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ANALYSIS OF INHOMOGENEOUS MATERIALS AT LARGE STRAINS USING FAST FOURIER TRANSFORMS

Introduction

Every mat erial is nat urally inhomogeneous at a small enough scale. T he aim of hom ogenizat ion is t o replace a microscopically inhomogeneous mat erial by a macroscopically homogeneous medium, t he propert ies of which are t he effect ive propert ies of t he init ial inhomogeneous mat erial. However, nonlinear phenomenas such as fat igue or rupt ure are oft en t riggered by local st ress or st rain concent rat ions at small scale. T herefore, besides effect ive propert ies, it is also essent ial t o invest igat e how local fields are infl uenced by, and infl uence in t urn, t he microst ruct ure of a mat erial.

P recise det erminat ion or accurat e est imat ion of local fields may involve considerable comput at ional effort s. Direct numerical simulat ions of composit es wit h periodic microst ruct ures have been performed by t he Finit e Element Met hod (FEM) since t he early sevent ies, but despit e numerous achievement s, t he applicat ion of t his met hod t o t hree-dimensional problems is st ill limit ed by t he complexit y of meshes. T he need for invest igat ing mat erials wit h complex microst ruct ure wit hout meshing provided a first mot ivat ion for developing a new comput at ional met hod, specifically devised for microst ruct ures, which could make direct use of images of microst ruct ures, as delivered by Scanning Elect ron Microscopy or Comput ed Tomography ( [START_REF] Moulinec | A fast numerical met hod for comput ing t he linear and nonlinear propert ies of composit es[END_REF] [2] [START_REF] Michel | Effect ive propert ies of composit e mat erials wit h periodic microst ruct ure: a comput at ional approach[END_REF]).

A second mot ivat ion for developing a met hod capable of simulat ing easily t he response of different microst ruct ures st ems from t he recent t heoret ical models of t he effect ive propert ies of nonlinear composit es (see t he review art icle P ont e Cast a ñeda and Suquet [START_REF] Castañeda | Nonlinear composit es[END_REF] and t he references herein). Direct comparison of t hese models wit h experiment al dat a is oft en difficult , in t hat many different phenomena may occur simult aneously in t he nonlinear regime (plast icit y but also damage, int erphase debonding, grain boundary sliding...). A comparison wit h numerical simulat ions, alt hough only a st ep t owards a complet e validat ion, permit s t o " act ivat e"all nonlinear mechanisms independent ly.

2.

Solving a periodic elasticity problem with the FFT As a reminder for readers who are not familiar wit h t he FFT met hod, t he case of linear elast icit y at small st rains is discussed first . T he microst ruct ure of t he composit e mat erial is described by a represent at ive volum e elem ent (r.v.e.) V comprised of N homogeneous phases. T he N individual const it uent s are linear elast ic, wit h st iffness c(x) and perfect ly bonded accross t heir int erfaces. T he volume element is subject ed t o an average st rain E and t he local problem t o be solved for t he local st ress and st rain fields reads as

σ(x) = c(x) : ε(u(x)), div (σ(x)) = 0, ε = E, (1) 
where . denot es t he spat ial average over V . T he boundary condit ions applied on ∂V should reproduce as closely as possible t he in sit u st at e of t he r.v.e.

T his st at e is very seldomly known and periodicit y condit ions are assumed t o close t he problem : t he local st rain field is decomposed int o it s average and a periodic fl uct uat ion ε(u(x)) = E + ε(u * (x)) where u * is periodic (not at ion u * #). T he t ensions σ.n t ake opposit e values on oppposit e sides of t he r.v.e.

(not at ion σ.n -#). T he reader is referred t o Suquet [START_REF] Suquet | Element s of Homogenizat ion for Inelast ic Solid Mechanics[END_REF] for more det ails about periodicit y condit ions.

T he local problem (1) can be re-writ t en by int roducing a homogeneous reference mat erial wit h elast ic st iffness c 0 :

σ(x) = c 0 : ε(u * (x)) + τ (x), div (σ(x)) = 0, u * #, σ.n -#, (2) 
where t he polarizat ion field τ (x) is given by :

τ (x) = δc(x) : (ε(u * (x)) + E) + c 0 : E, δc(x) = c(x) -c 0 . (3)
T he solut ion of problem (2) can be expressed by means of t he periodic Green's operat or associat ed wit h t he elast icit y t ensor c 0 and reads, in real space and Fourier space respect ively :

ε(u * (x)) = -Γ 0 * τ (x), ε * (ξ) = - Γ0 (ξ) : τ (ξ) ∀ξ = 0, ε * (0) = 0.
Aft er subst it ut ing back t he expression (3) of τ in t his relat ion, t he init ial local problem (1) reduces t o t he periodic Lippm ann-Schwinger int egral equat ion for ε(u) which reads, in real space:

ε(u(x)) = -Γ 0 * (δc(x) : ε(u(x))) + E. (4) 
T he operat or Γ 0 is explicit ely known in Fourier space for arbit rary anisot ropy of t he reference medium:

Γ0 ijkh = N 0 ik ξ j ξ h | (ijkh) , K 0 ik = c 0 ijkh ξ j ξ h , , N 0 = K 0 -1 , (5) 
where t he symbol (ijkh) denot es symmet rizat ion wit h respect t o t he four indices (ijkh) result ing in minor and major symmet ries for Γ0 . Specific expressions for Γ 0 can be found in Mura [START_REF] Mura | Microm echanics of Defect s in Solids[END_REF] for different classes of anisot ropy of t he reference medium.

T he int egral equat ion ( 4) is solved by a fixed-point met hod :

ε(u i+1 ) = -Γ 0 * δc : ε(u i ) + E. (6) 
T his algorit hm can be furt her simplified by not ing t hat Γ 0 * (c 0 : ε) = ε(u * ) and t he it erat ive met hod reads

ε(u i+1 ) = ε(u i ) -Γ 0 * σ i , σ i (x) = c(x) : ε(u i (x)). (7) 
T he i + 1-t h it erat e of t he numerical algorit hm t ypically reads :

ε i and σ i being known a) σi = FT(σ i ), b) Convergence t est , c) εi+1 (ξ) = εi (ξ) - Γ0 (ξ) : σi (ξ) ∀ξ = 0 and εi+1 (0) = E, d) ε i+1 = FT -1 (ε i+1 ) e) σ i+1 (x) = c(x) : ε i+1 (x), ∀ x ∈ V.                (8) 
FT st ands for t he Fourier t ransform. Convergence is reached when σ i+1 is in equilibrium.

In pract ice t he microst ruct ure is given in t he form of an image, consist ing of pixels (or voxels in dimension t hree) of a given size. T he spat ial resolut ion of t he image is t he number of pixels along each coordinat e axis. T he image sampling in real space generat es a corresponding sampling in Fourier space. T he algorit hm ( 8) is implement ed in discret ized form , t he FT being replaced by t he Fast Fourier Transform (FFT ) at t ached t o t he above sampling in real and Fourier space ( [START_REF] Moulinec | A numerical met hod for comput ing t he overall response of nonlinear composit es wit h complex microst ruct ure[END_REF]).

T he FFT met hod can be used in most problems where t he FEM is used, provided t hat periodicit y condit ions can be adopt ed for t he problem at hand. Ext ensions of t he met hod t o plast icit y wit h or wit hout hardening, t o viscoplast icit y, t o phase t ransformat ion were given in [START_REF] Moulinec | A numerical met hod for comput ing t he overall response of nonlinear composit es wit h complex microst ruct ure[END_REF] [7] [START_REF] Dreyer | A st udy of t he coarsening in P b/ Sn solders[END_REF] in t he cont ext of infinit esimal st rains. T he next sect ions are concerned wit h t he ext ension of t he met hod t o large st rains.

3.

Hyperelastic materials

Consider now t he case where t he deformat ions applied t o t he composit e mat erial are large. T he shape of t he r.v.e. V evolves wit h t ime and classically t wo configurat ions play a part icular role, t he init ial configurat ion V 0 and t he current configurat ion V (t). When t he individual const it uent s are hyperelast ic a Lagrangian formulat ion can be adopt ed and t he local problem can be posed on t he init ial configurat ion V 0 only. A part icle which was init ially at point X moves t o a locat ion x = x(X, t) = X + u(X, t) at t ime t. T he deformat ion gradient and t he first P iola-Kirchhoff st ress t ensor π are relat ed by:

f = I + ∇ X u(X, t), π(X) = ∂w ∂f (X, f ), (9) 
where w(X, .) is t he st rain energy at point X. T he average gradient F of t he t ransformat ion is applied increment ally along a prescribed pat h in t he loading space. T his pat h is paramet rized by a scalar variable t. T he local problem t o be solved reads :

π(X) = ∂w ∂f (X, f ), div X π = 0 in V 0 , f (X) = F + ∇ X u * , u * #, π.N -# on ∂V 0      (10) 
where N denot es t he out er normal unit vect or t o ∂V 0 . T he local problem (10) is similar t o (2). It is posed on a fixed configurat ion which allows us t o use t he FFT met hod wit h fixed grids in real space and Fourier space. T he const it ut ive relat ions are nonlinear and t he whole gradient f (and not only it s symmet ric part ) are t aken int o account int o [START_REF] Lebensohn | N-sit e modelling of a 3d viscoplast ic polycryst al using Fast Fourier T ransforms[END_REF]. T he problem [START_REF] Lebensohn | N-sit e modelling of a 3d viscoplast ic polycryst al using Fast Fourier T ransforms[END_REF] is solved st ep-by-st ep in t ime, wit h a Newt on-Raphson algorit hm at each t ime st ep.

Newton-Raphson algorithm

F t+∆t is imposed at t ime t + ∆t. T he principal unknown is t he gradient ∇u * t+∆t of t he periodic fl uct uat ion of t he displacement . T his gradient is det ermined by imposing t hat π t+∆t is in equilibrium.

Let π i , f i and (u * ) i denot e t he it erat es approximat ing π t+∆t , f t+∆t and u * t+∆t .

It erat e i: ∇(u * ) i-1 being known :

(1) Comput e f i-1 and π i-

1 f i-1 (X) = F t+∆t + ∇(u * ) i-1 (X), π i-1 (X) = ∂w ∂f (X, f i-1 (X)). ( 11 
)
Check if π i-1 is in equilibrium. If not , t hen

(2) Solve t he linear t angent problem for t he periodic field ∇(δu * )

∂ 2 w ∂f 2 (f i-1 ) : ∇(δu * ) : ∇v = -π i-1 : ∇v ∀v #. (12) 
(3) Updat e ∇(u

* ) i : ∇(u * ) i (X) = ∇(u * ) i-1 (X) + ∇(δu * )(X).
T he crit erion which serves t o check equilibrium reads :

max ξ |ξ. π i (ξ)| ≤ ε| π i (0)|, where t ypicallyε = 10 -4 .
T he problem ( 12) is solved it erat ively using t he FFT met hod described in sect ion 2. More specifically an int ernal loop is performed t o find ∇(δu * )(X)

∇(δu * ) k = ∇(δu * ) k-1 - Γ0 * L i-1 : ∇(δu * ) k-1 + π i-1 , (13) 
where

L i-1 (X) = ∂ 2 w ∂f 2 (X, f i-1 (X)).
Γ0 is defined in Fourier space as

Γ0 ijkh = N 0 ik ξ j ξ h | (ik)(jh) ,
where t he symbol (ik)(jh) denot es symmet rizat ion wit h respect t o t he indices i, k and j, h only.

Example: fiber-reinforced elastomer

T he above algorit hm has been applied t o model t he deformat ion of an elast omeric mat rix reinforced by st iff fibers. In it s init ial configurat ion t he unit cell was a square cont aining 64 circular ident ical impenet rable fibers, wit h 25% volume fract ion, arranged randomly in t he unit cell. T he mat rix and t he fibers were compressible Mooney-Rivlin mat erials wit h st rain energy :

w(f ) = µ 2 (i 1 -3) -µ ln j + κ 2 (j -1) 2 , i 1 = tr( T f .f ), j = det f . ( 14 
)
T he fibers were 10 t imes st iffer t han t he mat rix. 10 different configurat ions were t est ed. T he macroscopic deformat ion was a biaxial isochoric deformat ion F = exp (E 1 ) e 1 ⊗ e 1 + exp (-E 1 ) e 2 ⊗ e 2 + e 3 ⊗ e 3 , where t he logarit hmic st rain in t he first direct ion E 1 was negat ive (cont ract ion in direct ion 1, ext ension in direct ion 2). T he deformed st at es of a t ypical configurat ion are shown in figure 1. T he st ress-st rain response of all 10 different configurat ions are shown in Figure E1 = Macroscopic st ress-st rain curves. First P iola-Kirchhoff st ress as a funct ion of t he logarit hmic st rain in direct ion 1. 10 different configurat ions. Comparison bet ween t he FFT simulat ions and t he second order est imat e (SOE) wit h t he lower Hashin-Sht rikman est imat e.

2. T hey are seen t o be very close t o one anot her. Also shown in Figure 2 is t he predict ion of t he second-order est imat e (SOE) of P ont e Cast a ñeda [START_REF] Castañeda | A second-order homogenizat ion met hod in finit e elast icit y and applicat ions t o black-filled elast omers[END_REF] implement ed wit h t he Hashin-Sht rikman est imat e (lower bound) for circular fibers in a mat rix. As can be seen from t his figure, t he agreement bet ween t he t heory and t he numerical calculat ions is excellent .

4.

Eulerian formulation

Local problem

We now t urn t o t he case where t he const it ut ive relat ions of t he const it uent s can be expressed by means of quant it ies defined on t he current configurat ion only, t he Cauchy st ress σ and t he Eulerian st rain-rat e d for inst ance. T his is t he case for Newt onian fl uids for which t he const it ut ive relat ions read

σ(x) = L(x) : d(x), (15) 
and more generally for viscous mat erials when elast icit y effect s are neglect ed (t he case of power-law viscous mat erials is considered in Lebensohn [START_REF] Lebensohn | N-sit e modelling of a 3d viscoplast ic polycryst al using Fast Fourier T ransforms[END_REF]). For simplicit y we rest rict our at t ent ion t o Newt onian fl uids as described by (15). T he geomet ry of t he r.v.e. evolves wit h t ime in t wo ways. First t he unit vect ors Y i defining t he unit cell are convect ed by t he macroscopic velocit y gradient :

Ẏ i (t) = grad v(t) .Y i (t). ( 16 
)
Second, t he posit ion of t he phases wit hin t he r.v.e. changes wit h t ime, t he mat erial part icles being convect ed by t he microscopic velocit y field:

ẋ(t) = v(x, t) (17) 
T he local problem t o be solved in t he Eulerian configurat ion consist s of t he const it ut ive relat ions, t oget her wit h t he equilibrium and compat ibilit y equat ions. At each t ime t t he local problem on t he current configurat ion can be solved using t he FFT met hod described in sect ion 2. It remains t o see how t he unit cell changes wit h t ime.

A Multi-Particle Method

The two grids. T he proposed met hod falls in t he cat egory of mult i-part icle met hods and follows rat her closely t he P art icle-In-Cell (P IC) met hod proposed by Sulsky, Chen and Schreyer [START_REF] Sulsky | A part icle met hod for hist ory-dependent mat erials. Com p. Met hods[END_REF][START_REF] Sulsky | Applicat ion of a part icle-in-cell met hods t o solid mechanics[END_REF], wit h a difference st emming from t he updat ing of t he comput at ional grid (t he met hod proposed by Lebensohn [10] is also similar in spirit ). T he underlying idea of t he P IC met hod is t o consider t wo separat e grids:

-T he com put at ional grid is used for applying t he FFT met hod described in sect ion 2. It is a regular grid but it does not have t o be rect angular (Fourier t ransforms can be defined on noncubic lat t ices).

-T he m at erial grid is at t ached t o t he mat erial part icles. It does not have t o be st ruct ured or regular and can be seen as a collect ion of part icles, rat her t han as a st ruct ured mesh. It is only used t o apply t he const it ut ive relat ions (which are mat erial relat ions). In t he FFT met hod it is used in real space only. In most met hods t he mat erial grid is finer t han t he comput at ional one (by a fact or of 4 t o 9).

Each grid carries it s own set of unknowns. In ot her words, -t he comput at ional grid carries unknowns labelled wit h lowerscript c (as in " comput at ions" ) :

x (i,j) c = (i -1)Y 1 + (j -1)
Y 2 denot e t he nodes of t he comput at ional grid, σ c , v c denot e t he st ress and velocit y fields at t hese nodes.

-t he mat erial grid carries unknowns labelled wit h lowerscript p (as in " part icles" ): x p denot e t he locat ion of t he part icles, σ p , v p denot e t he st ress and velocit y field at t he part icles. 

Updating the grids

In t he init ial P IC met hod ( [START_REF] Sulsky | A part icle met hod for hist ory-dependent mat erials. Com p. Met hods[END_REF][START_REF] Sulsky | Applicat ion of a part icle-in-cell met hods t o solid mechanics[END_REF]), t he comput at ional grid is fixed. However in t he problem under considerat ion here t he comput at ional grid is associat ed wit h t he unit cell which generat es t he whole microst ruct ure by periodicit y and cannot remain fixed. T he unit vect ors Y i defining t he periodic lat t ice are mat erial vect ors and follow t he m acroscopic velocit y field according t o (16). T he comput at ional grid is updat ed accordingly. T he mat erial grid is updat ed using t he m icrosocopic velocit y field according t o (17).

T he grids are updat ed using an explicit scheme. At t ime t n , t he velocit y fields v c (t n ) is comput ed on t he comput at ional grid and t ransferred (see below) ont o t he mat erial grid t o get a field v p (t n ). T hen :

Y i (t n+1 ) = Y i (t n ) + ∆t grad v c (t n ) .Y i (t), x c (t n+1 ) = (i -1)Y 1 (t n+1 ) + (j -1)Y 2 (t n+1 ), x p (t n+1 ) = x p (t n ) + ∆t v p (x p (t n )).    ( 18 
)
Transfer operators. Transfer operat ors are needed in order t o t ransfer informat ion from t he comput at ional grid t o t he mat erial grid and vice-versa. Devising consist ent t ransfer operat ors is cert ainly a crucial part of t he algorit hm.

Consider a comput at ional grid wit h an init ially rect angular pat t ern. In t he init ial configurat ion t he grid nodes have coordinat es ((i -1)∆x 0 , (j -1)∆y 0 ). In t he current configurat ion t he grid nodes have coordinat es (x c i,j , y c i,j ). Let us int roduce a family of shape funct ions N (i,j) , i = 1, ..., I, j = 1, ..., J (as is classical in t he FEM) on t he comput at ional grid, where I and J denot e t he number of sampling point s on t he horizont al and vert ical axis (for t he init ial grid) respect ively. Given t he regular geomet ry of t he comput at ional grid a nat ural choice for t he N (i,j) are t he int erpolat ion funct ions of t he 4 point quadrilat eral element in t he FEM (t hese funct ions were used in t he example present ed in sect ion 4.4). T hen, given t he values f (i,j) c = f (x c (i, j) of any funct ion f at t he comput at ional nodes, t he int erpolat ed field at any ot her point x read as

f (x) = I,J (i,j)=(1,1) N (i,j) (x)f (i,j) c . (19) 
T hese relat ions apply in part icular at t he part icle posit ions x p . T he inverse t ransfer from t he mat erial grid t o t he comput at ional grid is performed using t he same int erpolat ion funct ions. Each part icle is assigned a mass m p and t he mass of a comput at ional node is defined as

m(x (i,j) c ) = P p=1 m p N (i,j) (x p ) (20) 
T hen t he values f c of f at any comput at ional node x c is given by :

f c (x (i,j) c ) = 1 m(x (i,j) c ) P p=1 m p N (i,j) (x p )f p (x p ) (21) 

A test example

To check t he accuracy of t he updat ing scheme, t he problem of a rigid part icle rot at ing in a shear fl ow of a newt onian fl uid wit h uniform and const ant viscosit y has been invest igat ed. T he fl uid is subject ed t o a macroscopic fl ow wit h st rainrat e D and rot at ion-rat e Ω. Inert ia effect s are neglect ed. T he solut ion (rot at ion of t he part icle) for a spheroidal part icle wit h infinit esimal volume fract ion c (p) in an incompressible newt onian fl uid goes back t o J effery [START_REF] Jeffery | T he mot ion of ellipsoidal part icles immersed in a viscous fl uid[END_REF]. A generalizat ion of J effery's result , also applying t o compressible fl uids and viscous part icles, can also be derived by means of Eshelby's result for ellipsoidal inclusions. T his derivat ion will not be given here. For a rigid part icle t he evolut ion equat ion for a unit normal vect or u at t ached t o t he part icle is

du dt = ω I .u, ω I = Ω -Π : S -1 : D, (22) 
where S and Π are t he t wo Eshelby t ensors of t he part icle in t he mat rix giving respect ively t he deformat ion-rat e in t he inclusion and t o t he rot at ion-rat e of t he inclusion.

T his general t hree-dimensional solut ion can be specialized t o dimension 2. T he result is

du dt = Ω.u + B (D.u -(u.D.u)u) , (23) 
wit h B = (r 2 -1)/ r 2 + 1 + 2r 1-2ν 2(1-ν) where r is t he aspect -rat io of t he part icle and ν is t he P oisson rat io of t he linearly viscous mat rix. In a shear fl ow,

x 1 (t) = X 1 + γ(t)X 2 , x 2 (t) = X 2 , (24) 
(23) gives t he t he rot at ion of t he unit normal vect or u = sin ϕe 1 + cos ϕe 2 in t he form :

dϕ dt = γ 2 1 + B(cos 2 ϕ -sin 2 ϕ) , (25) 
which can be int egrat ed int o

ϕ(t) = ϕ(0) + Arct g R t g γ(t) R + 1/R , wit h R = 1 + B 1 -B . (26) 
A numerical simulat ion of t he rot at ion of a part icle in a shear fl ow has been conduct ed using t he met hod described in sect ion 4.2 wit h t he following dat a r = 3, ν = 0.499, c (p) = 0.3%.

T he comparison bet ween t he analyt ical and t he numerical result s is good as shown in Figure 4 b. Also shown in t his figure is t he lat t ice rot at ion. As can be seen t he part icle rot at es fast er t han t he lat t ice.

Concluding remarks

Two ext ensions t o finit e st rains of t he numerical met hod based on Fast Fourier Transforms ( [START_REF] Moulinec | A fast numerical met hod for comput ing t he linear and nonlinear propert ies of composit es[END_REF][START_REF] Moulinec | A numerical met hod for comput ing t he overall response of nonlinear composit es wit h complex microst ruct ure[END_REF]) have been proposed and t est examples have been analyzed. A few numerical issues deserve at t ent ion in fut ure work:

In t he Lagrangian approach present ed in sect ion 3, t he rat e of convergence of t he it erat ive FFT algorit hm applied t o t he t angent problem (13) can be rat her poor. T his is probably due t o t he fact t hat t he t angent operat or is only st rongly ellipt ic (and not very st rongly ellipt ic) and highly cont rast ed. An accelerat ed scheme would be very helpful.

In t he Eulerian approach present ed in sect ion 4, consist ent t ransfer operat ors bet ween t he comput at ional grid and t he mat erial grid are t o be found.

Figure 1 .

 1 Figure 1. Hyperelast ic mat rix reinforced by 64 circular fibers. (a): init ial configurat ion. (b)-(f): successive deformed st at es for different values of t he macroscopic logarit hmic st rain E1 = ln F11.

Figure 2 .

 2 Figure 2.Macroscopic st ress-st rain curves. First P iola-Kirchhoff st ress as a funct ion of t he logarit hmic st rain in direct ion 1. 10 different configurat ions. Comparison bet ween t he FFT simulat ions and t he second order est imat e (SOE) wit h t he lower Hashin-Sht rikman est imat e.

Figure 3 .

 3 Figure 3.Top row: init ial grids. Left : t he com put at ional grid. Cent er: t he m at erial grid. R ight : bot h grids superim posed. Bot t om row: convect ed grids.

Figure 4 .

 4 Figure 4. Part icle rot at ing in a shear fl ow.
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