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A density theorem on automorphic L-functions

and some applications

Y.-K. Lau & J. Wu

Abstract. We establish a density theorem on automorphic L-functions and give

some applications on the extreme values of these L-functions at s =1 and the distribution

of the Hecke eigenvalue of holomorphic cusp forms.
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§ 1. Introduction

The distribution of zeros is an important area of the study of L-functions. There are

many arithmetical problems related to the location of the zeros. It is widely believed that

the generalized Riemann hypothesis (GRH) holds but a proof for this seems out of reach at

present. In the absence of GRH, the zero density estimates are often used as a substitute in

many applications, especially for the number of possible zeros close to the boundary of the

critical strip. The result of such an estimate is called a density theorem. The first zero density

result for the symmetric square L-function of Maass forms with large eigenvalues was obtained

by Luo [18]. Very recently Kowalski & Michel [16] have proved a very general density theorem

for automorphic L-functions with large conductors, which includes the case of holomorphic cusp

forms for large levels.

In this paper, we shall consider the analogue on the weight aspect. Our work is motivated

by two factors. Firstly it is natural to investigate the behaviour of an automorphic L-function by

varying each intrinsic parameter. Secondly we are interested in the following applications: the
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extreme values of automorphic L-functions at s = 1 and the distribution of Fourier coefficients

of holomorphic cusp forms.

Let us begin with our notation. For a positive even integer k and a positive square-free

integer N , we denote by H∗
k(N) the set of all normalized Hecke primitive eigencuspforms of

weight k for the congruence modular group Γ0(N). Then, H∗
k(N) forms an orthogonal basis of

the space of holomorphic cuspidal newforms (of weight k and of level N). We have

(1.1) |H∗
k(N)| =

k − 1

12

∏

p |N

(p − 1) + O
(

(kN)2/3
)

,

where the implied constant is absolute.

The Fourier series expansion of f ∈ H∗
k(N) at the cusp ∞ is

f(z) =

∞
∑

n=1

λf (n)n(k−1)/2e2πinz (=m z > 0),

where λf (n) is the n-th eigenvalue of the (normalized) Hecke operator Tn, in particular it is a

multiplicative function of n. According to Deligne, for any prime number p there are αf (p) and

βf (p) such that

(1.2) λf (pν) =
αf (p)ν+1 − βf (p)ν+1

αf (p) − βf (p)
(ν ≥ 1)

and

(1.3)

{

αf (p) = εf (p)p−1/2, βf (p) = 0 if p | N

|αf (p)| = αf (p)βf (p) = 1 if p - N

with εf (p) = ±1. In particular λf (1) = 1 and λf (n) is real.

The m-th symmetric power L-functions attached to f ∈ H∗
k(N) is defined as

(1.4) L(s, symmf) :=
∏

p

∏

0≤j≤m

(

1 − αf (p)m−jβf (p)jp−s
)−1

for σ > 1, where and in the sequel σ and τ mean tacitly the real and imaginary part of s, i.e.

s = σ + iτ . The product over primes admits a Dirichlet series representation: for σ > 1,

(1.5) L(s, symmf) =

∞
∑

n=1

λsymmf (n)n−s

where λsymmf (n) is a multiplicative function. Following from (1.3) and (1.4), we have for n ≥ 1,

(1.6) |λsymmf (n)| ≤ dm+1(n),

where dm+1(n) is the divisor function, whose associated Dirichlet series is ζ(s)m+1 (ζ(s) is the

Riemann zeta-function). The case m = 1 in (1.6) is commonly known as Deligne’s inequality.

According to [2, Section 3.2.1], the gamma factors of L(s, symmf) are

(1.7) L∞(s, symmf) :=



























n
∏

ν=0

ΓC

(

s + (ν + 1
2 )(k − 1)

)

if m = 2n + 1,

ΓR(s + δ2-n)

n
∏

ν=1

ΓC

(

s + ν(k − 1)
)

if m = 2n,
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where ΓR(s) := π−s/2Γ(s/2), ΓC(s) := 2(2π)−sΓ(s) and

δ2-n =

{

1 if 2 - n,

0 otherwise.

For m = 1, 2, 3, 4, it is known (see [10] for m = 1, [5] for m = 2 and [12, 13, 14] for m = 3, 4)

that the function

(1.8) Λ(s, symmf) := Nms/2L∞(s, symmf)L(s, symmf)

is entire on C and satisfies the functional equation

(1.9) Λ(s, symmf) = εsymmfΛ(1 − s, symmf),

where εsymmf = ±1.

1.1. The density theorem for L(s, symmf)

We consider the possibility of the existence of a zero ρ = β + iγ of L(s, symmf) for which

β is near 1. It is hopeful to show that such f ∈ H∗
k(1) are very few. In other words, “almost

all” f ∈ H∗
k(1) satisfy the quasi-hypothesis of Riemann. Let N(α, T, symmf) be the number of

zeros ρ = β + iγ of L(s, symmf) with β ≥ α and 0 ≤ γ ≤ T .

Our result is as follows.

Theorem 1. Let m = 1, 2, 3, 4, any ε > 0 and r ≥ 1 be given. Define Em,r = (m+1)(m+r)+4.

Then we have
∑

f∈H∗
k
(1)

N(α, T, symmf) �ε,r T 1+1/rkEm,r(1−α)/(3−2α)+ε

uniformly for 1
2 + ε ≤ α ≤ 1, 2 | k and T ≥ 1. The implied constant depends on ε and r only.

Remark 1. (i) This theorem is nontrivial only when α is very close to 1 and the T -aspect

is essentially irrelevant. We have not put effort to reduce the exponents 1 + 1/r and Em,r.

(ii) Since we are interested in the k-aspect, we restrict ourselves to the case N = 1 for

simplicity. All results of this paper can be generalized (without too much difficulty) to H∗
k(N)

with square-free N .

(iii) Theorem 1 is established only for the case 1 ≤ m ≤ 4 due to the lack of knowledge

about the high symmetric powers. One can extend the result to the general case for all positive

integers m under suitable assumptions (Hypothesis Symm(f)). Interested readers are referred

to [2] for an excellent paradigm.

For each η ∈ (0, 1
2 ), define

(1.10) H+
k,symm(1; η) :=

{

f ∈ H∗
k(1) : L(s, symmf) 6= 0, s ∈ S

}

where S := {s : σ ≥ 1 − η, |τ | ≤ 100kη} ∪ {s : σ ≥ 1}, and

H−
k,symm(1; η) := H∗

k(1)rH+
k,symm(1; η).

Then an immediate consequence of Theorem 1 (with r = 1) is
∣

∣H−
k,symm(1; η)

∣

∣ ≤
∑

f∈H−
k,symm (1;η)

N(1 − η, 100kη, symmf)(1.11)

≤
∑

f∈H∗
k
(1)

N(1 − η, 100kη, symmf)

�η k31η.

Combining this with (1.1), we obtain the following result.
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Corollary 1. Let 2 | k, m = 1, 2, 3, 4 and η ∈ (0, 1
31 ). Then we have, for k → ∞,

∣

∣H+
k,symm(1; η)

∣

∣ ∼
∣

∣H∗
k(1)

∣

∣.

This shows that for m = 1, 2, 3, 4, the functions L(s, symmf) of almost all f ∈ H∗
k(1) satisfy

a weak form of GRH. Thus the zero density result is very useful and often replaces partially the

role of GRH in practice. As opposed to previous works (see [22], [23], [24], [25], [8] and [2]), we

shall consider H+
k,symm(1; η) instead of H∗

k(1). An advantage of this choice is that we can avoid

some assumptions there (such as GRH in [25] and Cogdell & Michel’s hypothesis LSZm(N) in

[2]). Next we shall present some applications of Theorem 1 and Corollary 1.

1.2. Extreme values of L(1, symmf)

Motivated by problems in spectral deformation theory, Luo [18] studied the distribution

of the values of the symmetric square L-functions of Maass forms at s = 1. Luo’s work was

extended and further developed in [22], [23], [24], [25], [8] and [2], where the symmetric power

L-functions attached to holomorphic cusp forms with large square-free levels were investigated.

Here we are interested in the extreme values of L(1, symmf) on the weight aspect.

The Hoffstein-Lockhart bounds for L(1, symmf) are (see [9] and [6])

(1.12) [log(kN)]−1 � L(1, symmf) � log(kN)

for all f ∈ H∗
k(N) and m = 1, 2, where the implied constants are absolute. When m ≥ 3, the

relevant results can be found in [2] on the level aspect and in Proposition 3.2 below on the

weight aspect for N = 1. The order of magnitudes of both the upper and lower bounds are

(respectively positive and negative) powers of log k.

We prove the following result in the opposite direction. As usual, we denote by logj the

j-fold iterated logarithm.

Theorem 2. For η ∈ (0, 1
31 ) fixed, m = 1, 2, 3, 4 and 2 | k, there are f±

m ∈ H+
k,symm(1; η) such

that, for k → ∞,

L(1, symmf+
m) ≥ {1 + o(1)}(B+

m log2 k)A+
m ,(1.13)

L(1, symmf−
m) ≤ {1 + o(1)}(B−

m log2 k)−A−
m ,(1.14)

where A±
m and B±

m are positive constants given by

(1.15)











A+
m = m + 1, B+

m = eγ (m ∈ N),

A−
m = m + 1, B−

m = eγζ(2)−1 (2 - m),

A−
2 = 1, B−

2 = eγζ(2)−2,

and

(1.16)































A−
4 = 5

4 ,

B−
4 = exp

{

γ0 +
∑

p

(

4

5
log

{

2p

27

(

− 1 +
10

p
+

6

p2
+

3

p3
− 3

p4
− 6

p5
− 10

p6
+

1

p7

)

+
2p

27

(

1 +
2

p
+

5

p2
− 5

p3
− 2

p4
− 1

p5

)
√

1 +
3

p
+

8

p2
+

3

p3
+

1

p4

}

− 1

p

)}

.

Here γ is Euler’s constant and γ0 is given by (7.4) below.
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There are wide gaps between the results mentioned in (1.12) and those in Theorem 2: the

former is of size powers of log k while the latter is of powers of log2 k. Our next result suggests

that the latter estimates should be closer to the truth. For almost all f ∈ H∗
k(1), the magnitude

of L(1, symmf) lies between the powers of log2 k shown in (1.13) and (1.14), so Theorem 2 is

the best possible up to a constant factor. To determine the plausible constants, we consider

the conditional result under GRH. The constants obtained turn out to be quite near those in

Theorem 2.

Theorem 3. Let m = 1, 2, 3, 4 and 2 | k.

(i) For any fixed η ∈ (0, 1
31 ) and all f ∈ H+

k,symm(1; η), we have

(1.17) (log2 k)−A−
m � L(1, symmf) � (log2 k)A+

m .

(ii) For any f ∈ H∗
k(1), under GRH for L(s, symmf) we have, for k → ∞,

(1.18) {1 + o(1)}(2B−
m log2 k)−A−

m ≤ L(1, symmf) ≤ {1 + o(1)}(2B+
m log2 k)A+

m .

The constants A±
m and B±

m are defined as in (1.15) and (1.16).

Remark 2. (i) In the extreme value problem of L(1, symmf), the result on the weight

aspect is different from that on the level aspect. As proved in [24] and [25], the extreme values

of L(1, symmf) are attained only for special levels (free of small prime factors).

(ii) Only the factor 2 in (1.18) remains in doubt on either side, in view of (1.13) and (1.14).

1.3. Asymptotic distributions of λf (p)

The distribution of Fourier coefficients of modular forms is one of the most important

problems in the theory of modular forms. Various questions are raised and studied: upper

bound estimate, equidistribution property, lacunarity, etc. Let τ(n) be Ramanujan’s function,

defined by

∆(z) := e2πiz
∞
∏

n=1

(1 − e2πinz)12 =

∞
∑

n=1

τ(n)e2πinz (=m z > 0).

The function ∆(z) is a holomorphic cusp form of weight 12, i.e. ∆(z) ∈ H∗
12(1). The classical

Ramanujan’s conjecture states as

(1.19) |τ(n)| ≤ d(n)n11/2 (n ≥ 1),

which is essentially optimal since Rankin [21] showed that

(1.20) lim sup
n→∞

τ(n)

n11/2
= ∞.

Ramanujan’s conjecture was proved by Deligne in 1974 as a particular case of his well known

inequality (1.6). In particular this inequality gives us

(1.21) |λf (p)| ≤ 2

for all f ∈ H∗
k(N) and all prime number p. Serre ([28], page 81) showed that this inequality

is essentially optimal: for any fixed prime number p and for any ε > 0, there is a constant
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x0 = x0(ε) such that for k + N ≥ x0 with p - N there is a primitive form f ∈ H∗
k(N) having the

following property

(1.22) |λf (p)| ≥ 2 − ε.

Later he proved that (1.22) holds for any fixed finite set of prime numbers ([28], page 87). Very

recently, under GRH for L(s, sym1f), Royer and Wu [25] extended it to the case of unbounded

set of primes for some primitive forms of sufficiently large levels.

Here we shall establish an analogue of ([25], théorème 1) for large weights, but the assump-

tion of GRH is removed !

Theorem 4. Let A > 0, η ∈ (0, 1
31 ) fixed, 2 | k and ξ(k) → ∞ (k → ∞) be a function satisfying

ξ(k) ≤ log3 k. Then there are two forms f± ∈ H+
k,sym1(1; η) such that, for k → ∞,

∑

p≤(log k)A

λf+
(p)≥2−ξ(k)/ log3 k

1

p
= (log3 k)

{

1 + OA,η

(

1

ξ(k)

)}

,(1.23)

∑

p≤(log k)A

λf−
(p)≤−2+ξ(k)/ log3 k

1

p
= (log3 k)

{

1 + OA,η

(

1

ξ(k)

)}

,(1.24)

respectively.

Remark 3. The well-known Sato-Tate’s conjecture describes the distribution of the Fourier

coefficients, as follows: for any −2 ≤ α ≤ β ≤ 2 and any f ∈ H∗
k(N), one has

|{p ≤ x : α ≤ λf (p) ≤ β}| ∼ x

log x

∫ β

α

√
4 − t2

2π
dt (x → ∞).

Theorem 4 shows that almost all initial terms of {λf (p)}p cluster around 2 or −2. Hence

Sato-Tate’s conjecture is not yet valid for x = (log k)A → ∞, as k → ∞.

Another problem of significant interest concerns the nonvanishing of Fourier coefficients of

modular forms. A famous open problem is the conjecture on the Ramanujan function τ(n) due

to Lehmer [17]. Lehmer found that τ(n) 6= 0 for n ≤ 1015 and conjectured that this is true

for every integer n. Although this conjecture remains open, Serre ([27], page 179) has made

substantial progress by proving that τ(n) is nonzero for the vast majority of n.

The next result gives some complementary information, which is an analogue of ([25],

théorème 2), but the assumption of GRH is also removed.

Theorem 5. Let A > 0, η ∈ (0, 1
31 ) fixed, 2 | k and ξ(k) → ∞ (k → ∞) be a function satisfying

ξ(k) ≤ log3 k. Then there is f ∈ H+
k,sym2(1; η) such that, for k → ∞,

(1.25)
∑

p≤(log k)A

|λf (p)|≤(ξ(k)/ log3 k)1/2

1

p
= (log3 k)

{

1 + OA,η

(

1

ξ(k)

)}

.
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In what follows, η ∈ (0, 1
2 ) is a suitably fixed constant and we use c1, c2, . . . to denote positive

constants depending on η at most, which may take different values at each occurrence. Since all

results of this paper are trivial when k is bounded, we can suppose that k ≥ k0(η), where k0(η)

is a sufficiently large constant depending on η such that both inequalities (log k)1000/η ≤ kη and

log3 k ≥ 1000 hold for k ≥ k0(η).

Acknowledgement. We are greatly indebted to the referee for the many valuable suggestions,

including the mollification process in Section 5 which simplifies much our previous argument,

and the insight in removing GRH in Theorems 4 and 5 of the early version. We would express

our sincere gratitude to Professors J. Cogdell & P. Michel for their preprint [2], and for their kind

help in our study of their work and the archimedean factor of the Rankin-Selberg L-function.

We would also thank Professor Kowalski for his reading and comments on an earlier form of this

paper.

§ 2. Archimedean factors

In order to prove our density theorem, we need a large sieve inequality. It is then necessary

to investigate the corresponding Rankin-Selberg L-function. Since we are interested in the k-

aspect, we have to evaluate explicitly the associated archimedean local factor, which is one of

the main difficulties. Thanking to the recent work of Cogdell & Michel [2] and the explanation

of Cogdell (in private communication), we can compute the factor along the same line – via the

local Langlands correspondence.

For m ∈ N, f ∈ H∗
k(1) and g ∈ H∗

k(1), the Rankin-Selberg L-function of symmf and symmg

is given by

(2.1) L(s, symmf × symmg) :=
∏

p

∏

0≤i, j≤m

(

1 − αf (p)m−2iαg(p)m−2jp−s
)−1

,

where αf (p) and αg(p) are the “local roots” of Lp(s, symmf) and Lp(s, symmg), determined by

(1.2) and (1.3).

The next result provides all information we need.

Proposition 2.1. Let 2 | k, f ∈ H∗
k(1) and g ∈ H∗

k(1).

(i) For m ∈ N, the archimedean local factor of L(s, symmf × symmg) is:

L∞(s, symmf × symmg) = ΓR(s)δ2|mΓC(s)[m/2]+δ2-m

m
∏

ν=1

ΓC

(

s + ν(k − 1)
)m−ν+1

,

where ΓR(s) := π−s/2Γ(s/2), ΓC(s) := 2(2π)−sΓ(s) and δ2|n := 1 − δ2-n.

(ii) Let m = 1, 2, 3, 4, then the function

Λ(s, symmf × symmg) := L∞(s, symmf × symmg)L(s, symmf × symmg)

is entire except possibly for simple poles at s = 0, 1 and satisfies the functional equation

Λ(s, symmf × symmg) = εsymmf×symmgΛ(1 − s, symmf × symmg)
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with

εsymmf×symmg = ±1.

Proof. Part (ii) comes from RS 2 and RS 3 of [26], and part (i) with m = 1 is well known

(see [10], Theorem 13.8). Thus we only prove the assertion (i) for m ≥ 2, which is done by the

method in [2].

Following the notation in [2], we let ` ≥ 2 be an integer and D` the discrete series represen-

tation of GL2(R) of weight `. The representation D` corresponds to the infinite component of

the automorphic representation associated to a classical cusp form of weight `. Let WR be the

Weil group of R, which can be realized as WR = C× ∪ jC× with j2 = −1 ∈ C× and jzj−1 = z

for z ∈ C×. Then we introduce the following Weil group representations.

Let ρ±0 be the one dimensional representations of WR defined by ρ±0 (z) = 1, ρ+
0 (j) = 1 and

ρ−0 (j) = −1. Let µ ∈ C such that 2µ = `− 1 ∈ Z. Define the two dimensional representation ρ`

of WR on the two dimensional vector space V2 = 〈e0, e1〉 given by

ρ`(z)e0 = (z/z)µe0,

ρ`(j)e0 = e1,

ρ`(z)e1 = (z/z)µe1,

ρ`(j)e1 = (−1)`−1e0.

In matrix form, for z = reiθ, we can write

ρ`(z) =

(

ei(`−1)θ

e−i(`−1)θ

)

, ρ`(j) =

(

(−1)`−1

1

)

.

Then under the local Langlands correspondence ρ` corresponds to D`.

Now we compute symm(ρk) ⊗ symm(ρk). From Proposition 3.1 in [2], we have

(2.2) symm(ρk) =























n
⊕

ν=0

ρ(2ν+1)(k−1)+1 if m = 2n + 1,

ρ±0 ⊕
n

⊕

ν=1

ρ2ν(k−1)+1 if m = 2n,

where ρ+
0 or ρ−0 is selected when n is even or odd respectively.

We first consider the case m = 2n + 1. By using (2.2), we have

symm(ρk) ⊗ symm(ρk) =

n
⊕

ν1=0

ρ(2ν1+1)(k−1)+1 ⊗
n

⊕

ν2=0

ρ(2ν2+1)(k−1)+1

=

n
⊕

ν1=0

n
⊕

ν2=0

ρ(2ν1+1)(k−1)+1 ⊗ ρ(2ν2+1)(k−1)+1.

It reduces to calculate ρa ⊗ ρb where a, b ≥ 2. Tensoring the corresponding matrices, it

follows that

ρa ⊗ ρb(re
iθ) =











ei(a+b−1−1)θ

ei(a−b)θ

e−i(a−b)θ

e−i(a+b−1−1)θ
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and

ρa ⊗ ρb(j) =











(−1)a+b−1−1

(−1)a−1

(−1)b−1

1











.

Thus ρa ⊗ ρb is decomposable with

ρa ⊗ ρb

∣

∣

〈e0⊗e0, e1⊗e1〉
∼= ρa+b−1.

Moreover, for a > b, we see that ρa ⊗ ρb

∣

∣

〈e0⊗e1, e1⊗e0〉
∼= ρa−b+1 via the change of basis

e0 ⊗ e1 7→ e0 ⊗ e1, e1 ⊗ e0 7→ (−1)b−1e1 ⊗ e0.

Reversing the roles of a and b, we obtain ρa ⊗ ρb

∣

∣

〈e0⊗e1, e1⊗e0〉
∼= ρb−a+1 for a < b. In the case

a = b, it is reducible and indeed, ρa ⊗ ρa

∣

∣

〈e0⊗e1, e1⊗e0〉
∼= ρ+

0 ⊕ ρ−0 =: ρ1, say. Therefore for any

a, b ≥ 2, we have

ρa ⊗ ρb
∼= ρa+b−1 ⊕ ρ|a−b|+1.

It yields immediately that

symm(ρk) ⊗ symm(ρk) =

n
⊕

ν1=0

n
⊕

ν2=0

ρ2(ν1+ν2+1)(k−1)+1 ⊕ ρ2|ν1−ν2|(k−1)+1.

From [15], we know that for ` ≥ 2,

(2.3) L(s, ρ`) = ΓC

(

s + 1
2 (` − 1)

)

, L(s, ρ+
0 ) = ΓR(s), L(s, ρ−0 ) = ΓR(s + 1).

In view of the definition of ρ1 and ΓR(s)ΓR(s + 1) = ΓC(s), the first relation in (2.3) also holds

for ` = 1 from the last two. Thus we obtain

(2.4) L∞(s, symmf ⊗ symmg) =

n
∏

ν1=0

n
∏

ν2=0

ΓC

(

s + (ν1 + ν2 + 1)(k − 1)
)

ΓC

(

s + |ν1 − ν2|(k − 1)
)

,

which is equivalent to the required formula, in view of

∑

0≤ν1,ν2≤n
ν1+ν2+1=ν

1 =

{

ν if 1 ≤ ν ≤ n,

m − ν + 1 if n < ν ≤ m,

and
∑

0≤ν1,ν2≤n
|ν1−ν2|=ν

1 =

{

n + 1 if ν = 0,

m − 2ν + 1 if 1 ≤ ν ≤ n.

For the case m = 2n, a similar argument yields the following formula:

symm(ρk) ⊗ symm(ρk) = ρ+
0 ⊕

n
⊕

ν=1

ρ2ν(k−1)+1 ⊕
n

⊕

ν=1

ρ2ν(k−1)+1⊕

⊕
n

⊕

ν1=1

n
⊕

ν2=1

ρ2(ν1+ν2)(k−1)+1 ⊕ ρ2|ν1−ν2|(k−1)+1.

From this and (2.3), we can obtain, as before, the desired result. �
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§ 3. Bounds for symmetric power L-functions

In this section, we shall establish some estimates for the symmetric power L-functions in the

weight aspect, which will be needed later. Since they are known or easy to prove, we shall briefly

sketch the proof. We begin with the convexity bounds for L(s, symmf) and L(s, symmf×symmg)

on the k-aspect.

Proposition 3.1. Let m = 1, 2, 3, 4, 2 | k, f ∈ H∗
k(1) and g ∈ H∗

k(1). For any ε > 0, we have

(3.1) L(s, symmf) �ε

{

(k + |τ |)([m/2]+1)(1−σ)+ε if 2 - m

(1 + |τ |)(1−σ)/2(k + |τ |)[m/2](1−σ)+ε if 2 | m

and

(3.2) L(s, symmf × symmg) �ε (1 + |τ |)Am(1−σ)(k + |τ |)Bm(1−σ)+ε

uniformly for 2 | k, 0 ≤ σ ≤ 1 and τ ∈ R, where [t] is the integral part of t, Am = (m + 1)/2

and Bm = m(m + 1)/2.

We need an estimate for Γ(s) in order to prove Proposition 3.1.

Lemma 3.1. Let A > 0 be a fixed number and k0 = k0(A) a sufficiently large constant. Then

for all sufficiently large k ≥ k0, we have

Γ(k − s)

Γ(k + s)
�A (k + |τ |)−2σ

uniformly for |σ| ≤ A, where the implied constants depend on A only.

Proof. As usual we define the function log on Cr(−∞, 0], the argument of which varies from

−π to π anticlockwisely. We apply Stirling’s formula (see [30], § 4.42)

(3.3) log Γ(s) =

(

s − 1

2

)

log s − s +
log(2π)

2
+

∫ ∞

0

φ(u)

(s + u)2
du,

where φ(u) := −
∫ u

0
({v} − 1

2 ) dv ({v} is the fractional part of v). It is easy to show that

(3.4) |φ(u)| ≤ 1 and

∣

∣

∣

∣

∫ ∞

0

φ(u)

(s + u)2
du

∣

∣

∣

∣

≤ 1 (σ ≥ 1).

The relations (3.1) and (3.4) allow us to deduce that for |σ| ≤ A and k ≥ k0,

−<e

(

log
Γ(k − s)

Γ(k + s)

)

=
1

2

(

k + σ − 1

2

)

log

(

(k + σ)2 + τ2

(k − σ)2 + τ2

)

+ σ log
(

(k − σ)2 + τ2
)

+ τarctan

(

2στ

k2 − σ2 + τ2

)

+ OA(1)

= σ log
(

(k − σ)2 + τ2
)

+ OA(1),

which implies the required inequality. �

We are now ready to prove Proposition 3.1. By (1.6), we have

(3.5) L(s, symmf) � ζ(1 + ε)m+1 �ε 1 (s = 1 + ε + iτ).



A density theorem on automorphic L-functions and some applications 11

On the other hand, in view of the relation Γ(s + 1) = sΓ(s) and (1.7), we have

L∞(1 − s, symmf)

L∞(s, symmf)
= (2π)(n+1)(2s−1)

n
∏

ν=0

(

(ν + 1
2 )(k − 1) − s

)Γ((ν + 1
2 )(k − 1) − s)

Γ((ν + 1
2 )(k − 1) + s)

if m = 2n + 1, and

L∞(1 − s, symmf)

L∞(s, symmf)
= πs−1/2(2π)n(2s−1) Γ

( 1+δ2-n−s

2

)

Γ
( δ2-n+s

2

)

n
∏

ν=1

(

ν(k − 1) − s
)Γ(ν(k − 1) − s)

Γ(ν(k − 1) + s)

if m = 2n.

From these, we use Stirling’s formula or Lemma 3.1 (for k small or large respectively) to

deduce that for s = −ε + iτ ,

L∞(1 − s, symmf)

L∞(s, symmf)
�ε,m

{

(k + |τ |)[m/2]+1+ε if 2 - m,

(1 + |τ |)1/2(k + |τ |)[m/2]+ε if 2 | m.

Thus (3.5) and the functional equation (1.9) imply that for s = −ε + iτ ,

(3.6)
∣

∣L(s, symmf)
∣

∣ �ε,m

{

(k + |τ |)[m/2]+1+ε if 2 - m,

(1 + |τ |)1/2(k + |τ |)[m/2]+ε if 2 | m.

Now the desired inequality (3.1) follows from (3.5) and (3.6) with the Phragmén-Lindelöf theo-

rem ([30], § 5.65). The other one follows in the same way, with Proposition 2.1. �

The next proposition contains the k-analogues of Lemmas 4.1 and 4.2 in [2]. We skip the

proofs as the methods are identical to the level cases.

Proposition 3.2. (i) Let m = 1, 2, 3, 4, 2 | k and f ∈ H∗
k(1). Then we have

L(s, symmf) � [log(k|s|)]m+1

uniformly for σ ≥ 1 − 1/ log(k|s|).
(ii) Let m ∈ {1, 2, 4}, 2 | k and f ∈ H∗

k(1). There is an absolute constant c > 0 such that

L(s, symmf) � [log(k|s|)]−c

uniformly for σ = 1.

Remark 4. The case m = 3 in part (ii) is unknown due to the possibility of the exceptional

zeros. (See [2] for a further discussion.)

Next we introduce the function log L(s, symmf) and prepare some results for later use.

Let m ∈ N, 2 | k, f ∈ H∗
k(1). Define

(3.7) Λsymmf (n) =

{

[

αf (p)mν + αf (p)(m−2)ν + · · · + αf (p)−mν
]

log p if n = pν ,

0 otherwise.

Then it is apparent that |Λsymmf (n)| ≤ (m + 1) logn (n ≥ 1) and we have

(3.8) L(s) := −L′

L
(s, symmf) =

∞
∑

n=1

Λsymmf (n)

ns
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for σ > 1. This follows easily from taking logarithmic derivative on both sides of (1.4):

−L′

L
(s, symmf) =

∑

p

∑

0≤j≤m

αf (p)m−2jp−s log p

1 − αf (p)m−2jp−s

=
∑

p

∑

ν≥1

∑

0≤j≤m

αf (p)(m−2j)ν log p

psν
,

which is equivalent to (3.8).

Suppose f ∈ H+
k,symm(1; η), where η ∈ (0, 1

2 ). Then L(s) is holomorphic and zero-free in

the region S (see (1.10)), hence the integral of L(s) from 2 to s (s ∈ S) defines the logarithm

log L(s, symmf), with the initial value taken as the usual natural logarithm of L(2, symmf). In

particular, we have the absolutely convergent series

(3.9) log L(s, symmf) =

∞
∑

n=1

Λsymmf (n)

ns log n
(σ > 1)

and the rather crude estimate

(3.10) | log L(s, symmf)| ≤ (m + 1)ζ(σ) �m (σ − 1)−1 (σ > 1).

Let us write σ0 = 1 − η for simplicity. The Borel-Carathedory theorem with the estimate

(3.1) implies that for σ > σ0 and |τ | ≤ 100kη,

(3.11) log L(s, symmf) � log k

σ − σ0

where the implied constant is absolute. (See [7] for a detailed proof of the Dirichlet L-function

case.) Similar to Lemma 7.1 of [25], we can easily prove a better estimate under GRH.

Proposition 3.3. Let m = 1, 2, 3, 4, 2 | k and f ∈ H∗
k(1). If GRH for L(s, symmf) holds, then

for any ε > 0 and any α > 1
2 we have

(3.12) log L(s, symmf) �ε,α [log(k|s|)]2(1−σ)+ε

uniformly for α ≤ σ ≤ 1 and τ ∈ R.

Even without GRH, (3.11) can be refined for f ∈ H+
k,symm(1; η). To this end, we provide

the k-analogue of Lemma 4.3 in [2].

Proposition 3.4. Let η ∈ (0, 1
2 ) fixed, σ0 = 1 − η, m = 1, 2, 3, 4, 2 | k, and f ∈ H+

k,symm(1; η).

Then we have

(3.13) log L(s, symmf) =

∞
∑

n=2

Λsymmf (n)

ns log n
e−n/T + R

uniformly for 2 | k, 3 ≤ T ≤ kη, σ0 < σ ≤ 3
2 and |τ | ≤ T , where

(3.14) R �η T−(σ−σ0)/2(log k)/(σ − σ0)
2.

Further for any 0 < ε < 1
4 and 1

2 < α < 1, under GRH for L(s, symmf) where f ∈ H∗
k(1), the

asymptotic formula (3.13) holds uniformly for α ≤ σ ≤ 3
2 and T ≥ 1, with

(3.15) R �ε,α T−(σ−α)(log k)2(1−α)+ε.
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Proof. From the absolute convergence of (3.9) and the lemma in [31, § 7.9], we have

(3.16)

∞
∑

n=2

Λsymmf (n)

ns log n
e−n/T =

1

2πi

∫ 2+i∞

2−i∞

Γ(z − s) log L(z, symmf)T z−s dz.

Now we deplace the line of integration <e z = κ to the path C consisting of straight lines joining

κ − i∞, κ − i2T, σ1 − i2T, σ1 + i2T, κ + i2T, κ + i∞,

where κ := 1 + 1/ logT and σ1 := (σ + σ0)/2. By the residue theorem, it follows that

∞
∑

n=2

Λsymmf (n)

ns log n
e−n/T = log L(s, symmf) +

1

2πi

∫

C

Γ(z − s) log L(z, symmf)T z−s dz.

Then we estimate the contribution from each line segment of C in the last integral. Applying

(3.10) and (3.11), we infer that the integral over C is

� T σ1−σ log k

σ − σ0

∫

|y|≤3T

|Γ(σ1 − σ + iy)| dy

+
log k

σ − σ0

∫ κ

σ1

T x−σ|Γ(x − σ + i(T − τ))| dx

+ T 1−σ

∫

|y|≥T

|Γ(κ − σ + iy)| dy.

To handle the gamma function, we use Stirling’s formula of the form: for any fixed constant

ci > 0 (i = 1, 2, 3),

(3.17) |Γ(σ + iτ)| =
√

2π |τ |σ−1/2e−π|τ |/2
{

1 + O
(

|τ |−1
)}

for −c1 ≤ σ ≤ c2 and |τ | ≥ c3. Together with |Γ(w)| � |w|−1 when − 1
2 ≤ <e w ≤ c2 and

|=mw| ≤ c3, the formula (3.13) with (3.14) follows plainly.

Under GRH, we can shift the line of integration in (3.16) to <e z = α′ := α− ε′ > 1
2 where

ε′ := 1
2 min(ε, α − 1

2 ) > 0. Repeating the same argument, the remainder term in this case is

R :=
1

2πi

∫ α′+i∞

α′−i∞

Γ(z − s) log L(z, symmf)T z−s dz

�ε,α T α′−σ(log k)2(1−α′)+ε

∫ ∞

−∞

|Γ(α′ − σ + iy)|[log(|y| + 3)]2(1−α′)+ε dy

�ε,α T−(σ−α)−ε′

(log k)2(1−α)+2ε

�ε,α T−(σ−α)(log k)2(1−α)+2ε

by (3.12) and α′ − σ ≤ −ε′. This ends the proof after replacing 2ε by ε. �

Proposition 3.5. Let η ∈ (0, 1
2 ) fixed, m = 1, 2, 3, 4 and 2 | k. Then for any f ∈ H+

k,symm(1; η),

we have

(3.18) log L(s, symmf) �η
(log k)4α/η − 1

α log2 k
+ log3(8k)

uniformly for σ ≥ 1 − α > 1 − 1
2η and |τ | ≤ (log k)4/η.
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Proof. It suffices to consider k ≥ 16 and 1 − α ≤ σ ≤ 3
2 in view of (3.10) and (3.11). We take

T = (log k)4/η in Proposition 3.4 (recall σ0 = 1 − η), therefore the error term R in (3.14) is

O(1), because of σ − σ0 ≥ 1
2η. Clearly the sum in (3.13) is

(3.19) �
∑

p

p−σe−p/T + O(1),

so we may assume 1
2 ≤ σ ≤ 1. By Lemma 3.2 of [29], partial integration leads to the inequality

(3.20)
∑

p≤y

1

pσ
� y1−σ − 1

(1 − σ) log y
+ log2 y

uniformly for 1
2 ≤ σ ≤ 1 and y ≥ 3. Hence we have

∑

p≤T

p−σe−p/T ≤
∑

p≤T

p−σ � (log k)4(1−σ)/η − 1

(1 − σ) log2 k
+ log3 k(3.21)

� (log k)4α/η − 1

α log2 k
+ log3 k.

The contribution of p > T can be estimated as follows

∑

p>T

p−σe−p/T �
∫ ∞

T

t−σe−t/T

log t
dt = T 1−σ

∫ ∞

1

u−σe−u

log(Tu)
du(3.22)

� T 1−σ

log T
� (log k)4(1−σ)/η − 1

(1 − σ) log2 k
.

Our assertion follows from inserting (3.21) and (3.22) into (3.19). �

§ 4. A large sieve inequality

Proposition 4.1. Let m = 1, 2, 3, 4, Dm := m(m + 1)/4 + 1, L ≥ 1 and {a`}`≤L be a sequence

of complex numbers. Then for any ε > 0, we have

∑

f∈H∗
k
(1)

∣

∣

∣

∑

`≤L

a`λsymmf (`)
∣

∣

∣

2

�ε kε
(

L + kDmL1/2+ε
)

∑

`≤L

|a`|2.

Proof. By the duality principle (which follows from the same norms of a Hilbert space operator

and its adjoint), it suffices to show

(4.1)
∑

`≤L

∣

∣

∣

∑

f∈H∗
k
(1)

bfλsymmf (`)
∣

∣

∣

2

�ε kε
(

L + kDmL1/2+ε
)

∑

f∈H∗
k
(1)

|bf |2

for any sequence of complex numbers {bf}f∈H∗
k
(1).

The left-hand side of (4.1) is

�
∑

`≥1

∣

∣

∣

∑

f∈H∗
k
(1)

bfλsymmf (`)
∣

∣

∣

2

e−`/L(4.2)

=
∑

f,g∈H∗
k
(1)

bfbg

∑

`≥1

λsymmf (`)λsymmg(`)e
−`/L.
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From the well known formula

(4.3)
1

2πi

∫

(c)

Γ(w)yw dw = e−1/y (for c > 0),

we obtain, together with a shift of line of integration,

∑

`≥1

λsymmf (`)λsymmg(`)e
−`/L(4.4)

=
1

2πi

∫

(2)

L(s, symmf × symmg)Γ(s)Ls ds

= Res
s=1

L(s, symmf × symmg)Γ(s)Ls

+
1

2πi

∫

(1/2+ε)

L(s, symmf × symmg)Γ(s)Ls ds.

The residue term comes only for f = g by [2, Section 5.1]. With the estimate (3.2), we have

Res
s=1

L(s, symmf × symmg)Γ(s)Ls

= lim
s→1+

(s − 1)L(s, symmf × symmg)Γ(s)Ls

�ε kεδf,gL,

where δf,g = 1 if f = g, and = 0 otherwise.

The last integral in (4.4) is � km(m+1)/4+εL1/2+ε, by (3.2) again and (3.17). Therefore,

(4.5)
∑

`≥1

λsymmf (`)λsymmg(`)e
−`/L � kε

(

δf,gL + km(m+1)/4L1/2+ε
)

.

Inserting (4.5) into (4.2) with H∗
k(1) � k, we obtain the result. �

§ 5. Proof of Theorem 1

Our proof is based on the method of Montgomery in [20], but at first, we show a factorization

to prepare a convenient mollifier for zero detection. The approach here is kindly suggested by

the referee.

Lemma 5.1. Let m ∈ N, z > (m + 1)2 be any fixed number and P (z) =
∏

p≤z p. For any

σ > 1, we have

L(s, symmf)−1 = Gf (s)
∑

(n,P (z))=1

λsymmf (n)µ(n)n−s

where the Dirichlet series Gf (s) converges absolutely for σ > 1
2 , and Gf (s) �m,z,ε 1 uniformly

for σ > 1
2 + ε.

Proof. By (1.6), we have |λsymmf (p)| ≤ m + 1 so 1 − λsymmf (p)p−s is nonzero for σ ≥ 1
2 and

p > z, from our choice of z. Formally, we can write

Gf (s) :=
∏

p≤z

m
∏

j=0

(

1 − αf (p)m−2jp−s
)

∏

p>z

{

(

1 − λsymmf (p)p−s
)−1

m
∏

j=0

(

1 − αf (p)m−2jp−s
)

}

,

by (1.4). If p > z, the p-local factor of Gf (s) is of the form 1 + Om(p−2σ), whence both the

absolute and uniform convergence of Gf (s) are justified in our specified regions. �
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Remark 5. Such a factorization (together with other delicate methods) is applied in

Kowalski & Michel [16] to count the zeros of automorphic L-functions on GL(n).

Now we are in a position to prove Theorem 1. Let us make two simple observations. Firstly

an argument similar to [31, §9.2] yields that

(5.1) N(1
2 , j, symmf) − N(1

2 , j − 1, symmf) � log(kj).

Thus the result of Theorem 1 is trivial if T ≥ kr, in view of (1.1).

Secondly the case 1 ≤ T ≤ (log k)3 can be deduced from the particular case T = (log k)3,

by (5.1) again. Therefore we assume

(5.2) (log k)3 ≤ T ≤ kr.

We cut the rectangle α ≤ σ ≤ 1 and 0 ≤ τ ≤ T horizontally into boxes of width 2(log k)2.

By (5.1) each box α ≤ σ ≤ 1 and Y ≤ τ ≤ Y +2(log k)2 contains at most O((log k)3) zeros. Let

nsymmf be the number of boxes which contain at least one zero ρ of L(s, symmf). Then

N(α, T, symmf) � nsymmf (log k)3.

We shall complete the proof by showing that

(5.3)
∑

f∈H∗
k
(1)

nsymmf �r,ε TkEm,r(1−α)/(3−2α)+ε.

Consider α ≥ 1
2 + 2ε. Let x, y ∈

[

1, k10m2(1+r)
]

and define

Mx(s, symmf) = Gf (s)
∑

`≤x
(`,P (z))=1

µ(`)λsymmf (`)`−s,

where Gf (s) and P (z) are defined as in Lemma 5.1. By Lemma 5.1, for σ > 1
2 we have

1 =
(

1 − L(s, symmf)Mx(s, symmf)
)

+ L(s, symmf)Mx(s, symmf).

Let ρ = β + iγ with β ≥ α (> 1
2 + ε) and 0 ≤ γ ≤ T be a zero of L(s, symmf), and write

κ = 1/ log k, κ1 = 1 − β + κ (> 0) and κ2 = 1
2 − β + ε (< 0).

In view of the preceding identity and (4.3) with c = κ1, we obtain

e−1/y =
1

2πi

∫

(κ1)

(

1 − L(ρ + w, symmf)Mx(ρ + w, symmf)
)

Γ(w)yw dw

+
1

2πi

∫

(κ1)

L(ρ + w, symmf)Mx(ρ + w, symmf)Γ(w)yw dw.

Observing that the zero of L(ρ + w, symmf) cancels the simple pole of Γ(w) at w = 0, we

translate the line of integration of the second integral to <ew = κ2 without introducing extra

terms. Thus we have

e−1/y =
1

2πi

∫

(κ1)

(

1 − L(ρ + w, symmf)Mx(ρ + w, symmf)
)

Γ(w)yw dw(5.4)

+
1

2πi

∫

(κ2)

L(ρ + w, symmf)Mx(ρ + w, symmf)Γ(w)yw dw.
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Next we estimate the contribution of |=m w| ≥ (log k)2 in the integrals of (5.4). Note that

for <ew = κ2 = 1
2 − β + ε, we have the convexity bound (by (3.1))

(5.5) L(ρ + w, symmf) � (k + T + |=m w|)(m+1)/4+ε

and the trivial estimate (with (1.6) and Gf (s) �ε 1 by Lemma 5.1)

(5.6) Mx(ρ + w, symmf) �ε x1/2+ε.

Thus the contribution of |=mw| ≥ (log k)2 to the second integral of (5.4) is

�ε x1/2+εy1/2−α

∫

|=m w|≥(log k)2
(k + T + |=m w|)(m+1)/4+ε|Γ(w)| | dw|(5.7)

�ε x1/2+εy1/2−α(k + T )(m+1)/4+εe−(log k)2

�ε,r 1/k,

by (5.5) and T ≤ kr.

By (1.5) and (1.6), L(s, symmf) � ζ(σ)m+1 for σ > 1. Together with Lemma 5.1, we get

that for <ew = κ1 = 1 − β + κ and x ≥ 1,

1−L(ρ + w, symmf)Mx(ρ + w, symmf)(5.9)

= L(ρ + w, symmf)Gf (ρ + w)
∑

`>x
(`,P (z))=1

µ(`)λsymmf (`)

`ρ+w

�ε ζ(1 + κ)m+1
∑

`≥1

dm+1(`)`
−(1+κ)

�ε kε.

Hence the portion of |=m w| ≥ (log k)2 in the first integral of (5.4) is

(5.10) �ε y1−αkεe−(log k)2 �ε 1/k.

Inserting (5.7) and (5.10) into (5.4), the remnant of the right side in (5.4) is � 1. Noticing

the fact that 1 ≤ C(a + b) ⇒ 1 ≤ 2C2(a + b2) (where a > 0, b > 0, C ≥ 1), we deduce with

Cauchy-Schwarz’s inequality that

1 � kεy2(1−α)

∫ (log k)2

−(log k)2

∣

∣1 − L(1 + κ + i(γ + v), symmf)Mx(1 + κ + i(γ + v), symmf)
∣

∣

2
dv

+ y1/2−α

∫ (log k)2

−(log k)2

∣

∣L(1
2 + ε + i(γ + v), symmf)Mx(1

2 + ε + i(γ + v), symmf)
∣

∣dv.

We label the boxes and separate them into two groups, for the odd-indexed and the even-

indexed respectively. This ensures the separation between two zeros from distinct boxes in the

same group at least 2(log k)2. Therefore, the number of boxes which contain at least a zero is

nsymmf � kεy2(1−α)

∫ 2T

0

∣

∣1 − L(1 + κ + iv, symmf)Mx(1 + κ + iv, symmf)
∣

∣

2
dv(5.11)

+ y1/2−α

∫ 2T

0

∣

∣L(1
2 + ε + iv, symmf)Mx(1

2 + ε + iv, symmf)
∣

∣dv

=: kε
(

y2(1−α)I ′symmf + y1/2−αI ′′symmf

)

, say.
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Apparently (5.5) and (5.6) imply

(5.12) I ′′symmf �r,ε Tx1/2+εkr(m+1)/4+rε,

for T ≤ kr. Similarly to (5.9), we can write

1 − L(1 + κ + iv, symmf)Mx(1 + κ + iv, symmf)

�ε,m kε

∣

∣

∣

∣

∑

x<`≤X
(`,P (z))=1

µ(`)λsymmf (`)

`1+κ+iv

∣

∣

∣

∣

+ kε
∑

`>X

dm+1(`)

`1+κ

where X = e4(log k)2 . Splitting `−κ/2 out of the second sum, this term is

�ε,m kεX−κ/2ζ(1 + κ/2)m+1 � k−1.

Thus

(5.13)
∑

f∈H∗
k
(1)

I ′symmf � kε

∫ 2T

0

∑

f∈H∗
k
(1)

∣

∣

∣

∣

∑

x<`≤X
(`,P (z))=1

µ(`)λsymmf (`)

`1+κ+iv

∣

∣

∣

∣

2

dv + T.

For any L ∈ [x, X ], we apply Proposition 4.1 with the sequence a` = µ(`)`−(1+κ+iv) for L < ` ≤
2L with (`, P (z)) = 1 and 0 otherwise to get

∑

f∈H∗
k
(1)

∣

∣

∣

∣

∑

L<`≤2L
(`,P (z))=1

µ(`)λsymmf (`)

`1+κ+iv

∣

∣

∣

∣

2

� kε
(

L + kDmL1/2+ε
)

L−1−2κ.

Separating the range x < ` ≤ X in (5.13) into dyadic intervals, it follows with Cauchy-Schwarz’s

inequality that
∑

f∈H∗
k
(1)

I ′sym2f �r,ε k2εT
(

1 + kDmx−1/2+ε
)

.

Thus we conclude
∑

f∈H∗
k
(1)

nsymmf �r,ε Txεk2rε
{

y2(1−α)
(

1 + kDmx−1/2
)

+ y1/2−αx1/2kr(m+1)/4
}

.

Taking x = k2Dm and y = kEm,r/(2(3−2α)), the proof of (5.3), hence Theorem 1, is complete with

ε/(2(Dm + r)) in place of ε. �

§ 6. Moments of L(1, symmf)

The aim of this section is to prove Proposition 6.1 below. We first introduce the preliminary

notation: for θ ∈ R, m ∈ N and |x| < 1,

(6.1)

g(θ) := diag
[

eiθ, e−iθ
]

,

symm[g(θ)] := diag
[

eimθ, ei(m−2)θ, . . . , e−imθ
]

,

tr
(

symm[g(θ)]
)

:=
∑

0≤j≤m

ei(m−2j)θ = sin[(m + 1)θ]/ sin θ,

D
(

x, symm[g(θ)]
)

:= det
(

I − x · symm[g(θ)]
)

=
∏

0≤j≤m

(

1 − ei(m−2j)θx
)−1

.
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Let z ∈ C. For m ∈ N and ν ≥ 0, we define λz,ν
m [g(θ)] by

(6.2) D
(

x, symm[g(θ)]
)z

=
∑

ν≥0

λz,ν
m [g(θ)]xν (|x| < 1).

Following the definitions, we have

(6.3) λ1,1
m [g(θ)] = tr

(

symm[g(θ)]
)

=
sin[(m + 1)θ]

sin θ
,

(6.4) log D
(

x, symm[g(θ)]
)

= tr
(

symm[g(θ)]
)

x + O(x2) (|x| < 1).

Besides, let θf (p) ∈ [0, π] such that αf (p) = eiθf (p) which is admissible by (1.3), then it is seen

that by (1.2) and (1.3),

(6.5) λf

(

pm
)

=
sin[(m + 1)θf (p)]

sin θf (p)
= tr

(

symm[g(θf (p))]
)

= λ1,1
m [g(θf (p))].

Moreover, it is evident that from (6.1) and (1.4),

(6.6) L(s, symmf)z =
∏

p

D
(

p−s, symm[g(θf (p))]
)z

(σ > 1),

whence L(s, symmf)z admits a Dirichlet series

(6.7) L(s, symmf)z =
∑

n≥1

λz
symmf (n)n−s (σ > 1)

where λz
symmf (n) is multiplicative and by (6.2),

(6.8) λz
symmf (pν) = λz,ν

m [g(θf (p))].

Remark 6. The symbols in (6.1), though a bit heavy, carry interpretations in representa-

tion theory. The coefficients λz,ν
m [g(θ)] can be viewed as a function generated by the characters

of SU(2). The combinatorial structure of λz
symmf (pν) is encrypted in the decomposition of

λz,ν
m [g(θ)] into irreducible characters. Furthermore, the Petersson formula (a main ingredient in

our proof) embodies the interpretation as the equidistribution of a certain family of tuples of

conjugacy classes. These are part of the salient points in [2], where readers will find the details.

In the sequel, we write

ω(f) :=
2π2

(k − 1)L(1, sym2f)

and

Mz
symm :=

∏

p

2

π

∫ π

0

D
(

p−1, symm[g(θ)]
)z

sin2 θ dθ.

Proposition 6.1. Let η ∈ (0, 1
31 ) fixed, m = 1, 2, 3, 4 and 2 | k. Then there are two positive

constants δ = δ(η) and c = c(η) such that
∑

f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z = Mz
symm + Oη

(

e−δ log k/ log2 k
)

uniformly for

2 | k and |z| ≤ c log k/ log2(8k) log3(8k).

The same asymptotic formula with H∗
k(1) in place of H+

k,symm(1; η) also holds if either <e z ≥ 0,

or <e z < 0 but m 6= 3.

We need a couple of lemmas to prove Proposition 6.1. Our first lemma is to express

λz
symmf (pν) in terms of λf (pν′

). Cogdell & Michel [2] achieve it in a more general context of

compact groups. But for the case SU(2), we choose to give a direct and “elementary” approach

which is more straightforward to the reader not used to the language of representation theory.
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Lemma 6.1. Let 2 | k, m ∈ N, z ∈ C and f ∈ H∗
k(1). Then for any prime p and integer ν ≥ 0,

we have

(6.9) λz
symmf (pν) =

∑

0≤ν′≤mν

µz,ν
m,ν′λf

(

pν′)

,

where

(6.10) µz,ν
m,ν′ =

2

π

∫ π

0

λz,ν
m [g(θ)] sin[(ν′ + 1)θ] sin θ dθ.

Further, letting δ(a, b) be 1 for a = b and 0 otherwise, we have

µz,1
m,ν′ = z δ(m, ν′) (0 ≤ ν′ ≤ m),(6.11)

∣

∣µz,ν
m,ν′

∣

∣ ≤
(

(m + 1)|z|+ ν − 1

ν

)

(0 ≤ ν′ ≤ mν).(6.12)

Proof. We start with the observation that θ 7→ D
(

x, symm[g(θ)]
)z

is even and

λz,ν
m [g(θ)] =

1

ν!

dν

dxν
D

(

x, symm[g(θ)]
)z

∣

∣

∣

x=0
.

It follows that the function θ 7→ λz,ν
m [g(θ)] is also even. Hence λz,ν

m [g(θ)] sin θ is an odd function

and a polynomial in eiθ of degree ≤ mν + 1. It is plain that µz,ν
m,ν′ defined in (6.10) is the

coefficient of the Fourier (sine) series

(6.13) λz,ν
m [g(θ)] sin θ =

∑

0≤ν′≤mν

µz,ν
m,ν′ sin[(ν′ + 1)θ].

We thus obtain (6.9) in view of (6.8) and (6.5).

By the series expansion

(1 − x)−z =
∑

ν≥0

(

z + ν − 1

ν

)

xν

valid for |x| < 1 and z ∈ C, where

(

z

ν

)

:=
1

ν!

ν−1
∏

j=0

(z − j)

with the convention
(

z
0

)

= 1, we have from the definition in (6.1) that

D
(

x, symm[g(θ)]
)z

=
∏

0≤j≤m

∑

νj≥0

(

z + νj − 1

νj

)

(

ei(m−2j)θx
)νj

=
∑

ν≥0

xν
∑

~ν∈Nm+1

|~ν|=ν

∏

0≤j≤m

(

z + νj − 1

νj

)

ei(m−2j)νjθ,

where ~ν := (ν0, . . . , νm) and |~ν| := ν0 + · · · + νm. Thus by comparing with (6.2), we get

(6.14) λz,ν
m [g(θ)] =

∑

~ν∈Nm+1

|~ν|=ν

∏

0≤j≤m

(

z + νj − 1

νj

)

· ei[mν−2(ν1+···+mνm)]θ.
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In particular,

λz,1
m [g(θ)] = z

sin[(m + 1)θ]

sin θ

which yields (6.11) after a simple computation with (6.10).

Noticing that

∑

ν≥0

xν
∑

~ν∈Nm+1

|~ν|=ν

∏

0≤j≤m

(|z| + νj − 1

νj

)

= D
(

x, symm[g(0)]
)|z|

= (1 − x)−(m+1)|z|

and comparing the coefficients of xν , we obtain

∑

~ν∈Nm+1

|~ν|=ν

∏

0≤j≤m

(|z| + νj − 1

νj

)

=

(

(m + 1)|z| + ν − 1

ν

)

.

Thus we deduce from (6.14) that for any θ ∈ R,

∣

∣λz,ν
m [g(θ)]

∣

∣ ≤
(

(m + 1)|z|+ ν − 1

ν

)

.

By using the Plancherel identity and the preceding inequality, we have

∑

0≤ν′≤mν

∣

∣µz,ν
m,ν′

∣

∣

2
=

2

π

∫ π

0

∣

∣λz,ν
m [g(θ)] sin θ

∣

∣

2
dθ

≤
(

(m + 1)|z|+ ν − 1

ν

)2

,

which implies (6.12). �

Lemma 6.2. Let m, n ∈ N, 2 | k and z ∈ C. Then we have

(6.15)
∑

f∈H∗
k
(1)

ω(f)λz
symmf (n) = λz

symm(n) + Om

(

k−5/6nm/4 log(2n)rz
m(n)

)

,

where λz
symm(n) and rz

m(n) are the multiplicative functions defined by

(6.16) λz
symm(pν) := µz,ν

m,0 and rz
m(pν) := (mν + 1)

(

(m + 1)|z| + ν − 1

ν

)

,

respectively. Further there is a constant c = c(m) such that

(6.17)
∑

n≤t

rz
m(n) �m t[log(et)]zm−1ec|z| log2(|z|+3)

uniformly for t ≥ 1 and z ∈ C, where zm := (m + 1)2z∗ and z∗ is the smallest integer n such

that n ≥ |z|.

Proof. Writing n = pν1

1 · · · pνr
r , the multiplicativity of λz

symm(n) and λf (n) allows us to deduce

∑

f∈H∗
k
(1)

ω(f)λz
symmf (n) =

∑

0≤ν′
1
≤mν1

· · ·
∑

0≤ν′
r≤mνr

∏

1≤j≤r

µ
z,νj

m,ν′
j

∑

f∈H∗
k
(1)

ω(f)λf

(

p
ν′
1

1 · · · pν′
r

r

)

.
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We apply Corollary 2.2 in [11] with the choice m = p
ν′
1

1 · · · pν′
r

r , n = 1 and N = 1 there. The

principal term contributes
∏

1≤j≤r µ
z,νj

m,0 = λz
symm(n), and the error term constitutes a term

� k−5/6nm/4 log(2n)
∏

1≤j≤r

∑

0≤ν′
j
≤mνj

∣

∣µ
z,νj

m,ν′
j

∣

∣

� k−5/6nm/4 log(2n)rz
m(n).

This proves (6.15). The estimate (6.17) is Lemma 4.3 of [25]. �

For notational convenience, we write

(6.18) ωz
symmf (x) :=

∞
∑

n=1

λz
symmf (n)

n
e−n/x.

The lemmas below are devoted to study its average over all primitive forms, which leads to the

integral formula in (6.20). This is a crucial step in the study of the moments, and is discovered

in [2] with the insightful idea of the “equidistribution” properties of g(θf (p)) in (6.6).

Lemma 6.3. Let m ∈ N, 2 | k, x ≥ 3 and z ∈ C. Then we have

∑

f∈H∗
k
(1)

ω(f)ωz
symmf (x) =

∞
∑

n=1

λz
symm(n)

n
e−n/x + Om

(

k−5/6xm/4[(zm + 1) log x]zm
)

.

Proof. By (6.18) and (6.15), we can write

∑

f∈H∗
k
(1)

ω(f)ωz
symmf (x) =

∞
∑

n=1

λz
symm(n)

n
e−n/x + Om

(

1

k5/6

∞
∑

n=1

log(2n)

n1−m/4
e−n/xrz

m(n)

)

.

An integration by parts with (6.17) allows us to deduce

∞
∑

n=1

log(2n)

n1−m/4
e−n/xrz

m(n) =

∫ ∞

1−

log(2t)

t1−m/4
e−t/x d

∑

n≤t

rz
m(n)

�m ec|z| log2(|z|+3)

∫ ∞

1

[log(3t)]zm

t1−m/4
e−t/x

(

1 +
t

x

)

dt.

But we have
∫ x

1

[log(3t)]zm

t1−m/4
e−t/x

(

1 +
t

x

)

dt � xm/4(log x)zm ,

∫ ∞

x

[log(3t)]zm

t1−m/4
e−t/x

(

1 +
t

x

)

dt � xm/4

∫ ∞

1

um/4e−u[log(3ux)]zm du

� xm/4(log x)zm

zm
∑

ν=0

(

zm

ν

) ∫ ∞

1

um+νe−u du

� xm/4[(zm + 1) logx]zm .

This completes the proof. �

Lemma 6.4. Let m ∈ N, z ∈ C and z′m := (m + 1)|z| + 3. Then there is a positive constant

c = c(m) such that for any σ ∈ (1
2 , 1] we have

(6.19)
∑

n≥1

|λz
symm(n)|

nσ
≤ exp

{

cz′m

(

log2 z′m +
z
′(1−σ)/σ
m − 1

(1 − σ) log z′m

)}

.
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Further we have

(6.20)
∑

n≥1

λz
symm(n)

n
=

∏

p

2

π

∫ π

0

D
(

p−1, symm[g(θ)]
)z

sin2 θ dθ.

Proof. Using the multiplicativity of λz
symm(n) and (6.16), we obtain that for any σ > 1

2 ,

(6.21)
∑

n≥1

|λz
symm(n)|n−σ =

∏

p

∑

ν≥0

|µz,ν
m,0|p−νσ.

From (6.11) and (6.12), we have

∑

ν≥0

|µz,ν
m,0|

pνσ
≤

∑

ν≥0

1

pνσ

(

(m + 1)|z| + ν − 1

ν

)

− (m + 1)|z|
pσ

(6.22)

=

(

1 − 1

pσ

)−(m+1)|z|

− (m + 1)|z|
pσ

.

Therefore, we deduce that by the estimate (3.20),

∏

pσ≤z′
m

∑

ν≥0

|µz,ν
m,0|

pνσ
≤

∏

pσ≤z′
m

(

1 − 1

pσ

)−(m+1)|z|

(6.23)

≤ exp

{

zm

(

∑

p≤z
′1/σ
m

p−σ + O(1)

)}

≤ exp

{

cz′m

(

log2 z′m +
z
′(1−σ)/σ
m − 1

(1 − σ) log z′m

)}

,

whereas for pσ > z′m,

(6.24)
∏

pσ>z′
m

∑

ν≥0

|µz,ν
m,0|

pνσ
≤ exp

{

∑

pσ>z′
m

cz′2m
p2σ

}

≤ ecz′1/σ
m / log z′

m

via (6.22). (Note the term for ν = 1 on the right of (6.22) vanishes.) Noticing that

z
′1/σ
m

log z′m
= z′m

z
′(1−σ)/σ
m

log z′m
≤ z′m

z
′(1−σ)/σ
m − 1

(1 − σ) log z′m
,

we obtain (6.19) by inserting (6.23) and (6.24) into (6.21).

The multiplicativity of λz
symm(n) and (6.10) imply

∑

n≥1

λz
symm(n)

n
=

∏

p

∑

ν≥0

µz,ν
m,0

pν

=
∏

p

2

π

∫ π

0

∑

ν≥0

λz,ν
m

[

g(θ)
]

pν
sin2 θ dθ

=
∏

p

2

π

∫ π

0

D
(

p−1, symm[g(θ)]
)z

sin2 θ dθ,

by (6.2). This completes the proof. �
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Lemma 6.5. Let m ∈ N, σ ∈ [0, 1
2 ), x ≥ 3 and z ∈ C. There is a positive constant c = c(m)

such that

∞
∑

n=1

λz
symm(n)

n
e−n/x = Mz

symm + Om

(

x−σ exp

{

cz′m

(

log2 z′m +
z
′σ/(1−σ)
m − 1

σ log z′m

)})

.

The implied constant depends on m only.

Proof. We first write

∞
∑

n=1

λz
symm(n)

n
e−n/x =

∑

n≥1

λz
symm(n)

n
+ O(R1 + R2),

where

R1 :=
∑

n>x

|λz
symm(n)|

n
, R2 :=

∑

n≤x

|λz
symm(n)|

n

∣

∣e−n/x − 1
∣

∣.

Clearly for any σ ∈ [0, 1
2 ), we have

(n/x)σ �
{

1 if n > x,
∣

∣e−n/x − 1
∣

∣ if n ≤ x.

Thus Lemma 6.4 implies

R1 + R2 �
∑

n≥1

|λz
symm(n)|

n

(

n

x

)σ

�m x−σ exp

{

cz′m

(

log2 z′m +
z
′σ/(1−σ)
m − 1

σ log z′m

)}

.

The proof is done. �

Lemma 6.6. Let η ∈ (0, 1
31 ) fixed, m = 1, 2, 3, 4, 2 | k and f ∈ H+

k,symm(1; η). Then we have

L(1, symmf)z = ωz
symmf (x) + Oη

((

x−1/ log2 k + xc|z|e−(log k)2
)

ec|z| log3(8k)
)

uniformly for 2 | k, x ≥ 3 and z ∈ C, where the positive constant c = c(η) and the implied

constant depend at most on η.

Proof. The method of proof is similar to that of Proposition 3.4. We express (6.18) with (4.3)

and (6.7) into

ωz
symmf (x) =

1

2πi

∫

(1)

L(s + 1, symmf)zΓ(s)xs ds

and shift the line of integration (1) to the path C consisting of straight lines joining

κ1 − i∞, κ1 − iT, −κ2 − iT, −κ2 + iT, κ1 + iT, κ1 + i∞,

where κ1 := 1/ logx, κ2 := 1/ log2 k and T = (log k)2. Therefore,

(6.25) ωz
symmf (x) = L(1, symmf)z +

1

2πi

∫

C

L(s + 1, symmf)zΓ(s)xs ds.
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By Proposition 3.5 with the choice α = κ2, log L(s + 1, symmf) �η log3(8k) for all s ∈ C
with |τ | ≤ 4T , and by (3.10), log L(s + 1, symmf) � log x for <e s = κ1. It follows that

1

2πi

∫

C

L(s + 1, symmf)zΓ(s)xs ds �η x−κ2ec|z| log3 k

∫

|y|≤T

|Γ(1 − κ2 + iy)| dy

+ ec|z| log3 k

∫ κ1

−κ2

|Γ(1 + α + iT )| dα

+ ec|z| log x

∫

|y|≥T

|Γ(1 + κ1 + iy)| dy.

The proof is then complete with (3.17). �

Now we are ready to prove Proposition 6.1. We deduce from Lemma 6.6 that

(6.26)
∑

f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z =
∑

f∈H+

k,symm (1;η)

ω(f)ωz
symmf (x) + Oη(R1),

where for c = c(η) a positive constant and

R1 :=
(

x−1/ log2 k + xc|z|e−(log k)2
)

ec|z| log3(8k).

Here we have used

(6.27)
∑

f∈H+

k,symm (1;η)

ω(f) ≤
∑

f∈H∗
k
(1)

ω(f) = 1 + O(k−5/6).

On the other hand, for ε > 0, f ∈ H∗
k(1), x ≥ 3 and z ∈ C, we have

ωz
symmf (x) =

1

2πi

∫

(ε)

L(s + 1, symmf)zΓ(s)xs ds � ι(ε)|<e z|xε,

where ι(ε) = ζ(1 + ε)m+1 > 0 is a constant depending on ε. Together with (1.11), we see that

∣

∣

∣

∑

f∈H−
k,symm (1;η)

ω(f)ωz
symmf (x)

∣

∣

∣
�η ι(ε)|<e z|xεk31η−1.

Hence we input the forms of H−
k,symm(1; η) into (6.21) with a negligible additional error to get

∑

f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z =
∑

f∈H∗
k
(1)

ω(f)ωz
symmf (x) + Oη(R2),

where R2 := R1 + xεk31η−1ι(ε)|z|. Finally by using Lemmas 6.3 and 6.5, we have

(6.28)
∑

f∈H+

k,symm (1;η)

ω(f)L(1, symmf)z = Mz
symm + Oη(R3),

where

R3 :=
(

x−1/ log2 k + xc|z|e−(log k)2
)

ec|z| log3(8k) + k−(1−31η)xει(ε)|z|

+
xm/4

k5/6
[(zm + 1) log x]zm + x−σ exp

{

cz′m

(

log2 z′m +
z
′σ/(1−σ)
m − 1

σ log z′m

)}

.
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Now taking ε = 1
500m , xm = k1/10 and σ = 1/ log(|z|+ 8), it is easy to verify that there are

two positive constants c and δ depending at most on η such that

R3 � e−δ log k/ log2 k

uniformly for 2 | k and |z| ≤ c log k/ log2(8k) log3(8k). This proves the desired asymptotic

formula.

Finally by using Proposition 3.2 (note L(1, symmf) > 0) and (1.11), for m = 1, 2, 3, 4 if

<e z ≥ 0 or m = 1, 2, 4 if <e z < 0, we have

∑

f∈H−
k,symm (1;η)

ω(f)L(1, symmf)z �η k31η−1(log k)c.

Hence the input of these forms into (6.28) causes a tolerable error there. The same choice of

parameters allows us to obtain the required result. �

§ 7. Proof of Theorem 2

From Proposition 6.1, we have

1
2M±r

symm ≤
∑

f∈H+

k,symm (1;η)

ω(f)L(1, symmf)±r

for 0 < r ≤ c log k/ log2(8k) log3(8k) and all sufficiently large even integer k. In view of (6.27),

there are f±
m ∈ H+

k,symm(1; η) such that

(7.1) 1
2M±r

symm ≤ 2L(1, symmf±
m)±r.

According to [2] and [25], we have

(7.2) log M±r
symm = A±

mr log
(

B±
m log r

)

+ Om

(

r

log r

)

,

where

(7.3)



















A±
m := max

θ∈[0,π]
±tr

(

symm[g(θ)]
)

= ±tr
(

symm[g(θ±m)]
)

,

B±
m := exp

{

γ0 +
1

A±
m

∑

p

(

± log D
(

p−1, symm[g(θ±m,p)]
)

− A±
m

p

)}

.

Here γ0 is a constant determined by

(7.4)
∑

p≤t

1

p
= log2 t + γ0 + O

(

1

log t

)

and θ±m,p ∈ [0, π] are real numbers such that

(7.5)











D
(

p−1, symm[g(θ+
m,p)]

)

= max
θ∈[0,π]

D
(

p−1, symm[g(θ)]
)

,

D
(

p−1, symm[g(θ−m,p)]
)

= min
θ∈[0,π]

D
(

p−1, symm[g(θ)]
)

.
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The choice r = c log k/ log2(8k) log3(8k) in (7.1) gives the required result.

In view of (6.1), the constants A±
m, B±

m, θ±m and θ±m,p are indeed defined for all m ∈ N. For

completeness, we give a general discussion. It is easy to see that for all primes p, θ+
m = θ+

m,p = 0

for m ∈ N, θ−m = θ−m,p = π for 2 - m and θ−2 = θ−2,p = 1
2π. These give the listed values for A±

m

and B±
m in (1.15) (see [8], [23] and [2] for the computation).

When m ≥ 4 and 2 | m, a simple expression for B−
m seems not available. We only give the

detailed computation for m = 4. It is plain to see that A−
4 = −tr

(

sym4[g(θ−4 )]
)

= 5
4 , where

θ−4 ∈ [0, π] satisfies cos θ−4 = − 1
4 .

Clearly we have

D
(

p−1, sym4[g(θ−4,p)]
)−1

= max
θ∈[0,π]

D
(

p−1, sym4[g(θ)]
)−1

.

A simple calculation shows that

D
(

p−1, sym4[g(θ)]
)−1

= (1 − p−1)
{

(1 + p−2)2 + 2p−1hp(cos θ)
}

,

where

hp(t) := 4p−1t3 − 2(1 + p−2)t2 − (1 + p−1)2t + 1 + p−2.

It is then easy to show that θ−4,p ∈ [0, π] is determined by

cos θ−4,p =
(

1 + p−2 −
√

1 + 3p−1 + 8p−2 + 3p−3 + p−4
)

/(6p−1).

From these formulas, an elementary calculation leads to (1.16). This completes the proof. �

§ 8. Proof of Theorem 3

The proofs for parts (i) and (ii) are essentially the same, both relying on Proposition 3.4,

except for different choices of parameters: s = 1 and T = (log k)4/η without GRH (or s = 1,

α = 3
4 and T = (log k)2+20ε under GRH). Then for f ∈ H+

k,symm(1; η) where η ∈ (0, 1
31 ) is a

fixed constant (or any f ∈ H∗
k(1) under GRH), we derive that

(8.1) log L(1, symmf) =
∞
∑

n=2

Λsymmf (n)

n log n
e−n/T + o(1).

With the trivial estimate for (3.7), Lebesgue’s dominated convergence theorem implies that
∑

p

∑

ν≥2

Λsymmf (pν)

pν log pν

(

e−pν/T − e−νp/T
)

→ 0 (k → ∞).

Thus we manipulate with (3.7) as follows,
∞
∑

n=2

Λsymmf (n)

n log n
e−n/T =

∑

p

∑

ν≥1

Λsymmf (pν)

pν log pν
e−pν/T

=
∑

p

∑

ν≥1

Λsymmf (pν)

pν log pν
e−νp/T + o(1)

=
∑

p

∑

ν≥1

∑

0≤j≤m

αf (p)(m−2j)ν

νpν
e−νp/T + o(1)

=
∑

p

∑

0≤j≤m

log

(

1 − αf (p)m−2j

ep/T p

)−1

+ o(1)

=
∑

p

log D
(

e−p/T p−1, symm[g(θf (p))]
)

+ o(1),
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by (6.1), where θf (p) ∈ [0, π] such that αf (p) = eiθf (p).

On one hand, we have

∣

∣

∣

∣

∑

p>T

log D
(

e−p/T p−1, symm[g(θf (p))]
)

∣

∣

∣

∣

�
∑

p>T

e−p/T

p
� 1

log T
→ 0

and on the other hand,

∣

∣

∣

∣

∑

p≤T

log

(

D
(

e−p/T p−1, symm[g(θf (p))]
)

D
(

p−1, symm[g(θf (p))]
)

)∣

∣

∣

∣

�
∑

p≤T

1 − e−p/T

p
� 1

log T
→ 0.

Inserting these relations into (8.1), we get

(8.2) log L(1, symmf) =
∑

p≤T

log D
(

p−1, symm[g(θf (p))]
)

+ o(1).

Thus the definition of θ±m,p (see (7.5)) allows us to write

∑

p≤T

log D
(

p−1, symm[g(θ+
m,p)]

)

+ o(1) ≥ log L(1, symmf)(8.3)

≥
∑

p≤T

log D
(

p−1, symm[g(θ−m,p)]
)

+ o(1).

By (6.4) and (7.3),

0 ≤ ∓ log

(

D(p−1, symm[g(θ±m)])

D(p−1, symm[g(θ±m,p)])

)

= ∓
±A±

m − tr
(

symm[g(θ±m,p)]
)

p
+ O

(

1

p2

)

.

= −
A±

m ∓ tr
(

symm[g(θ±m,p)]
)

p
+ O

(

1

p2

)

.

Since A±
m ∓ tr

(

symm[g(θ±m,p)]
)

≥ 0, it follows that

(8.4)
A±

m ∓ tr
(

symm[g(θ±m,p)]
)

p
� 1

p2
.

On the other hand, we have

(8.5) log D
(

p−1, symm[g(θ±m,p)]
)

− tr
(

symm[g(θ±m,p)]
)

/p � 1/p2

by (6.4) again. From (8.4) and (8.5), we deduce that

± log D
(

p−1, symm[g(θ±m,p)]
)

− A±
m/p � 1/p2

and hence,
∑

p>T

(

± log D
(

p−1, symm[g(θ±m,p)]
)

− A±
m

p

)

� 1

T log T
.



A density theorem on automorphic L-functions and some applications 29

Combining these two, we infer that

∑

p≤T

log D
(

p−1, symm[g(θ±m,p)]
)

= ±
∑

p≤T

A±
m

p
±

∑

p

(

± log D
(

p−1, symm[g(θ±m,p)]
)

− A±
m

p

)

+ O

(

1

T log T

)

= ±A±
m log

(

B±
m log T

)

+ O

(

1

T log T

)

with (7.3). Inserting it into (8.2), we obtain (1.17) and (1.18) accordingly in view of the param-

eters chosen at the beginning of the proof. We also remark that the constant 2 before B±
m in

(1.18) comes from the factor 2 in the exponent of log k in (3.15). �

§ 9. Proofs of Theorems 4 and 5

According to (8.2), for m = 1, 2, 3, 4, 2 | k, T = (log k)4/η and f ∈ H+
k,symm(1; η) where

η ∈ (0, 1
31 ) is a fixed constant, we have by (8.2), (6.4) and (6.5),

log L(1, symmf) =
∑

p≤T

log D
(

p−1, symm[g(θf (p))]
)

+ o(1)(9.1)

=
∑

p≤T

λ1,1
m [g(θf (p))]

p
+ Oη(1)

=
∑

p≤T

λf (pm)

p
+ O(1).

By using (1.14) of Theorem 2, there is f−
m ∈ H+

k,symm(1; η) such that

∑

p≤T

λf−
m

(pm)

p
= log L(1, symmf−

m) + O(1) ≤ −A−
m log3 k + O(1).

From (6.8) and (7.3), λf−
m

(pm) + A−
m ≥ 0. As

∑

p≤T p−1 = log3 k + O(1), we obtain

0 ≤
∑

p≤T

λf−
m

(pm) + A−
m

p
� 1.

Therefore, for any function ξ(k) → ∞ (k → ∞) satisfying ξ(k) ≤ log3 k, we have

∑

p≤T

λ
f
−
m

(pm)≥−A−
m+ξ(k)/ log3 k

1

p
≤ log3 k

ξ(k)

∑

p≤T

A−
m + λf−

m
(pm)

p
� log3 k

ξ(k)
,

whence
∑

p≤T

λ
f
−
m

(pm)<−A−
m+ξ(k)/ log3 k

1

p
=

∑

p≤T

1

p
−

∑

p≤T

λ
f
−
m

(pm)≥−A−
m+ξ(k)/ log3 k

1

p

= log3 k + Oη

(

log3 k

ξ(k)

)

.
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Our result
∑

p≤(log k)A

λ
f
−
m

(pm)<−A−
m+ξ(k)/ log3 k

1

p
= log3 k + OA,η

(

log3 k

ξ(k)

)

.

follows, since
∑

T<p≤(log k)A

1

p
�A,η 1.

Taking m = 1 and m = 2 give (1.24) and (1.25), but for the latter result (1.25), we need the

observation λf (p)2 = λf (p2) + 1 and A−
2 = 1, in other words, λf (p)2 = λf (p2) + A−

2 .

To prove (1.23), it suffices to replace f−
m by f+

m and reverse the corresponding inequalities.

�
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