (3.6b)
for all1 < p < 2. The constant C in these estimates depends on p, N and m.

Remark 3.2 Estimates (3.6) fit exactly those of the heat equation on the whole
space RN | the case N = 2 being excepted, where a logarithmic term appears in the
decay rate. We shall show that this logarithmic term is due to the contribution of
the solid mass in the system and that estimates (3.6) are sharp when p = 2.

Proof of Theorem 1.2: Assuming that Proposition 3.2 holds, let us proceed
to complete the proof of Theorem 1.2.
Relation (3.6) with p =1 provides the estimates:

When N =2: |[¥| < C|log(1+1t)|t"2, Vt>1,
When N >3: |v|p < Ct2, Vt>1.

From Proposition 2.2 we deduce that |g(t)] < Ct 2. Therefore the positive
constant d1(¢) of Proposition 3.1 can be estimated as follows:

When N=2:  §(t) <C|log(l+1)|t72, Vt>1, (3.7a)
When N >3: 6,(t) <Ct™z, Vt>1. (3.7b)

On the other hand, (3.4) ensures that, for all ¢y > 1:

19l < Coy(t0)t F072), o> 1+ 1, (3.8)

the constant d,(ty) being defined by (3.3).
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The case m # ox/N: since the quantity |[v||; + m|g| decreases in time (2.2)
and (1+ N/2)N20=1UP) < 0y .= (1+ N/2)™?, from (3.3) we deduce that, for
all 1 < p < o0t

N(p—1)
6p(t) < 61(t) max {CN, (Cél(t)‘lt_7 min{;ﬂ—w}) N } . (3.9)

N(p—1

Since 0 < 2;155(;121) < NIYH < 1, we can assume that the constant C'%»+N¥e-1) ig

independent of p and rewrite the inequality (3.9):

N(p—1)

() < Oy ()76 [max {,(t), ¢~ 3 "G TTOT 0 (3.10)

According to (3.7),
e When N = 2:
max {(51(t), t_%min{%’l_%}} < max {| log(1 + t)|t’%,t_%min{%’l_%}}
<t max { |log(1 +1)], 1z (VDU
and, because N > 2, basic computations yield
p—min{N,p(N—-1)} >0<p> N.
Therefore, from (3.10) and (3.7), we deduce for all ¢ large enough:

— Foralll<p<N:

65(t) <C (|10g(1 +t)|t‘5)2p+£% (I 1ogt\t—é)2p%p7@1‘)”
<C|log(1+t)[t 2. (3.11a)
— For all N < p < o<
L1\ BING D [, N\ miNGoD
5,(t) <C (|log(1 )t ) (t )
<C|log(1 + t)| VG-~ 3+0(V) (3.11b)

: —1)(p—N
with (N, p) := %%‘

e When N > 3: the only difference with the case N = 2 comes from (3.7),
that is to say from the absence of logarithmic term. Consequently, we get
the following estimates for d,(t), for all ¢ large enough:
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— Foralll<p<N: .
9p(t) < Ct . (3.11c)

— For all N < p < o )
§,(t) < Ot 20N, (3.11d)

The case m = oy /N: the definition of §,(¢) is different and according to (3.3),
we must turn (3.9) into:

Ne-1)
dp(t) < 61(t) max {CN, (Cdl(t)—lt—7min{;+ﬁ,1—ﬁ}> 2N G=1) } .

The same kind of computations as above leads to:

e When N =2 and for all 1 < p < 0o and all ¢ large enough:
5,(t) < C|log(1 + )|t (3.12a)

e When NV > 3 and for all 1 < p < oo and all ¢ large enough:
8,(t) < Ct™3. (3.12b)

The estimates of Theorem 1.2 arise straightforwardly when combining (3.8) with
(3.11) and (3.12) and specifying ¢ty = t/2. |

We perform now the proof of Proposition 3.1.
Proof of Proposition 3.1: It is quite easy to check that d;(¢) is bounded for
all £ > 0. Indeed, according to the definition of v and g in Application 2, we
have ||v|[1 +m|g| < ||v|li + m|g|+ M1 |||G||: + |M1|m/|J|. Explicit computations
give |G|y < 1 and |J| < (4mt)~N2e=1/4 and M| < ||[v(t)||; + m|g(t)|. On the
other hand, relation (2.2) ensures that ||v(¢)||; +m|g(t)| < ||vol|1 + m|go| so that
Vs +mlg) < Cllvoll +mlgal.

The proof of estimates (3.4) derives from Proposition 2.1. We have ||VG||, <
Ct=N20=1/P)=1/2 for all 1 < p < oo, where the constant C' does not depend on
p- On the other hand, Proposition 2.2 ensures that:

8| < Cll[volly + mlgollt >, V>0 (3.13)

Therefore, since £ = Mg - VG, we deduce that:

N=

_N(o_1)\_
leill, < ClglIVGll, < Clivolls + migolt*3)75 ve>0.  (3.14)
The definition of €5 leads to the estimates:
When m = "WN: €2 < CIML |t 272 < C[||volls + mlgollt™2 2. (3.15a)

When m # UWN: lea| < CIMy [t 271 < O[||voll: + mlgo|lt™ 2 . (3.15b)
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Note that the decay rate of the correcting term e, is of order ¢t /22 when

m = on/N and only of order t ¥/~ when m # on/N. That leads to distinguish
these two cases in Theorem 1.2.

From (3.14) and (3.15) and according to the definition (2.5) of ¥, we deduce
that:

ON
Wh = —:
en m N
,ﬁmax{1+z 1,;}
Py <C||volls + m|gol]t 2 PTNNS D V<t <, (3.16a)
95 <C[|[vols + mlgolJt™> ™Rl v} | vi> 1. (3.16b)
ON
Wh —
en m # N
95 <C[|[volls + mlgol]t > ™t~} wo <t <1, (3.16¢)
99 <C[||voll1 + mlgolJt > ™™o~} w1 (3.16d)

In model (3.1), [U] = [0] and V = g with the notations of system (2.3).
Thus, ¥; = 0 and according to (3.16), the hypotheses (2.6) and (2.9) are fulfilled
with o, = N/2 + 1. Note in particular that «, is independent of p. Therefore,
Proposition 2.1 applies and relation (3.4) holds with ¢, = 1 for all 1 < p < oc.
The constant 6, is defined by (2.8) and d, by (2.8) specifying p = oo.

To get estimates (3.4) for any ¢y > 1, remark that the proof above applies for
the functions o(¢ + ¢9) and g(¢ + #9) and the initial conditions v(¢y) and g(to).
Indeed, all the estimates (3.13), (3.14), (3.15) and (3.16) remain valid replacing
[lIvoll1 + m|gol] by [||v(to)|l1 + m|g(to)|], because this quantity decreases in time
(see (2.2)). According to (3.16), we can simplify the expression of J,(¢y) and turn
(2.8) into (3.3). [ ]

Proof of Proposition 3.2: We use the so-called similarity variables (we refer
to [10], [11], [12] and [22] for details):

y = 1X+ 5 8= log(1 + 1), (3.17a)
or equivalently:
x:=e’y, t:=e—1, (3.17b)
together with the rescaled functions:
E(y,s) =eNv(yer,e’ —1) and ((s):=e3Ngle® —1). (3.18)
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Equivalently, we can express v and g with respect to & and ¢:

v(x,t) = (t+ 1)*%5 (

X N
og(1+1¢) ), t)=(t+1) 2¢(log(1l+1)).
S log(140)), (0 = (t+1) ¢(log(1 + 1)
This change of variables maps both fixed domains B and {2 on the time
dependent ones B, and , := R" \ B,, where B, stands for the ball of radius
rs := e~°/2 centered at the origin. In these new variables, the law of conservation
of momentum reads as follows:

M, = [ &(y,s)dy + mefS%C(s), Vs > 0. (3.19)
Qs

The vector valued functions & and ¢ solve the following system:

4 N B
€+ LE—JE—e T (- VE=0, yeQ, 5>0,
£(y,s) =<(s), y€0B,, s >0,
Rz (3.20)
¢'(s) — 5¢(s) = —— n - Védo,, s >0,
m Jaq,
\ £(Y70) = VO(y)7 y € Qv C(O) = h17
where the operator L, is defined componentwise by L,§ := —Af —y/2 - VE.

Note that the domain €, where (3.20) holds, evolves in the new time variable
s. Thus, Ls (which is, apparently, time independent) has to be viewed as a time
dependent unbounded operator in L?(K, Q) with domain H?(K, Q,)NH} (K, Q).
We will denote merely by L this unbounded operator in L?(K,R") with domain
H?(K,RM) (see [10]). We introduce also:

01 (y) := (47)" % exp <%y‘2) . (3.21)

This function #; corresponds to the heat kernel in similarity variables. In addition,
the function 6; solves: N

Ly — 61 =0 on RY, (3.22)
i.e. it is an eigenfunction associated with the eigenvalue \; := N/2 of L. In fact,
A1 is simple and it is the first eigenvalue of L, which has a discrete spectrum that
can be computed explicitly (see [10]).

The quantity M 0 is expected to be the first term in the large time expansion
of £. Hence, we are mainly interested in the large time behavior of

E(y,s) = E(y,s) - Mlel(Y)a y € Qs and 6(8) = C(S) - Mlel(Y)’ Yy € aBs

These functions play the role of v and g in similarity variables. They are bounded:
this is a consequence of the decay properties of |g| and ||v||o in Proposition 2.2.
Since 0, is also bounded on R, one deduces that:

E(s)| < C and [|€]l < C, Vs> 0. (3.23)
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Combining (3.20) and (3.22), one deduces that the pair (&, ) solves:

 _ _ N _ _ _ _
E o+ L&~ SE— e T ¢ VE=TTMIC- VO, yEQ, >0,

) S(y: S) = C(S)’ Y€ aBSa s > 0,
m (Z(s)e*s%)l = —/ n-Védo, + ¢ 2 p(s), s> 0,
— 0, _
( €(v,0) =vo(y), ye, ¢(0)=h,
(3.24)
with , .
p(s) = %li(@r)ﬁ exp (-TZ) (—%N +N - 62 ) , (3.25)

and r, = e% is the radius of the ball B,. In (3.24-iii), the quantity e~*= p(s) is a
correcting term due to the contribution of #;. Remark that this system can also
be derived from (3.1) in a straightforward way by making the change of variables
(3.17).

From now on, we will work componentwise, using the rules of notation of
section 1.1. We shall use in the sequel the notation (-,-)s for the scalar prod-
uct of L?(K, ), namely (f, g), := fns fgKdy and || - ||s the associated norm.
Moreover, x(s) stands for K (rs) and hence:

—S

X(s) = exp (64

where C(s) is a positive function such that 0 < C; < C(s) < Cy < oo, for all
s > 0. Multiplying componentwise the first equation of system (3.24) in the
weighted Sobolev space L*(K, Q) by £ we obtain:

) =14+ C(s)e™®, Vs>0, (3.26)

(gsag)s + (Lsgag)s - E(ga 5)8 —€ 2 (C : V£7§)S —€ 2 Ml(C ' Velaé-)s = 05
- (3.27)

for all s > 0. Integrating by parts, it comes (L&, &), = V|12 — [, %K do,.

Then, according to the coupling condition on the interface 0€2; we can rewrite

(3.27) as follows:

= c112 N, = 2 —s-1 ¢ —sN=1 ¢
(&5, )s + IVElls = S lIElls — ™77 (¢ - VE )5 — 72 Mi(C - Vb1, 8)s
SN == N ER V= -
+mye N{'C - meeﬁNCQ —e %2 pyC = 0. (3.28)
3.2

In order to analyze the first term in (3.28) involving the time derivative, we need

the following identity:
Lemma 3.1 For all function f € C*((0, +o0), WHHRY)),

£ [f e S°

e 2
= fs(y,So)deLT - [y, s0)doy. (3.29)
50

=50 Qsq
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This Lemma derives from the Reynolds formula in fluids mechanic (see for ex-
ample [1, Lemme 1, page 69] or the complete proof in [16]).
Applying the above Lemma to the function 2K in the domain €, we deduce
that:
_3 —%N

§2Kdo'y = (gs: g)s + €—X§20—N- (330)

2 _
GhE=@o. [ }

On the other hand, a simple computation gives the following identity for the term
of (3.28) involving the time derivative of (:

1d
2ds

Combining together the relations (3.28), (3.30) and (3.31) and introducing the
function X (s) := €| + mxe *N2(?, we get:

e—S
2

wlfn

[mxe %NEQ] = NC(¢ - im( +N)Xe_%N€2. (3.31)

N _ N-1 - - N_1 _
SX(5) = SER — e T (¢ VE D — e T Ma(¢ 0, D),

1 une - _
—mxe N (NS ) — e Sl = 0. (3.32)
4 m 2

~/2)

Taking into account that V6, = —(y/2) 6, /2)(4m)~NPK ! we deduce
that My (¢ - V0.,8), = —M,(47)N2(¢ - (y/2 ) ,€)s. Keeping in mind that ||
is bounded, it comes:

€ 3E 00 < [ 10 Jaeay < e SE L el < Ol (333)

On the other hand, we have the obvious inequalities

(¢ V&)l < CIIVELL lIglls < CNIVEIR +CliEll, Vs> 0. (3.34)

Combining (3.32), (3.33) and (3.34), we obtain:

1 N 1
3(6) <~ = CePYTER + (7§ + 0o ) I+ Ce L

1 - 5 -
- Zme_sgxgz (e —N— —) +e px¢, Vs>0. (3.35)
m

2

Taking into account once again the fact that ¢ (see (3.23)), p and x are bounded,
we can simplify the above estimate as follows:

N 1 - N
SX'(s) < ~(1-Ce™" >||vg||2( L Ce 2)||s||2+0e 25 €l Ceo ¥
(3.36)
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In order to obtain an ordinary differential inequality for ||€]|2 + mxe™**(? , one
needs an estimate for the term ||VE||2. First of all, let us recall some classical
results about the operator L: this is a self-adjoint unbounded operator in L?(K)
with domain D(L) := H?*(K). Its eigenvalues are )\, := (N +k—1)/2, k € N*
and the first eigenvalue is simple. Its eigenspace, denoted E', is spanned by 6,
(we refer to [10] for details). Moreover, we can express the eigenvalues by means
of the Rayleigh principle. That reads, for A; and \y:

IVell® _

2

=) and inf
per2(x) |p||? ' veet [|ol?

where ||-|| stands for the natural norm of L?(K). Note that the condition ¢ € Ej-
means precisely that fQ wdy = 0. Thus, A\; and Ay are the minima of the Reyleigh
quotient on H'(K) and on the subspace of H'(K) of functions of null mass
respectively.

However, we are dealing with L, on €, and not with L on RY. But because
of the coupling condition (3.20-ii) on the interface 92, any function of H'(,)
can be extended to be in H'(R") by setting

&(y, s) == ((s) on Bs. (3.38)

When s is large, we are going to show that & = £ — M6, is “almost” in Ei since
it tends to zero as t — oo in L'(RY). This together with the definition of ),
shows that ||[VE||? > ((NV +1)/2)||€]|? up to a small correcting term. The task
consists in evaluating sharply this correcting term. The ideas we shall apply are
quite close of those of [9, Lemma 2]. We state the Lemma in a more general
framework, in order to apply it in other cases as well:

Lemma 3.2 Let U be a function of H'(Qy, K) and v(s) a real valued bounded
function on (0,00) such that V|q, = 1. Suppose furthermore that

M = / Udy + me 21, (3.39)

8

is a constant. Then U := ¥ — M0, satisfies the estimate:

N +1

Iz ~ Ce™*>, Vs> 0. (3.40)

IVe|s >

Proof : We extend U to be a function defined in the whole space R by setting:

E(y, 8) = w(S) - M101(Y), y € Bs- (341)

We introduce then 7 (s) := My — (¥(s),6:)/]|61]|>. Remark that r;(s) = 0 if and
only if U € Ei. According to the expression (3.39) of M; and since ||6,]|*> =
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(4m) N2, it comes 11(s) = [, Wdy +me N?(s) — [pn Wdy = me N4 (s) —
[y, dy = e7*N?4) (m — oN/N) Since |¢] is bounded, it follows that:

Ir1(s)] < Ce ™, Vs> 0. (3.42

~—

If we set now ¥, := ¥ + 7,6, then ¥; € E ‘and according to (3.37) ||[V¥4]]> >
((N +1)/2)[|®4|]*>. Therefore, we obtain ||V + 7{||V6:[]* 4+ 2r(VY, V) >
(N +1)/2)(1Z)1* + 72161])* + 2r1(T, 61)), that is to say

N+1
(nvean _ —neln?)
N+1

— o ((w Vo) - ——(¥, 91)) . (3.43)

— N+1
IvTE > =

The function #;, being an eigenfunction of L associated with the eigenvalue \; =
N/2, satisfies the following classical relations:

(V01,Ve) = (01, 9), Vo€ H(K), [[VO]* = \ll6]*. (3.44)

Consequently, we can turn (3.43) into ||[V|2 > ((NV + 1)/2)||¥]|2+(1/2)72||6: ]|+
r1(¥,0;). Observe that ¥ = ¥; — 710, and ¥; L 6;. Thus, the inequality above
can be rewritten as ||V¥|2 > ((N + 1)/2)||9||?> — (1/2)r2||61]|?>. We denote || - ||z,
the scalar product in L?(K, By) and (-,-)p, the associated norm. We get then

N+1

IV > s+ R(s), (3.45)
where R(s) := (N +1)/2)|[¥||%, — ||VE||ZBS — (1/2)72||61||*. Let us now estimate
the reminder R(s). Because of the definition (3.41) and since || is bounded, we
obtain (N +1)/2)[¥|[5, = (N +1)/2) [ (& — Mi61)*dy < C|By| < Ce™*N72,
where |B,| = on/Ne *"/? is the measure of the ball B,. The same argu-
ment shows that |VU|% = [|[V6i||%, = Mi|(y/2)0:3, < Ce* [, 0idy <
Ce *W+2)/2_ From inequality (3.42), it follows that (1/2)r?]|6;||> < Ce=*N. From
these three inequalities, we deduce that |R(s)| < Ce*N/2. This last estimate
together with (3.45) yields the conclusion of the Lemma. [ |

One plugs now the estimate (3.40) into (3.36):

3X(6) < 1 -0 (gl - o)

N N
+< +Ce >||£||2+Ce iy ||£||S+Ce 52, Vs> 0,
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and after grouping together the terms involving ||£]|?> we obtain that:

X'(5) + (1 — Ce "2 )X (s) — Ce*%néns
<(1-Ce? S )mxe 2N(s )+Ce*5%, Vs > 0. (3.46)

Recalling that |((s)| as well as |x(s)| are bounded, the inequality (3.46) can be

turned into X'(s) + (1 — Ce=*"7 )X (s) — Ce < Ce™*%. But, since

VX > ||€]|s, it comes:
X'(s)+ (1= Ce "2 )X(s)— Ce *"2 VX < Ce 2. (3.47)

This differential inequality yields the desired result by applying a suitable Gronwall-
type inequality.

Lemma 3.3 Let X be a non-negative function on (0,00) which satisfies:
X'(s) + (1= Cre™ )X (s) = Coe™" 7 (1 + s)/X (s) < Cas®™#,  (3.48)

where « > 0, B > 0, v > 0, C1, Cy and Cs are given constants. Then, X (s)
satisfies the following decay properties:

e The case N = 2:

When0 < B <1: X(s)<CQ1+s)* e, (3.49a)
When 8 = 1: X(s) < C(1 4 s)2 mai2letlatni3 4l o=s (3 491
When (> 1: X(s) < C(1+5)20te s ¥s>0. (3.49c¢)

e The case N > 3:
When 0 < 8 < 1: X(s) < C( + 5)otlehs, (3.49d)
When 8 > 1: X(s)<Ce™®, Vs>0. (3.49¢)

The proof is linked with the so-called Bihari-type inequality [15, section 1.3]. We
refer to [16] for the proof.
With the estimates of Lemma 3.3 applied to (3.47), we obtain

When N = 2:

I€]12 + mxe 22 < Cs’e ®, Vs> 1. (3.50)
In particular || — M16,]|? < Cs?e* and, according to the definition (3.18) of
& fo, eNPlu(er = 1,e%%y) — Mye N2, (e*?y) P K (y)esN/2dy < Cs”e*, for all
s > 1. Getting back to the variables x and ¢ and since dx = e*V/2dy, it follows
that [, [v(t,x) — MiG(t,x)|2K(x,t)dx < Clog?(1+t)t~V/*71, where K(x,1) is as
in (3.5). Hence:

2

lv(t) = MG (t)|| 20 < Cllog(l+1t)[t7 a2, (3.51a)
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When N > 3: B .
€2+ mxe™*2(* < Ce™®, Vs>1. (3.51b)

In this case, the logarithmic term does not appear and we find simply:

1

v(t) — MyG) || 2rqun < CE 172, V> 1. 3.51c
(@Q.K(1))

Remark 3.3 Comparing (3.51) with the estimates of Proposition 3.1, namely
with ||5||y < Ct~N*, we have gained a decay rate of the order of | log(1 +t)[t~'/?
in dimension N = 2 and t=*/? in dimension N > 3. Moreover, the result is also
improved by the presence of the weight KC(x,t) into the norm in (3.51). Note that
similar results are true for the pure heat equation. In that case, when subtracting
the fundamental solution of an appropriate mass, solutions gain a decay rate of
the order of t /% in any space dimension.

Let us finally prove that, from the estimates (3.51), one can deduce the rela-
tions (3.6) of Proposition 3.2.
Fix p in [1,2] and ¢ > 0. Then, by Holder’s inequality, we obtain:

ol < ( /Q |v|21C(t)dx)g ( /Q IC(t)_”/(Z"’)dx>1_g. (3.52a)

A straight computation gives
p =
< / IC(t)‘de)
Q

So, (3.52a) provides [[v||p < C|lv[[72 K(t))tN/Z(l_p/Q), for all £ > 0. This relation,
together with the estimates (3.51), yields the conclusion of the Proposition 3.2.
|

M)

P
2

p
<Ct* 8 vt >0. (3.52b)

4 Second term in the asymptotic development

In this section, we will make more precise the conclusions of Theorem 1.2 for
p = 2, analyzing the large time behavior of:

V() =t3(v—MG) and £ :=e3€ = e5 (€ — M,6)),

N[=

vyi=t

in L?(Q) and L?(K, €),) respectively.
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4.1 Identification of the second term

In this subsection, we identify the quantities entering in the second term of the
asymptotic expansion and we show that they are well-defined.

Observe that the decay rate of £ when N = 2, in (3.50), namely the fact that
|€||s < Cse*/2, does not guarantee that &, is bounded in L?(€,, K). Neverthe-
less, s~ '€, is bounded. However, for N > 3, &, itself is bounded in L?(K, Q).
This fact will be relevant all along this section.

To begin, define ¢, as the trace of &, on 9€,. Since (¢,,¢;) = e2(€,¢) and
(€,¢) solves system (3.24), we deduce that (&, ;) solves:

(€ 40— e =T Ve, yeq, 5> 0,
£1(y,8) =¢1(s), y€0B;, s> 0,
m((s) = eeNe F == [ n-Vedo, +eFp(s), 50

| €,(y,0) = vo(y) - Mibi(y) y€Q, ¢,(0) =hy — (4m) 5 My,

(4.1)
where p,(s) := e*/2p(s) and p(s) as in (3.25). We denote fa1,022, - -, 0 5 the
N eigenfunctions of L associated to Ay = (N + 1)/2 that span the eigenspace Fs:

00,
0 i =
2, (Y) ayz
As we shall see, &, behaves for large s as [M3(s)]@2 where [My(s)] is as follows:
e When N = 2, [My(s)] := s[Mj] +[M2], is an affine function with [M3] and
[M3] two constant matrices that we shall identify.

(y) = —%91(3’), y €RY, 6,:=V0. (4.2)

e When N > 3, [My] is a constant matrix to be determined.

To shorten notations and avoid distinguishing dimensions N = 2 and N > 3, we
will sometimes use the notation:

v1+s, when N =2,
nn(s) =
1, when N > 3.

The fact that @ enters in the large time behavior of the solution &, of (4.1)
can easily be motivated. For instance, when dealing with the solutions of wy +
Lw— ((N +1)/2)w = 0in (0,00) x R¥ | by the Fourier expansion of the solution
w on the basis of eigenfunctions of L it can be easily seen that, when w is of zero
mass, the leading term is the projection onto Fy. System (4.1) can be viewed as
a perturbation of this ideal situation. Its dynamics, although it is essentially of
the same nature, is more complex.

When N = 2, the projection of &, over 8, grows linearly with s > 0 and
therefore this case needs a distinguished treatment.

As we shall see, the matrices [M}], [M3] (N = 2) and [My] (N > 3) entering
in the second term of the asymptotic expansion are as follows:
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e When N =2:

[M]] := lim 251 (4m)N? | ¢,07 Kdy, (4.3a)
§—>0Q Qs
[M2] = lim <2(47r)N/2 i £.0; Kdy — s[M;]). (4.3b)
e When N > 3:
[My] == lim 2(4m)N? | €,0TKdy. (4.3c)

Qs
The following Proposition guarantees that the limits above are well-defined.
Proposition 4.1 The matrices [M3], [M2] (N =2) and [Ms] (N > 3) are well
defined by relations (4.3), i.e. the limits always exist in R and the identities
(1.14) of Theorem 1.3 hold.

Moreover, 77;,1| 3| is bounded and all the generalized integrals in the definitions
(1.14) are finite.

Proof : Fix i between 1 and N and multiply the main equation of (4.1) in
L*(Qs, K) by 6. It comes, for each component &; of &;:

N + 1 _ghN=2
(6r 020)s + (Luk, b)s = =5 (60, 000)s =€ *7 (G- VE, o). (44)
By Green’s formula, it follows that:
8022' 8 1
L i)s — 7L5 i)s — : - ——Ug; . 4.
(Ls€1,02,)s — (&1, Lsboys) oo, On &1 xdoy o, On O2,ixdoy (4.5)

By direct computation, and since 6y; = —y;6,/2 and V6, = —y#0,/2, we get on
0€),:

002, n; i i s e/

a—f)’zVHQ,i-n:—gﬁl—%VHI-n:%01 (6/2— 2 ), (46)
because n = —e*/%y on 0. Since 6, is radially symmetric, we get with (4.6)
fans 8;? doy, = 0. On the other hand, taking into account the fact that & = ¢;

is constant on the boundary 0€)s, we deduce that fans %ﬁlxday = 0. Since

Li0y; = (N +1)/2)6,, (4.5) can be turned into:
N+1 &1

(&1, 602)s = — o5 xdoy. (4.7)

LS ,eis_i A
( gl 2,) 2 90, an ’

But 6; is a radially symmetric function and hence fms %Hg,ixdoy = 0, for all

5 > 0. According to the definition of & (= e¥/2(¢ — M,6,)), it follows that the
term of the right hand side in (4.7) can be reduced to

N

6‘51 1 85
—Ua; = ——e2(4m) 2 —Y; . 4.
/a ) ) 02,zxday 26 ( ) /({; . 9 yzday ( 8)
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Plugging (4.7) and (4.8) into (4.4), we obtain

]. s a N-—-2
(fl,sa 02,2')5 = ——e? (471-)7% gyido.y + e’ 2 (C ' Vé-, 02,1’)3- (49)
2 90, an

The use of Lemma 3.1 yields & (&1, 05;)s = (£1,6, 02,1)s + (67°/%/2) Jaq, §102ixdoy,
but since & |go, = (i is constant for all s > 0, the last term vanishes and we
deduce that d%(&,@g,i)s = (&1,5,02,i)s- We rewrite (4.9) as:

S

d 1, [ O )
%(61792,1')5 — _56 (47T) /6QS a—nyde'y +e

N-2
ST

(C-VE0)s  (410)

The extra regularity for the initial data assumed in the statement of Theorem 1.3
is needed to prove the following Lemma (see the proof in [16]) :

Lemma 4.1 Let & be solution of (3.20) with initial data (&,,¢,) € H%(Q, K) X
RY s.t. &loa = €o. Then, there exists oy > 0 such that:

U3
o, s

for all N > 2 and all s large enough.

< C e #1/2Ha0), (4.11)

Applying this Lemma, we obtain:

o0&
5/2 5
e /a o anyzday

Let us address now the second term of the right hand side of equality (4.10). In
view of the explicit form (4.2) of 6y, we get fy; K = —(1/2)(47)~/?y; and then,
integrating by parts, we obtain that:

< e, (4.12)

(€ Ve, 0, = 5Gtam)t [ gy, (1.13)

Qs

where (; stands for the i—th component of the vector {. But, in similarity
variables, according to (3.19), M = [, &dy + me*N/2¢, for all s > 0, so (4.13)

can be rewritten as (¢-VE,0,;), = (1/2)M(47) " N2¢— (m/2)(4m) N 2e=sN2¢ (.
Finally, integrating (4.10) in time from 0 to s, we obtain that:

1 1 [° a
(4W)N/2(§1, 92,i)s = —§(V0,yz’)L2(Q) - 5/ €z </a n- nyiday) da
0 Qa

- 1/5 e—a¥ (me_agcgi — MlCz)da’ (414)
0

34



Estimate (4.12) ensures that, for all N > 2:

o
J
On the other hand, according to Theorem 1.2 (once again, the estimate below
can be slightly improved when m = ox /N but it is sufficient for our purpose):

< 00. (4.15)

6(5/ n - V&y;do,do
0

log(1+t)|2¢t-%, when N =2
L()Ng( )77, when ’ (4.16)
2

t) — M, (4rt) M?| < C
‘g() 1(4t) |— { TN when N > 3,

which in similarity variables can be rewritten as:

1

‘C(s) ~ My (4n) 3| < Onw(s)e* 7. (4.17)

Then ¢ = e_sﬁﬁ(s) + M, (47) 2 with 8 = B(s) as in (1.14d). Relation (4.17)
means that n,'|3(s)| is bounded for all s > 0. We obtain then, for all a > 0:

_aN=2

Pja% (meia%CCi — MlCz) = 6(4 ); [—M1M1,i +m(4w)*%efa%M1M1,i
7)) 2
—(4m) ¥ O EN MG, + me 3T (BMy 5 + My §;) + m(dm) Fe 25w 8

Integrating now from 0 to s, we obtain:

When N = 2:
5o S m 3 5 4
/me QG —MiGda = ——M M, ; + —5 M M; i(l —e€ s) —/6 M, fida
0 4m T (4m)? ’ 0
_ / e FM, G — %e‘a%(ﬂMu + M, G) — me=*3 BBda. (4.18)
0 Yis

Then, combining (4.14) and (4.18), it comes:

s
2(47T)N/2 §.0,, Kdy = EMl,iMl — (Vo, ¥i)L2(0)
Qs

%o m
— 2 - VEy; — ——M;M;;(1—¢"*
/06 </ang & day> do (4m)2 1l =e™)

+ /6_%M1ﬂidaf - EE‘Q%(MLM + M, 53;)do — me“"%ﬂi,@da. (4.19)
0
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Then, dividing by s, taking into account (4.15) and letting s go to oo, we obtain
that the definition (4.3a) of [M3] leads to the equality (1.14a). We get also:

s
[2(4W)N/2 €.07 Kdy — EMlMlT} =— /vodey
Q

8

- /0 T ( /a Q(an : vg)deay> do — #Mﬂv{{ (1—e)

5

+ / e~ M, 87 — 4ﬁ€_a7(,3M1T +M,8") - me ™2 A" da. (4.20)
0 7T

IS

When N > 3: We find the following expression:

24m)N? [ ¢ 0T Kdy = —/ voy' dy —/ e> (/ (n- Vf)deay> do
Q 0 0%

Qs

2 _
M) [ (1) E (1)

S
n / =0 —omir M, 8T — me—eV-D-oxty 33T 0
0

— / T _emeV-D-agix (BMT + M, 8")da. (4.21)
o (4m)z

Letting s — oo in (4.20) and (4.21), we find that the expressions (1.14b) and
(4.3b) and (1.14c¢) and (4.3c) coincide respectively. That concludes the proof of
Proposition 4.1. [ |

4.2 Proof of Theorem 1.3

We shall proceed in several steps, establishing a sequence of preliminary Lemmas.
Theorem 1.3 will then hold immediately.
We recall the definition of [My(s)] (see section 4.1):

[My(s)] :=s[M3] + [M3], when N = 2, (4.22a)
[M;(s)] :=[Ms], when N > 3, (4.22Db)

[M3], [M2] and [M,] being three constant matrices defined equivalently by (4.3)
or (1.14). Furthermore, one introduces:

£ :=e (& —M,6,) — [My(s)]|0,, ¢, :=E&,, ondB,, (4.23a)
what reads also, according to the notations of section 1.1:
51 = G%(é- - M101) - MQ(S) . 02, 51 = 51, on 8Bs (423b)
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Remark that ¢;, because of the contribution of 8, 1is non-constant along the
boundary 092; whenever [Ms(s)] # [0]. The function &, (y, s) solves for all s > 0
and all y € €:

N + 1. N2 —[M3]02, when N =2,
F L& - e \%
515 51 51 € C £= {0’ when N > 3.

Multiplying componentwise by & in L?(K, (), it comes:

(E1,5:&1)s + (L€, &1)s _7”51 e (C VE &)

N
1 ¢ —

0, when N > 3.

As we did for £ in the proof of Proposition 3.2, we are going to show that |||,
solves an ordinary differential inequality and then apply a Gronwall-type inequal-
ity.

Remark 4.1 From now on, a and b will denote two positive constants that can
change from one line to the other.

For the first term in (4.24), we have the estimate:

ld, - ¢ ¢ —as
5 M6 < (€15 €0)s + Cse™™, (4.25)

where C' > 0 and @ and b are as specified in Remark 4.1. Indeed, according to
Lemma 3.1, we can write:

8

1d. R
5@”51”? — (&1,5,61)s = —

1 (¢1)*xdo,- (4.26)
89,

Since &|an, = ¢ and Oy]pn, = (47)"N/2x~! are constant and Op; = —y;60,/2,
we have fagswzixd% = — fans(yi /2)¢01xdo, = 0 and, as well, fmsﬁlﬁz,ixday =
~ Joa(¥i/2)0ixdoy, = 0, for all i = 1,...,N. We have also [,, 0202 ;xdo, =
(1/4) [5q, viyi0ixdoy, = 0 for i # j, and we can compute:

Mo\ w1
Cxdo, = ¢ — xone T 4+ —————on1|Ma(s)]?, (4.27
[ Gt = (¢ 2 ) sone T 4 BT oM, (127
where oy := [,z 2tdo, = [, x7do, for any i = 1,..., N due to the symmetry

of the ball. Since 0 < C; < x < Cy and taking into account the definition (4.22)
of My(s), we deduce that (4.25) holds.
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Let us now address the second term of (4.24). Integrating by parts, we get:

o B 9. _
(Lé.6). = V&I~ [ Shénds, (4.28)

This term is the one involving the most important technical difficulties. We shall
treat separately the two terms on the right hand side.

Lemma 4.2 Let & be defined by (4.23), then, there exist C > 0, a > 0 andb > 0

such that: N 49

RN - st
Proof : The proof follows the same ideas as in the proof of Lemma 3.2, but this
time is technically more involved. All along the proof, we extend & and &; on By

by setting & := ¢ and

V&l >

& = e3(C — Mi6;) — My(s) - 6s. (4.29)

Denoting by P the orthogonal projection from L?(K) onto the subspace (E; U
E5)*+ where E; and FE, are the eigenspaces of the operator L associated with
the eigenvalues Ay = N/2 and Ay = (N + 1)/2 respectively. In particular E;
is spanned by 6, and Ey by 01,...,05x. We have & = ((61,&)/]161]1%)61 +
S (B2, 61)/1102411%)62 + P(€1) = P(&1) — e*2r1(5)6) — T2(s) - B2 where

,0
ra(s) =t = (S50, (4.302)
02, :
’[‘2,Z~(s) :MQ,i(S) i 65/2 (”607 2’|2)’ VZ = ]_, ceey N (430b)
2,
Therefore, we get: B )
P(fl) = 51 +e2r (8)91 +ry - 02. (431)

Since the third eigenvalue of L is A3 = 42 and P(¢;) € (E; U E»)*, we have:

N +2
2

IVE(&)]? > P& (4.32)
The following relations of orthogonality in L?(K): (61,0;;) = 0, (P(&1),61) = 0
and (P(&1),02,;) = 0foralli =1,..., N, together with the identities (V f, V0;) =
(N/2)(f,61) and (Vf,Vba;) = (N +1/2)(f,0;) for alli = 1,..., N and for all
[ € H'(K), resulting from the fact that ; and 6,; are eigenfunctions of L, allow
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us to expand and simplify (4.32):
V& + e*ri(s) |V ]|* + th IV, l1” + 2e271(s) (VEr, VHy)
N+ 2 s 2 2
+2Z7‘2z (V&1, Vo) > 16017 + e*ri () 161 +Z7“2z )62l

+2€%7'1( )(&1,01) +QZTQz (€1, 02,)

Since ||V6:]|* = Z|161]]

2 we obtain that:

N
_ Lo N N+1 . _
V&I + € ri(s) S 101" + == D rai(s)*[1024]° + Ne>ri(s) (€1, 61)
=1

N+2 ,
N+1 ZTQ’L 615021 = ||£1”2+6T1 ”01“2_{—27‘2"

+2€%?“1( ) (&1, 61) +2Z7“2z (€1,024)] ,

that is to say:

IV&* >

AP+ eI + 267 (s) (61,60)

) ZTQZ 02,41 +Z7’2z (&1, 0,)-

Plugging the relation (4.31) of £, into the relation above, we get:

_ . N+2, - _ ,
IVEIE = ——l&lls = =lIV&al, —eri)lod” - 5 Zm )02l (4.33)

since || f||* = || f||2 + || f||%, for all function f € L?(K) and all s > 0. It remains
to estimate each term of the right hand side of (4.33).

First term: From the definition of £, on B, (see (4.29)), we deduce that V&, =
—eSI2 M VO, — Zfil My ;(s)Vbs,; on B, and hence:

N
V&S, = € MEIVOLE, + ) Mai(s)*|

1=1

(4.34)
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Indeed, straight computations yield V6, = —(y/2)6; = 0 and Vb, = —(e;/2)0,+
(yi/4)y01, where e; is the vector whose components are e; ; = 6;;, 7 = 1,..., N.
Thus (V01,Vby)s, = [z (v:/2) (1 — |y|?/2) 07 Kdy = 0 because 6, and K are
radially symmetric functions. We also have, since e; - €; = 0, (Vb;,VOs ,)p, =
—(1/4) [pyivi (1 = ly|?/4) ?Kdy = 0 when i # j. From V6, = —(y/2)6;, we
deduce that [, [V6i[*Kdy = (1/4)(4m)~? [, y*6:1dy. It comes [, |V6,*Kdy =
(1/4)(4m) N2 [ y?01dy < Ce *N+2/2 Tn the same way, we have || Vfy,|[5, <
Ce™*N/2 for all i = 1,..., N. Combining (4.34) with the two last inequalities, we

obtain:
(1 —|— s)%e™* when N =2,
\Y <C 4.35
V&3, < { N, (4.35)

taking into account the definition (4.22) of My(s).

Second term: Let us recall (see (4 30a)) that r1(s) := My — (£, 61)/]|601]* which,
combined with (3.19), yields 71(s) = [, &(y,s)dy +me~ SN/QC( ) — (£,61)/]101])*
But (£,0,)/]|6.|> = (4m)V/? o, 501Kdy —|— (UN/N) —sN/2¢ and hence ri(s) =
e~*N2((m — oy /N). Since |¢| is bounded, we get:

e*r?||64])? < Ce™*N-1), (4.36)

Third term: According to the definition (4.30b) of r5;(s), and (4.3) of Ma;(s),
we have:
The case N = 2:

s (5702 z)
r9:(8) =My ;(s) — e2 -
2, ( ) 2, ( ) ||02,i||2
=My ;s + lim <(£”1é 2”1) - aMg’i) - %(§>02,i) (4.37)
2,2

according to (4.3b). By definition &, = e2 (¢ — M,6,), hence
(51, 02,1')5 = 63(5 92,1')5 - M1€%(91, 92,i)s = e%(f, 92,i)s, (4-38)

because (01,65;)s = 0 for all s > 0. On the other hand, since £ = ( on Bs, we
can rewrite (4.37) as follows:

r2,i(8) = [lim (e"‘/Z (& 02i)a _ aMQI,i) — (ei («5,92 ) — M21Z>

a—00 102,31/
(C:QZ,i)Bs
oo ) (439

The last term vanishes (,0:)p, = ( [ 02:Kdy = —C [, (4:/2)01 Kdy = 0,
because ¢; and K are radially symmetric. Identity (4.39) reads equivalently,

s
_eﬁ
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since |02 = (1/2)(4n) N2 for alli =1,..., N :

ro(s) = [lim <2(47T)N/2ea/2

a— o0

§1ogdy - aMé)

Qo

— (2(47T)N/2e5/2 £,07dy — sM%)} .

Qs

According to (4.19) and (4.20), the identity above reads:

ro(s) = —/ (e gydoy> do — M M (47) *me *
s [sJ9% an

+ / e’o‘iMl,B - ?e’a%(Mlﬂ + Mi8) — me’“%,@ﬂda.
s 7T

w|R

On the other hand, according to estimate (4.12), 1'Hospital’s rule yields
[ (e"‘/2 Joa g—ﬁyiday> da‘ < Ce 5. The definition (1.14d) of B, combined

S

with the estimate (4.17), ensures that ny'|3| is bounded. The other terms are
then easy to estimate. In particular, by I’Hospital’s rule, we get USOO e’a/‘lﬂda‘ <
C’f:o V1+ ae **da < Cy/1+ se */*. Finally, we obtain that:

rag()fF < Csbeee, (4.40)
where a and b are positive constants as in Remark 4.1.

The case N > 3:
The definitions (4.30b) of 75;(s) and (4.3) of My ,(s) lead to:

(67 92,1') — lim (617 02,1')(1 e% (6; 02,1')

1624[1> - >

aoo [|fa4]|? 162,
According to (4.38), the identity above reads:

r94(8) = [lim (ea/2 (€, 02)a e (5,92,i)s> el (C,92,i)Bs] '

a—oo0 102,31/ [102,3|? 102,:|?

r94(s) = My, — e2

The last term vanishes and we can rewrite equivalently:

3 0§dy) .

a—00

ry(s) = lim 2(4m)"/? (ea/2 £,07dy — /2
Qa Qs
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Taking into account (4.21), one obtains:

_ P o0& M, M, (47T)% —sN=2 m _gN-1)
r2(s)——/se ( anaaHYd0y> doa+ @n? [N—Qe ~N_1¢

+/64%2ﬁﬂMﬁ_MﬁﬂﬂwvuﬁmMﬁ+Mmma
S )2

—m / (V-3 84da,

and we deduce in a straightforward way that (4.40) holds also when N > 3. To
complete the proof of the Lemma 4.2, it suffices to plug the estimates (4.35),
(4.36) and (4.40) into (4.33). n

We address now the second term of equality (4.28). The same ideas as above
(we refer to [16] for details) allows us to prove that:

61 1d 5N2_2 b —as
/an §1Xd0y S T54s (me e )—i—C’s e’ (4.41)

and also:

(¢ - V& &1)s| < Ce 3|V + Ce?l|&;

{0(1 + s)e~5||&||s + Csbe™®, when N = 2,

4.42
Ce2||& |5 + Csbe s, when N > 3, (442)

where a and b are positive constants as in Remark 4.1. We dispose now of all
the tools to deduce the decay rate of £&;. We rewrite (4.24) using (4.28), and it
comes:

_ . & - N+1
&ﬁmNWMjkg%M%“—%MQ

ZM (02,4,&)s, when N =2,

(¢ VE &), (4.43)

0, when N > 3.
On the other hand, estimate (4.25) and Lemma 4.41 ensure that:

1 -
§X’(3) < (&1,5,&1)s —/ ;lflxday + Csbe
894
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where X (s) := ||&1||2 + mx (e *(N=2/2, That yields, together with (4.43):

N +
SX/(5) < ~IVEIZ+ TGN + e (¢ Vg ),

- Z Mi1,2(02,ia £)s +Cs’e ™, when N =2,
i=1
Csbe™®, when N > 3.

+

The expression (4.31) of & leads to |(f24,&1)s] < Clreyl < C(1 + 5)%2e7%/4,
according to (4.40). Applying Lemma 4.42, we get

FX6)+ < - -CeTNvel+ (oo T

2
(1+ 5)6751\[271 |ELlls + Csbe 2%, when N = 2,
CN —ontyz b (4.44)
e 2 ||&ls + Cs’e®, when N > 3.

According to Lemma 4.2, we deduce that:

=1 N + N-1
- (1-ce ) ivaR+ (o) Il
1z Nolyg —as
< —l&ll; +Cem TG + Ose.
Combining this last estimate with (4.44), we get:

X(s) +(1—Ce™*" 5 )X (s)

c@ —|— s \/ )+ Csbe% when N = 2,
< (4.45)
Ce=s"2 /X (s) + Csb —as, when N > 3.

This differential inequality fits with the general form of Lemma 3.3, which yields:
X(s) < Csbe™.

To conclude the proof of Theorem 1.3, one has only to rewrite the estimates above

in the classical variables x and ¢, using the formulas (3.17b).
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