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1. Introduction

Every material is naturally inhomogeneous at a small enoughscale. The
aim ofhomogenizat ionis to replace a microscopically inhomogeneous material
by a macroscopically homogeneous medium, the propert ies ofwhich are the
effect ive propert iesof the init ial inhomogeneous material. However, nonlinear
phenomenas such as fat igue or rupture are often triggered bylocal st ress or
st rain concentrat ions at small scale. Therefore, besides effect ive propert ies, it
is also essent ial to invest igate how local fields are infl uenced by, and infl uence
in turn, the microstructure of a material.

P recise determinat ion or accurate est imat ion of local fields may involve
considerable computat ional efforts. Direct numerical simulat ions of compos-
ites with periodic microstructures have been performed by the Finite Element
Method (FEM) since the early sevent ies, but despite numerous achievements,
the applicat ion of this method to three-dimensional problems is st ill limited
by the complexity of meshes. The need for invest igat ing materials with com-
plex microstructure without meshing provided a first mot ivat ion for developing
a new computat ional method, specifically devised for microstructures, which
could make direct use of images of microstructures, as delivered by Scanning
Electron Microscopy or Computed Tomography ([1] [2] [3]).

A second mot ivat ion for developing a method capable ofsimulat ing easily the
response of different microstructures stems from the recent theoret ical models
of the effect ive propert ies of nonlinear composites (see the review art icle Ponte
Cast ãneda and Suquet [4] and the references herein). Direct comparison of
these models with experimental data is often difficult , in that many different



phenomena may occur simultaneously in the nonlinear regime(plast icity but
also damage, interphase debonding, grain boundary sliding...). A comparison
with numerical simulat ions, although only a step towards a complete validat ion,
permits to “act ivate”all nonlinear mechanisms independent ly.

2. Solving a periodic elasticity problem with the FFT

As a reminder for readers who are not familiar with the FFT method, the
case of linear elast icity at small st rains is discussed first. The microstructure of
the composite material is described by arepresentat ive volume element(r.v.e.)
V comprised ofN homogeneous phases. TheN individual const ituents are
linear elast ic, with st iffnessc(x) and perfect ly bonded accross their interfaces.
The volume element is subjected to an average strainE and thelocal problem
to be solved for the local st ress and strain fields reads as

σ(x) = c(x) : ε(u(x)), div (σ(x)) = 0, 〈ε〉 = E, (1)

where〈.〉 denotes the spat ial average overV . The boundary condit ions applied
on ∂V should reproduce as closely as possible thein situ state of the r.v.e.
This state is very seldomly known and periodicity condit ions are assumed to
close the problem : the local st rain field is decomposed into its average and a
periodic fl uctuat ionε(u(x)) = E + ε(u∗(x)) whereu∗ is periodic (notat ion
u∗#). The tensionsσ.n take opposite values on oppposite sides of the r.v.e.
(notat ionσ.n−#). The reader is referred to Suquet [5] for more details about
periodicity condit ions.

The local problem (1) can be re-writ ten by int roducing a homogeneous ref-
erence material with elast ic st iffnessc0 :

σ(x) = c0 : ε(u∗(x)) + τ (x), div (σ(x)) = 0, u∗ #, σ.n − #, (2)

where the polarizat ion fieldτ (x) is given by :

τ (x) = δc(x) : (ε(u∗(x)) + E) + c0 : E, δc(x) = c(x) − c0. (3)

The solut ion of problem (2) can be expressed by means of theperiodic Green’s
operatorassociated with the elast icity tensorc0 and reads, in real space and
Fourier space respect ively :

ε(u∗(x)) = −Γ
0 ∗ τ (x), ε̂∗(ξ) = −Γ̂

0
(ξ) : τ̂ (ξ) ∀ξ 6= 0, ε̂∗(0) = 0.

After subst itut ing back the expression (3) ofτ in this relat ion, the init ial local
problem (1) reduces to theperiodic Lippmann-Schwinger integral equat ionfor
ε(u) which reads, in real space:

ε(u(x)) = −Γ
0 ∗ (δc(x) : ε(u(x))) + E. (4)



The operatorΓ0 is explicitely known in Fourier spacefor arbit rary anisotropy
of the reference medium:

Γ̂0
ijkh = N0

ikξjξh|(ijkh), K0
ik = c0

ijkhξjξh, , N 0 =
(
K0

)
−1

, (5)

where the symbol(ijkh) denotes symmetrizat ion with respect to the four indices

(ijkh) result ing in minor and major symmetries forΓ̂
0
. Specific expressions for

Γ
0 can be found in Mura [6] for different classes of anisotropy of the reference

medium.
The integral equat ion (4) is solved by a fixed-point method :

ε(ui+1) = −Γ
0 ∗

(
δc : ε(ui)

)
+ E. (6)

This algorithm can be further simplified by not ing thatΓ
0 ∗ (c0 : ε) = ε(u∗)

and the iterat ive method reads

ε(ui+1) = ε(ui) − Γ
0 ∗ σi, σi(x) = c(x) : ε(ui(x)). (7)

Thei + 1-th iterate of the numerical algorithm typically reads :

εi andσi being known
a) σ̂i = FT(σi),
b) Convergence test,

c) ε̂i+1(ξ) = ε̂i(ξ) − Γ̂
0
(ξ) : σ̂i(ξ) ∀ξ 6= 0 andε̂i+1(0) = E,

d) εi+1 = FT−1(ε̂i+1)
e) σi+1(x) = c(x) : εi+1(x), ∀ x ∈ V.






(8)

FT stands for the Fourier t ransform. Convergence is reachedwhenσi+1 is in
equilibrium.

In pract ice the microstructure is given in the form of an image, consist ing
of pixels (or voxels in dimension three) of a given size. The spat ial resolut ion
of the image is the number of pixels along each coordinate axis. The image
sampling in real space generates a corresponding sampling in Fourier space.
The algorithm (8) is implemented in discret ized form , the FTbeing replaced
by the Fast Fourier Transform (FFT) at tached to the above sampling in real and
Fourier space ([2]).

The FFT method can be used in most problems where the FEM is used, pro-
vided that periodicity condit ions can be adopted for the problem at hand. Exten-
sions of the method to plast icity with or without hardening,to viscoplast icity,
to phase transformat ion were given in [2] [7] [8] in the context of infinitesimal
st rains. The next sect ions are concerned with the extensionof the method to
large strains.



3. Hyperelastic materials

Consider now the case where the deformat ions applied to the composite
material are large. The shape of the r.v.e.V evolves with t ime and classically
two configurat ions play a part icular role, the init ial configurat ion V0 and the
current configurat ionV (t). When the individual const ituents are hyperelast ic
a Lagrangian formulat ion can be adopted and the local problem can be posed
on the init ial configurat ionV0 only. A part icle which was init ially at pointX
moves to a locat ionx = x(X, t) = X + u(X , t) at t imet. The deformat ion
gradient and the first P iola-Kirchhoff st ress tensorπ are related by:

f = I + ∇Xu(X, t), π(X) =
∂w

∂f
(X ,f), (9)

wherew(X , .) is the strain energy at pointX. The average gradientF of the
transformat ion is applied incrementally along a prescribed path in the loading
space. This path is parametrized by a scalar variablet. The local problem to
be solved reads :

π(X) =
∂w

∂f
(X,f ), divXπ = 0 in V0,

f(X) = F + ∇Xu∗, u∗ #, π.N − # on ∂V0





(10)

whereN denotes the outer normal unit vector to∂V0.
The local problem (10) is similar to (2). It is posed on afixedconfigurat ion

which allows us to use the FFT method with fixed grids in real space and Fourier
space. The const itut ive relat ions are nonlinear and the whole gradientf (and
not only its symmetric part ) are taken into account into (10). The problem (10)
is solved step-by-step in t ime, with a Newton-Raphson algorithm at each t ime
step.

3.1 Newton-Raphson algorithm

F t+∆t is imposed at t imet + ∆t. The principal unknown is the gradient
∇u∗

t+∆t of the periodic fl uctuat ion of the displacement . This gradient is deter-
mined by imposing thatπt+∆t is in equilibrium.

Let πi, f i and (u∗)i denote the iterates approximat ingπt+∆t, f t+∆t and
u∗

t+∆t.

Iteratei: ∇(u∗)i−1 being known :

(1) Computef i−1 andπi−1

f i−1(X) = F t+∆t + ∇(u∗)i−1(X), πi−1(X) =
∂w

∂f
(X,f i−1(X)). (11)



Check ifπi−1 is in equilibrium. If not , then

(2) Solve the linear tangent problem for the periodic field∇(δu∗)

〈
∂2w

∂f2 (f i−1) : ∇(δu∗) : ∇v〉 = −〈πi−1 : ∇v〉 ∀v #. (12)

(3) Update∇(u∗)i: ∇(u∗)i(X) = ∇(u∗)i−1(X) + ∇(δu∗)(X).

The criterion which serves to check equilibrium reads :

max
ξ

|ξ.π̂i(ξ)| ≤ ε|π̂i(0)|, where typicallyε = 10−4.

The problem (12) is solved iterat ively using the FFT method described in
sect ion 2. More specifically an internal loop is performed tofind ∇(δu∗)(X)

∇(δu∗)k = ∇(δu∗)k−1 − Γ̃
0
∗

(
Li−1 : ∇(δu∗)k−1 + πi−1

)
, (13)

whereLi−1(X) =
∂2w

∂f2 (X ,f i−1(X)). Γ̃
0

is defined in Fourier space as

ˆ̃Γ0
ijkh = N0

ikξjξh|(ik)(jh),

where the symbol(ik)(jh) denotes symmetrizat ion with respect to the indices
i, k andj, h only.

3.2 Example: fiber-reinforced elastomer

The above algorithm has been applied to model the deformat ion of an elas-
tomeric matrix reinforced by st iff fibers. In its init ial configurat ion the unit
cell was a square containing 64 circular ident ical impenetrable fibers, with25%
volume fract ion, arranged randomly in the unit cell. The matrix and the fibers
were compressible Mooney-Rivlin materials with st rain energy :

w(f ) =
µ

2
(i1 − 3) − µ ln j +

κ

2
(j − 1)2 , i1 = tr(Tf .f), j = detf . (14)

The fibers were 10 t imes st iffer than the matrix. 10 differentconfigurat ions
were tested. The macroscopic deformat ion was a biaxial isochoric deformat ion
F = exp (E1) e1 ⊗e1 +exp (−E1) e2 ⊗e2 +e3 ⊗e3, where the logarithmic
st rain in the first direct ionE1 was negat ive (contract ion in direct ion 1, extension
in direct ion 2).

The deformed states of a typical configurat ion are shown in figure 1. The
stress-st rain response of all 10 different configurat ions are shown in Figure



E1 = 0

(a)

E1 = −0.14

(b)

E1 = −0.28

(c)

E1 = −0.42

(d)

E1 = −0.56

(e)

E1 = −0.70

(f)

Figure 1. Hyperelast ic matrix reinforced by 64 circular fibers. (a): init ial configurat ion.
(b)-(f): successive deformed states for different values of the macroscopic logarithmic st rain
E1 = ln F11.
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Figure 2. Macroscopic st ress-st rain curves. First P iola-Kirchhoffst ress as a funct ion of the
logarithmic st rain in direct ion 1. 10 different configurat ions. Comparison between the FFT
simulat ions and the second order est imate (SOE) with the lower Hashin-Shtrikman est imate.



2. They are seen to be very close to one another. Also shown in Figure 2
is the predict ion of the second-order est imate (SOE) of Ponte Cast ãneda [9]
implemented with the Hashin-Shtrikman est imate (lower bound) for circular
fibers in a matrix. As can be seen from this figure, the agreement between the
theory and the numerical calculat ions is excellent .

4. Eulerian formulation

4.1 Local problem

We now turn to the case where the const itut ive relat ions of the const ituents
can be expressed by means of quant it ies defined on the currentconfigurat ion
only, the Cauchy stressσ and the Eulerian strain-rated for instance. This is
the case for Newtonian fl uids for which the const itut ive relat ions read

σ(x) = L(x) : d(x), (15)

and more generally for viscous materials when elast icity effects are neglected
(the case of power-law viscous materials is considered in Lebensohn [10]). For
simplicity we restrict our at tent ion to Newtonian fl uids as described by (15).

The geometry of the r.v.e. evolves with t ime in two ways. First the unit
vectorsY i defining the unit cell are convected by the macroscopic velocity
gradient :

Ẏ i(t) = 〈gradv(t)〉.Y i(t). (16)

Second, the posit ion of the phases within the r.v.e. changeswith t ime, the
material part icles being convected by the microscopic velocity field:

ẋ(t) = v(x, t) (17)

The local problem to be solved in the Eulerian configurat ion consists of the
const itut ive relat ions, together with the equilibrium andcompat ibility equa-
t ions. At each t imet the local problem on the current configurat ion can be
solved using the FFT method described in sect ion 2. It remains to see how the
unit cell changes with t ime.

4.2 A Multi-Particle Method

The two grids. The proposed method falls in the category of mult i-part icle
methods and follows rather closely the Part icle-In-Cell (PIC) method proposed
by Sulsky, Chen and Schreyer [11, 12], with a difference stemming from the
updat ing of the computat ional grid (the method proposed by Lebensohn [10]
is also similar in spirit ). The underlying idea of the PIC method is to consider
two separate grids:



- T he computat ional gridis used for applying the FFT method described
in sect ion 2. It is a regular grid but it does not have to be rectangular
(Fourier t ransforms can be defined on noncubic lat t ices).

- T he material gridis at tached to the material part icles. It does not have
to be structured or regular and can be seen as a collect ion of part icles,
rather than as a structured mesh. It is only used to apply the const itut ive
relat ions (which are material relat ions). In the FFT methodit is used
in real space only. In most methods the material grid is finer than the
computat ional one (by a factor of 4 to 9).

Each grid carries its own set of unknowns. In other words,

- the computat ional grid carries unknowns labelled with lowerscriptc (as
in “computat ions”) :x(i,j)

c = (i − 1)Y 1 + (j − 1)Y 2 denote the nodes
of the computat ional grid,σc,vc denote the stress and velocity fields at
these nodes.

- the material grid carries unknowns labelled with lowerscript p (as in
“part icles”): xp denote the locat ion of the part icles,σp,vp denote the
stress and velocity field at the part icles.

Figure 3. Top row: init ial grids. Left : the computat ional grid. Center: the material grid.
R ight : both grids superimposed. Bot tom row: convected grids.

4.3 Updating the grids

In the init ial P IC method ([11, 12]), the computat ional gridis fixed. However
in the problem under considerat ion here the computat ional grid is associated



with the unit cell which generates the whole microstructureby periodicity and
cannot remain fixed. The unit vectorsY i defining the periodic lat t ice are
material vectors and follow themacroscopicvelocity field according to (16).
The computat ional grid is updated accordingly. The material grid is updated
using themicrosocopicvelocity field according to (17).

The grids are updated using an explicit scheme. At t imetn, the velocity fields
vc(tn) is computed on the computat ional grid and transferred (see below) onto
the material grid to get a fieldvp(tn). Then :

Y i(tn+1) = Y i(tn) + ∆t〈gradvc(tn)〉.Y i(t),
xc(tn+1) = (i − 1)Y 1(tn+1) + (j − 1)Y 2(tn+1),

xp(tn+1) = xp(tn) + ∆t vp(xp(tn)).




 (18)

Transfer operators. Transfer operators are needed in order to t ransfer in-
format ion from the computat ional grid to the material grid and vice-versa. De-
vising consistent t ransfer operators is certainly a crucial part of the algorithm.

Consider a computat ional grid with an init ially rectangular pat tern. In the
init ial configurat ion the grid nodes have coordinates((i − 1)∆x0, (j − 1)∆y0).
In the current configurat ion the grid nodes have coordinates(xc

i,j, y
c
i,j). Let

us int roduce a family of shape funct ionsN (i,j), i = 1, ..., I, j = 1, ..., J (as
is classical in the FEM) on the computat ional grid, whereI andJ denote the
number ofsamplingpoints on the horizontal and vert ical axis (for the init ial grid)
respect ively. Given the regular geometry of the computat ional grid a natural
choice for theN (i,j) are the interpolat ion funct ions of the 4 point quadrilateral
element in the FEM (these funct ions were used in the example presented in
sect ion 4.4). Then, given the valuesf

(i,j)
c = f(xc(i, j) of any funct ionf at the

computat ional nodes, the interpolated field at any other point x read as

f(x) =

I,J∑

(i,j)=(1,1)

N (i,j)(x)f (i,j)
c . (19)

These relat ions apply in part icular at the part icle posit ionsxp.
The inverse transfer from the material grid to the computat ional grid is per-

formed using the same interpolat ion funct ions. Each part icle is assigned a mass
mp and the mass of a computat ional node is defined as

m(x(i,j)
c ) =

P∑

p=1

mpN
(i,j)(xp) (20)

Then the valuesfc of f at any computat ional nodexc is given by :

fc(x
(i,j)
c ) =

1

m(x
(i,j)
c )

P∑

p=1

mpN
(i,j)(xp)fp(xp) (21)



4.4 A test example

To check the accuracy of the updat ing scheme, the problem of arigid part icle
rotat ing in a shear fl ow of a newtonian fl uid with uniform and constant viscosity
has been invest igated. The fl uid is subjected to a macroscopic fl ow with st rain-
rateD and rotat ion-rateΩ. Inert ia effects are neglected. The solut ion (rotat ion
of the part icle) for a spheroidal part icle with infinitesimal volume fract ionc(p) in
an incompressible newtonian fl uid goes back to Jeffery [13].A generalizat ion
of Jeffery’s result , also applying to compressible fl uids and viscous part icles,
can also be derived by means of Eshelby’s result for ellipsoidal inclusions. This
derivat ion will not be given here. For a rigid part icle the evolut ion equat ion for
a unit normal vectoru at tached to the part icle is

du

dt
= ωI .u, ωI = Ω − Π : S−1 : D, (22)

whereS andΠ are the two Eshelby tensors of the part icle in the matrix giving
respect ively the deformat ion-rate in the inclusion and to the rotat ion-rate of the
inclusion.

This general three-dimensional solut ion can be specialized to dimension 2.
The result is

du

dt
= Ω.u + B (D.u − (u.D.u)u) , (23)

with B = (r2 − 1)/
(
r2 + 1 + 2r 1−2ν

2(1−ν)

)
wherer is the aspect-rat io of the

part icle andν is the Poisson rat io of the linearly viscous matrix.
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Figure 4. Part icle rotat ing in a shear fl ow.



In a shear fl ow,

x1(t) = X1 + γ(t)X2, x2(t) = X2, (24)

(23) gives the the rotat ion of the unit normal vectoru = sin ϕe1 + cos ϕe2 in
the form :

dϕ

dt
=

γ̇

2

[
1 + B(cos2 ϕ − sin2 ϕ)

]
, (25)

which can be integrated into

ϕ(t) = ϕ(0) + Arctg

(
R tg

(
γ(t)

R + 1/R

))
, withR =

√
1 + B

1 − B
. (26)

A numerical simulat ion of the rotat ion of a part icle in a shear fl ow has been
conducted using the method described in sect ion 4.2 with thefollowing data

r = 3, ν = 0.499, c(p) = 0.3%. (27)

The comparison between the analyt ical and the numerical results is good as
shown in Figure 4 b. Also shown in this figure is the lat t ice rotat ion. As can be
seen the part icle rotates faster than the lat t ice.

5. Concluding remarks

Two extensions to finite st rains of the numerical method based on Fast Fourier
Transforms ([1, 2]) have been proposed and test examples have been analyzed.
A few numerical issues deserve at tent ion in future work:

In the Lagrangian approach presented in sect ion 3, the rate of conver-
gence of the iterat ive FFT algorithm applied to the tangent problem (13)
can be rather poor. This is probably due to the fact that the tangent op-
erator is only st rongly ellipt ic (and not very st rongly ellipt ic) and highly
contrasted. An accelerated scheme would be very helpful.

In the Eulerian approach presented in sect ion 4, consistentt ransfer op-
erators between the computat ional grid and the material grid are to be
found.
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