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1. Introduction

Every material is naturally inhomogeneous at a small encsmggtie. The
aim ofhomogenizatiois to replace a microscopically inhomogeneous material
by a macroscopically homogeneous medium, the propertigshath are the
effective propertiesfthe initial inhomogeneous material. However, nonlinear
phenomenas such as fatigue or rupture are often triggerddday stress or
strain concentrations at small scale. Therefore, besiffiastige properties, it
is also essential to investigate how local fields are infl eenty, and influence
in turn, the microstructure of a material.

Precise determination or accurate estimation of local siefthy involve
considerable computational efforts. Direct numericaligimtions of compos-
ites with periodic microstructures have been performedteyFEinite Element
Method (FEM) since the early seventies, but despite nunmseamhievements,
the application of this method to three-dimensional proidéds still limited
by the complexity of meshes. The need for investigating malkewith com-
plex microstructure without meshing provided a first motiga for developing
a new computational method, specifically devised for mionostures, which
could make direct use of images of microstructures, as ermdiy by Scanning
Electron Microscopy or Computed Tomography ([1] [2] [3]).

A second motivation for developinga method capable of sating easily the
response of different microstructures stems from the retieeoretical models
of the effective properties of nonlinear composites (seerdview article Ponte
Castdieda and Suquet [4] and the references herein). Direct cosgaof
these models with experimental data is often difficult, imtthmany different



phenomena may occur simultaneously in the nonlinear regptessticity but

also damage, interphase debonding, grain boundary sliding comparison

with numerical simulations, although only a step towardsraplete validation,
permits to &ctivateall nonlinear mechanisms indeperttien

2. Solving a periodic elasticity problem with the FFT

As a reminder for readers who are not familiar with the FFT hnoek, the
case of linear elasticity at small strains is discussed.fif$te microstructure of
the composite material is described byearesentative volume elemefrtv.e.)

V comprised ofN homogeneous phases. Theindividual constituents are
linear elastic with stiffnessc(x) and perfectly bonded accross their interfaces.
The volume element is subjected to an average stEaamd theocal problem

to be solved for the local stress and strain fields reads as

o(x) =c(x) :e(u(x)), div(e(x)) =0, (e)=E, (1)

where(.) denotes the spatial average ovéerThe boundary conditions applied
on 9V should reproduce as closely as possible ihaitu state of the r.v.e.
This state is very seldomly known and periodicity condidare assumed to
close the problem : the local strain field is decomposed itd@verage and a
periodic fluctuatiore(u(x)) = E + e(u*(x)) whereu* is periodic (notation
u*#). The tensiongr.n take opposite values on oppposite sides of the r.v.e.
(notationo.n — #). Thereader is referred to Suquet [5] for more details about
periodicity conditions.

The local problem (1) can be re-written by introducing a hgereous ref-
erence material with elastic stiffneg$:

ox)=c:e(u*(x) + 7(x), div(o(x)) =0, u*#, on —#, (2)
where the polarization fiele(x) is given by :
7(x) = dc(x) : (e(u*(x)) + E)+c: E, dc(x) = c(x) — . (3)

The solution of problem (2) can be expressed by means githiedic Green’s
operatorassociated with the elasticity tensdt and reads, in real space and
Fourier space respectively :

e(u’(@) = T« r(z), &(€)=-T(€):#(€) VE#£0, &(0)=0.

After substituting back the expression (3)7ofn this relation, the initial local
problem (1) reduces to thgeriodic Lippmann-Schwinger integral equatitor
e(u) which reads, in real space:

e(u(x)) = —T%x (6c(x) : e(u(x))) + E. (4)



The operatol™ is explicitely known in Fourier spader arbitrary anisotropy
of the reference medium:

. -1
Dliin = Nin€iénliny Koy, = cundsbn . N°=(K%) 7, (5)

where the symbaql ;) denotes symmetrization with respect to the four indices

(ijkh) resultingin minor and major symmetries 1f)(r). Specificexpressions for
' can be found in Mura [6] for different classes of anisotropytee reference
medium.

The integral equation (4) is solved by a fixed-point method :

e(u't!) = T« (dc: e(u)) + E. (6)

This algorithm can be further simplified by noting thBt * (c°: €) = e(u*)
and the iterative method reads

e(u™) =e() —Tx 0!, ol(x)=c(x): e(ui(x)). (7)
Thei+ 1-th iterate of the numerical algorithm typically reads :

e' ando' being known
&' =FT(o),
Convergence test
etlg) =é(¢)-T
Ei—i—l — FT_l(éi+1)
otl(z) =c(x): etl(z), Ve V.

> Q

(8)

"(¢): 6'(€) VE # 0 ande™(0) = E,

SUNe)
~— O

('b

FT stands for the Fourier transform. Convergence is reagtegho' ! is in
equilibrium.

In practice the microstructure is given in the form of an irmagonsisting
of pixels (or voxels in dimension three) of a given size. Tpatsal resolution
of the image is the number of pixels along each coordinats.aXihe image
sampling in real space generates a corresponding samplif@urier space.
The algorithm (8) is implemented in discretized form , the Bding replaced
by the Fast Fourier Transform (FFT) attached to the aboveodiamin real and
Fourier space ([2]).

The FFT method can be used in most problems where the FEMds pse-
vided that periodicity conditions can be adopted for thdypem at hand. Exten-
sions of the method to plasticity with or without hardenihgyviscoplasticity,
to phase transformation were given in [2][7][8] in the caxitef infinitesimal
strains. The next sections are concerned with the exteradibme method to
large strains.



3. Hyperelastic materials

Consider now the case where the deformations applied to ohgosite
material are large. The shape of the r.\ieevolves with time and classically
two configurations play a particular role, the initial configtion V5 and the
current configuratior’/(t). When the individual constituents are hyperelastic
a Lagrangian formulation can be adopted and the local prolzien be posed
on the initial configuratiorify only. A particle which was initially at poinfX
moves to a locatior = z(X,t) = X + u(X,t) at timet. The deformation
gradient and the first Piola-Kirchhoff stress tengoare related by:

ow
f:I+vXu(X7t)7 W(X):ﬁ(th)a (9)

wherew(X,.) is the strain energy at poinX. The average gradier of the
transformation is applied incrementally along a presatipath in the loading
space. This path is parametrized by a scalar variablehe local problem to
be solved reads :
(X) = 8—w(X,f), divxm = 01in Vj,

of (10)

f(X)=F+Vxu*, u*#, m.N —# ondV)

3

whereN denotes the outer normal unit vectordbj.

The local problem (10) is similar to (2). It is posed offixeedconfiguration
which allows ustousethe FFT method with fixed grids in reaksand Fourier
space. The constitutive relations are nonlinear and thdempadientf (and
not only its symmetric part) are taken into account into (IDhe problem (10)
is solved step-by-step in time, with a Newton-Raphson atibon at each time
step.

3.1 Newton-Raphson algorithm

F:ia¢ isimposed at time + At. The principal unknown is the gradient
Vuj, A, of the periodic fluctuation of the displacement. This gradis deter-
mined by imposing thatr., . is in equilibrium.

Let =*, f* and (u*)’ denote the iterates approximatimg, A¢, f;, o, and
(OIUNE
lteratei: V(u*)"~! being known :

(1) Computefi~! andxi~!

FTUX) = Fryoag + V() (X), 71(X) = g—%x, FUX)). (1D)



Check ifxi~1 is in equilibrium. If not, then

(2) Solve the linear tangent problem for the periodic fielhu*)

d?w

a—f2(fi_1) :V(u*) : Vo) = —(n'71 . Vo) VYo # (12)

{

(3) UpdateV(u*)’: V(u*)(X) = V(u*) 1 X) + V(du*)(X).
The criterion which serves to check equilibrium reads :

mgx]é’.%i(é')] < ¢|7"(0)|, where typically = 10~%.

The problem (12) is solved iteratively using the FFT methedatibed in
section 2. More specifically an internal loop is performedind V (6u*)(X)

V((S’U;*)k — V((Su*)k—l o f\o * (Li—l . V((Su*)k—l + 7Ti_1>, (13)

9w

= a—f?(X’ Fi1(X)). I is defined in Fourier space as

whereL~1(X)

I0ikn = Nik&inl iy m)

where the symboj;;(;,) denotes symmetrization with respect to the indices
i,k andj, h only.

3.2 Example: fiber-reinforced elastomer

The above algorithm has been applied to model the deformatfian elas-
tomeric matrix reinforced by stiff fibers. In its initial cfiguration the unit
cellwas a square containing 64 circular identical impeabte fibers, witi25%
volume fraction, arranged randomly in the unit cell. The nvaaind the fibers
were compressible Mooney-Rivlin materials with strain rgye

wif) =5 =8 —plnj+ 5 (=1, it = (" £.5), j = det . (14)
The fibers were 10 times stiffer than the matrix. 10 differenhfigurations
were tested. The macroscopic deformation was a biaxiahmoc deformation
F =exp (El) e ®e;+exp (—El) es® e+ e3® ez, where the logarithmic
strain in thefirst directio’; was negative (contraction in direction 1, extension
in direction 2).

The deformed states of a typical configuration are shown mréidl. The
stress-strain response of all 10 different configuratiores shown in Figure
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Figure 1.  Hyperelastic matrix reinforced by 64 circular fibers. (aiitial configuration.
(b)-(f): successive deformed states for different valueshe macroscopic logarithmic strain
E1 =In F11.
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Figure 2. Macroscopic stress-strain curves. First Piola-Kirchlsofess as a function of the
logarithmic strain in direction 1. 10 different configuratis. Comparison between the FFT
simulations and the second order estimate (SOE) with therddashin-Shtrikman estimate.



2. They are seen to be very close to one another. Also showrgur& 2
is the prediction of the second-order estimate (SOE) of Bd@astéieda [9]
implemented with the Hashin-Shtrikman estimate (lower rosbufor circular
fibersin a matrix. As can be seen from this figure, the agre¢rnetiveen the
theory and the numerical calculations is excellent.

4, Eulerian formulation
4.1 Local problem

We now turn to the case where the constitutive relations efddnstituents
can be expressed by means of quantities defined on the curoafiguration
only, the Cauchy stress and the Eulerian strain-ratéfor instance. This is
the case for Newtonian fluids for which the constitutive telas read

o(x) = L(x): d(x), (15)

and more generally for viscous materials when elasticifgce$ are neglected
(the case of power-law viscous materials is considered rebheohn [10]). For
simplicity we restrict our attention to Newtonian fluids assdribed by (15).

The geometry of the r.v.e. evolves with time in two ways. Fiise unit
vectorsY; defining the unit cell are convected by the macroscopic Wsloc
gradient:

Yit) = (gradv(t)).Y (). (16)

Second, the position of the phases within the r.v.e. chamg@stime, the
material particles being convected by the microscopicargdield:

z(t) = v(x,t) (17)

The local problem to be solved in the Eulerian configurationsists of the
constitutive relations, together with the equilibrium aoampatibility equa-
tions. At each time the local problem on the current configuration can be
solved usingthe FFT method described in section 2. It restirsee how the
unit cell changes with time.

4.2 A Multi-Particle Method

The two grids. The proposed method falls in the category of multi-particle
methods and follows rather closely the Particle-In-Cell§Pmethod proposed
by Sulsky, Chen and Schreyer [11, 12], with a difference shémg from the
updating of the computational grid (the method proposed blydnsohn [10]
is also similar in spirit). The underlying idea of the PIC med is to consider
two separate grids:



- The computational grids used for applying the FFT method described
in section 2. It is a regular grid but it does not have to beaagular
(Fourier transforms can be defined on noncubic lattices).

- The material gridis attached to the material particles. It does not have
to be structured or regular and can be seen as a collectioaroicges,
rather than as a structured mesh. It is only used to applydhstdutive
relations (which are material relations). In the FFT methitots used
in real space only. In most methods the material grid is firnant the
computational one (by a factor of 4t0 9).

Each grid carries its own set of unknowns. In other words,

- the computational grid carries unknowns labelled withdeoscriptc (as
in domputations) ;")) = (i — 1)Y'; + (j — 1)Y» denote the nodes
of the computational gridg ., v. denote the stress and velocity fields at
these nodes.

- the material grid carries unknowns labelled with loweigtr (as in
particles): x, denote the location of the particles,, v, denote the
stress and velocity field at the particles.

Figure 3.  Top row: initial grids. Left: the computationaligr Center: the material grid.
Right: both grids superimposed. Bottom row: convectedgrid

4.3 Updating the grids

Intheinitial PIC method ([11, 12]), the computational gisdixed. However
in the problem under consideration here the computationidlig associated



with the unit cell which generates the whole microstructhiygeriodicity and
cannot remain fixed. The unit vecto$; defining the periodic lattice are
material vectors and follow theacroscopicvelocity field according to (16).
The computational grid is updated accordingly. The matenia is updated
using themicrosocopicovelocity field according to (17).

Thegridsare updated using an explicit scheme. At tigpéhe velocity fields
v.(t,) is computed on the computational grid and transferred (s&®wW) onto
the material grid to get a field,(¢,). Then:

Yi(tn—i-l) = Yl(tn) + At(gradvc(tn)>.Yi(t),
Ze(tn1) = (i — DY 1(tnt1) + (G — DY 2(tn+1), (18)
Tp(tnt1) = zp(ty) + At vy(xp(ty)).

Transfer operators.  Transfer operators are needed in order to transfer in-

formation from the computational grid to the material gritdavice-versa De-

vising consistent transfer operators is certainly a cryzat of the algorithm.
Consider a computational grid with an initially rectangufaattern. In the

initial configuration the grid nodes have coordinat@s- 1)Axg, (7 — 1)Ayp).

In the current configuration the grid nodes have coordinétg;, yﬁj)' Let

us introduce a family of shape functio®&"/),i = 1,....,1,j = 1,...,J (as

is classical in the FEM) on the computational grid, whér@nd J denote the

number of samplingpointson thehorizontaland verticad éfar the initial grid)

respectively. Given the regular geometry of the computediagrid a natural

choice for theN (%) are the interpolation functions of the 4 point quadrilatera

element in the FEM (these functions were used in the exampsemted in

section 4.4). Then, given the valuﬁé’j) = f(x.(i,j) ofany functionf at the
computational nodes, the interpolated field at any othentpeiread as
I,J
f@= Y N (@) (19)
(4,5)=(1,1)
These relations apply in particular at the particle posisio,,.
The inverse transfer from the material grid to the computraai grid is per-

formed usingthe same interpolation functions. Each pkrisassigned a mass
m,, and the mass of a computational node is defined as

P
m(ax{9)) = Z mpN(i’j)(xp) (20)
p=1
Then the valueg. of f at any computational node. is given by :
1 P
fc(mgi’j)) = TG Z mpN(i’j)(mp)fp(mp) (21)



4.4 A test example

Tochecktheaccuracy ofthe updating scheme, the problemigitbparticle
rotatingin a shear fl ow of a newtonian fl uid with uniform andstant viscosity
has been investigated. The fluid is subjected to a macrosfapyv with strain-
rateD and rotation-rat&. Inertia effects are neglected. The solution (rotation
ofthe particle) for a spheroidal particle with infinitesitwalume fractionc®) in
an incompressible newtonian fluid goes back to Jeffery [A3jeneralization
of Jeffery’s result, also applying to compressible fluidslamscous particles,
can also be derived by means of Eshelby’s result for ellgislanclusions. This
derivation will not be given here. For a rigid particle thekuion equation for
a unit normal vectom attached to the particle is

%:wau, Ww=Q-T:81:D, (22)

whereS andII are the two Eshelby tensors of the particle in the matrixrgivi
respectively the deformation-rate in the inclusion andhtetotation-rate ofthe
inclusion.
This general three-dimensional solution can be spec@linedimension 2.
Theresult is
du

T Qu+ B(Du— (u.D.u)u), (23)

with B = (r2 - 1)/ (7“2 +1+ 27“%) wherer is the aspect-ratio of the

particle andv is the P oisson ratio of the linearly viscous matrix.

2.0
X2 1.8} — Theory
/N 1.6t —- FFT
o 141 e Lattice =
Vv - &ié T
Xy 0.8 y
/ _ 06 4
— 02} /o
0.0 £
0.0 05 1.0 1.5 2.0 25 3.0 3.5 4.0

gl

Figure 4.  Particle rotating in a shear fl ow.



In a shear flow,
r1(t) = X1 +79(H) X2, x2(t) = Xo, (24)

(23) gives the the rotation of the unit normal vectoe= sin pe; + cos pes in
the form : .
do _ 7
e 2
which can be integrated into

1+ B(cos? ¢ — sin? ©)], (25)

- ) thr =,/ T8
©(t) = ¢(0) +Arctg<Rtg<R+ 1/R>> , WithR = 5 (26)
A numerical simulation of the rotation of a particle in a shéaw has been
conducted using the method described in section 4.2 witHdlleeving data

r=3, v=0499, » =0.3%. (27)

The comparison between the analytical and the numericaltes good as
shown in Figure 4 b. Also shown in this figure is the latticeatadon. As can be
seen the particle rotates faster than the lattice.

5. Concluding remarks

Two extensionstofinite strains ofthe numerical method dasdg-ast Fourier
Transforms ([1, 2]) have been proposed and test examplesithean analyzed.
A few numerical issues deserve attention in future work:

= In the Lagrangian approach presented in section 3, the fatenver-
gence ofthe iterative FFT algorithm applied to the tangemibpem (13)
can berather poor. Thisis probably due to the fact that tingeat op-
erator is only strongly elliptic (and not very strongly pllic) and highly
contrasted. An accelerated scheme would be very helpful.

= In the Eulerian approach presented in section 4, considtr@msfer op-
erators between the computational grid and the materidl @re to be
found.
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