
HAL Id: hal-00096962
https://hal.science/hal-00096962v1

Submitted on 20 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMCA: an Active-based Multicast Congestion
Avoidance Algorithm

Moufida Maimour, Cong-Duc Pham

To cite this version:
Moufida Maimour, Cong-Duc Pham. AMCA: an Active-based Multicast Congestion Avoidance Algo-
rithm. 2003, pp.1. �hal-00096962�

https://hal.science/hal-00096962v1
https://hal.archives-ouvertes.fr

AMCA: an Active-based Multicast Congestion Avoidance Algorithm

M. Maimour and C. D. Pham
RESO/LIP - ENS, 46 alle d’Italie 69364 Lyon Cedex 07 - France

email:
�
mmaimour,cpham � @ens-lyon.fr

Abstract

Many works have recently addressed the issue of con-
gestion control for multicast communications and the prob-
lem is known to be highly complex. Scalability, responsive-
ness, stability and fairness with TCP are some of the re-
quired properties. In this paper, we present a congestion
avoidance scheme for bulk data distribution called AMCA
(Active-based Multicast Congestion Avoidance algorithm)
that tries to meet these properties. We use the active net-
working technology to perform on a per-section dialogue
to probe for available bandwidth along a multicast tree.
The solution uses the RTT variations experienced by every
branch to estimate the congestion situation in the multicast
tree. The physical multicast tree is also used to appropri-
ately aggregate the RTT variations at intermediate nodes
before they reach the source. Simulations show that AMCA
converges, makes use of the available bandwidth and reacts
rapidly to dynamic changes while being TCP-fair.

1. Introduction

A first congestion control algorithm known as TCP
Tahoe has been proposed by Jacobson [9] after a series
of congestion collapses experienced in 1986. Since then,
several variants have been implemented. TCP’s conges-
tion control is an efficient mechanism for unicast commu-
nications in the Internet. However, when a sender has to
send the same information to more than one receiver, uni-
cast becomes inefficient and the use of multicast is a bet-
ter solution. In this case, congestion control is much more
difficult than unicast because of the presence of multiple
receivers with different end-to-end paths that could share
some branches in the multicast tree.

One early solution requires every receiver to send its own
feedback to the source. In order to be scalable, feedback
suppression and/or aggregation must be performed. How-
ever, feedback suppression could yield to a lack of informa-
tion at the sender making it very unresponsive to congestion
variations. Moreover, inadequate suppression/aggregation

of feedbacks is likely to cause the drop-to-zero problem
[17] where the sender’s estimate of the loss rate is much
greater than the actual loss rate experienced at every single
receiver. A main issue of a congestion control algorithm
is how, where and when such feedbacks have to be sup-
pressed and/or aggregated. Motivated by the stochastic na-
ture of loss events especially in a multicast Internet group,
RLA [19] uses a probabilistic approach to suppress feed-
backs. The sender reacts to a congestion indication with
probability ����� where � is the estimated number of the
most congested receivers. In this way, the sender responds
according to the average instead of the maximum loss rate
experienced by the receivers. In LTRC [14], receivers esti-
mate their average loss rates and feed it back to the source
piggybacked on NACKs. The sender tries to react only to
the most congested paths by using a threshold-based mech-
anism. The source would apply a high rate change only for
persistent losses. Moreover, it reacts only to one loss in-
dication in a time period estimated as the time required by
a rate change to take effect in the system. One issue re-
lated to this approach is how to make the tradeoff between
the “drop-to-zero” problem and the responsiveness of the
system. LTRC performs no feedback suppression before
reaching the source therefore it still suffer from feedback
implosion problem. Other approaches deal with this prob-
lem by adopting a feedback suppression combined or not to
an aggregation mechanism. One of these approaches con-
sists in choosing one or more receivers to act as representa-
tives of the whole group. These representatives would send
feedbacks to the source instead of all the receivers do. In
[5], a small set of receivers is dynamically chosen as rep-
resentatives by the sender based on their feedbacks. Rep-
resentatives provide immediate feedback to the source al-
lowing it to adjust the current state of the session. For in-
stance, the source in PGMcc [18] selects one receiver to
act as a representative designated as the “acker” which is
the receiver with the lowest capacity. Afterwards, a closed
TCP-like control loop is run between the sender and this
worst receiver. One concern of a representative approach is
to choose the set of the representatives appropriately so they
reflect the congestion situations. How to select the right size

and the suitable set of representatives needs further investi-
gations. Other schemes deal with the congestion feedback
implosion problem by adopting a hierarchical structure. For
instance, TRAM [4] and MTCP [16] are based on a logical
tree where feedbacks are propagated and aggregated at the
intermediate nodes through the tree structure.

Fairness with other flows and especially with TCP is
required since most of the Internet traffic is transported
by TCP. To be TCP-friendly, congestion control algo-
rithms emulate the behavior of TCP by using a similar
window-based approach (MTCP [16], RLA [19]) or by us-
ing the TCP formula [12, 15]. In a formula-based approach
(TFMCC [20]), information about the packet loss rate and
RTTs are collected, then the TCP formula is used to com-
pute the corresponding rate. The use of the TCP equation is
promising to be TCP fair, provided that the receivers RTTs
and loss rates are known. However measuring accurately
the RTTs and especially the loss rate is a real challenge.

Recently active networks where routers are able to per-
form customized services on the packets flowing through
them, have been exploited to propose more responsive con-
gestion control algorithms. For unicast, ACC (Active Con-
gestion Control) [6] uses active routers to be more respon-
sive to congestion in the network by installing adequate fil-
ters in the routers. For multicast, congestion protocols can
benefit from special features such as feedback aggregation
[10], hierarchical RTT estimation [8], cache of data pack-
ets [1] or the management of multiple groups in case of
layered multicast [21]. In this paper, we propose a con-
gestion avoidance scheme for bulk data distribution called
AMCA standing for Active Multicast Congestion Avoid-
ance. In this study, AMCA has been integrated into the
DyRAM framework [11], but can be applied to any other
active reliable multicast protocol. AMCA is a congestion
avoidance mechanism rather than a control mechanism be-
cause the sender reacts before a loss occurs. AMCA uses
the RTT variation as an estimation of the number of queued
packets as a congestion measure in a similar way TCP Ve-
gas does. However it appeared that TCP Vegas suffers from
path changes which could give erroneous estimation of the
RTTs. To avoid the problem of rerouting paths, we adopt a
hop-by-hop RTT estimation and bandwidth probing. Using
the active networking technology for practical implementa-
tion, a per-section dialogue is performed between adjacent
nodes including the routers. In this context we consider as
a section in a multicast tree, the set of point-to-point links
and traditional routers that connect two active routers or an
active router to a terminal node (a receiver or the source). In
AMCA, a RTT variation is measured for every section. The
different RTT variations are aggregated appropriately so the
source ends up by receiving the overall RTT variation expe-
rienced by the worst end-to-end path of the multicast tree.

Like RMANP [1] and NCA [10], we benefit from the

physical multicast tree to perform congestion feedback ag-
gregation and thus overcome the complexity inherent to
building and maintaining a logical tree structure [3, 16].
The main difference between AMCA (rate-based) and NCA
(window-based) resides in the usage of different congestion
measures. Whereas AMCA uses mainly the RTT variation,
NCA uses both the loss rate (�) and the RTT to determine
the worst receiver. However the loss rate is very difficult
to be estimated on a short period while a sufficiently long
period would make the congestion control unresponsive.
Moreover, when there are no losses, all the receivers, ac-
cording to their adopted measure, are considered to have
the same capacity. Receivers are distinguished among them
only and only if at least one receiver experiences a loss.
This is also the case of RMANP which detects congestion
on packet losses. In our case, the RTT variation measure
in AMCA is able to predict congestion situations even in
the absence of losses. Unlike RMANP, AMCA do not per-
form any cache of data packets in the active routers. We
believe that an active router has to support multiple multi-
cast sessions and caching means are not always available.
The remainder of this paper is organized as follows. An
overview of DyRAM is presented in section 2. In section
3, our congestion avoidance algorithm AMCA is presented.
Simulation results are given in section 4 and section 5 con-
cludes.

2. DyRAM : an Overview

AMCA is targeted to be used in DyRAM, an active re-
liable multicast protocol. Nevertheless, the proposed algo-
rithm can be easily used with any other active reliable mul-
ticast protocol in addition to unicast. This section gives a
brief overview of DyRAM before describing the proposed
congestion avoidance mechanism. For more details about
DyRAM, the reader can refer to [11]. DyRAM is a reli-
able multicast protocol with a recovery strategy based on a
tree structure constructed on a per-packet basis with the as-
sistance of routers. It uses a receiver-based local recovery
where receivers are responsible for both the loss detection
(by sending NACKs upon the detection of losses) and the re-
transmission of repair packets when it is possible. In order
to perform flow and congestion control as well as memory
management in addition to a more efficient replier election,
ACKs are piggybacked on the NACKs. In the absence of
NACKs, ACKs are also periodically piggybacked on special
messages called “Congestion Reports” (CRs). DyRAM is
an active reliable protocol where routers are able to perform
loss detection, NACK suppression, subcast of repairs and
the election of a receiver (replier) to perform data packet
retransmission.

A DyRAM packet contains in its header the multicast
address, the source address and the active service identifier

S@IP D@IP SVC

S@IP D@IP SVC

CR packet

NACK packet

DATA/REPAIR packet

R@IP lo lr

S@IP D@IP SVC MaxSeq

isR Seq MaxSeq Rate Payload

lrloR@IP RTT2S RTT2P RTTvar

SeqRTT2PRTT2SMaxSeq

period

Figure 1. Packets structure.

(�����) to be performed on this packet (see figure 1). A
data packet is uniquely labelled by a sequence number and
contains a dedicated field (���	�) to distinguish an original
transmission from a repair. A data packet contains also the
current emission rate which is mainly useful to be known
by the receivers in order to update timeouts correctly. A
NACK or a CR packet include in addition to their origi-
nator address, their last ordered (
��) and last received (
�)
data packet. Moreover, a receiver will report its RTT to the
source and to its active router using the RTT2S and RTT2P
fields contained in NACK and CR packets. Whereas a
NACK contains the sequence number of the requested data
packet, a CR contains two other fields which are the CR
current period and an aggregated value of the RTT variation
experienced by the subtree from which the CR is received.
For the purpose of flow control, every receiver includes in
the �������	��� field of a CR/NACK (figure 1), the maximum
data packet sequence number that corresponds to its avail-
able buffering means. The ���������	� field in a CR or NACK
packet is used by the source to control the transmission flow.

3. AMCA Description

A good characteristic of a congestion control algorithm
is its ability to probe extra bandwidth in the network. We
show in the following, how by using periodic feedbacks,
we can estimate the available bandwidth in a simple con-
nection. A generalization to the case of a multicast tree will
be provided.

3.1. Probing Extra Bandwidth of a Connection

In this section, we consider the case of a connection with
one queue between a sender and one receiver (figure 2). Let	� be the bottleneck rate of the connection and the trans-
mission rate of the sender in bits/s. An intuitive observation
is that while the transmission rate is less than the bottleneck
rate, the reception rate is equal to the emission rate. The re-
ception rate could not exceed the connection bottleneck rate � even if the emission rate is increased. When the transmis-
sion rate exceeds the bottleneck rate, a queue of packets will
build up through the connection. Let ������� be this queue size
in packets at time � . Let � be the packet size and ��� be the
positive or negative variation in the queue length during a
given time period (figure 2):!#"%$&"('*)�+-,/.10�"('*)�.�$2'*3%04365/.87 9

(1)

:;:;:;:;:;:;:;::;:;:;:;:;:;:;::;:;:;:;:;:;:;:<;<;<;<;<;<;<;<<;<;<;<;<;<;<;<<;<;<;<;<;<;<;< =;=;=;=;=;=;==;=;=;=;=;=;==;=;=;=;=;=;=
>;>;>;>;>;>>;>;>;>;>;>>;>;>;>;>;>

S R
rr
b

q(t+1) q(t)

Figure 2. Queue length variation.
To estimate ��� we can employ a mechanism based on

round trip time variations since a growing up (or the op-
posite case) queue produces an increased (or a decreased)
RTT. The RTT variation �@? can be expressed in terms of��� as follows: !BAC$D!E" 93 5 (2)

which gives: 3 5 $&!E" 9
!#A

Hence, 3/58$-3 77 +F!#A (3)

This gives an expression of the bottleneck rate and is
used by our congestion avoidance algorithm to adjust the
rate so the transmission rate will be the closest to the bot-
tleneck rate. From (1) and (2) we derive the next equation
which gives an expression of ��� as a function of , , �
and ��? : !E"G$ 3 79 !#A!#AH+ 7 (4)

We can easily obtain accurate values for , and � . How-
ever for �@? we have to provide an estimation mechanism.
To do so in such a simple connection, the source could have
an estimation of the RTT variation simply by exploiting
feedbacks information. For instance if we suppose that the
receiver sends an ACK per packet received then the source
can use the difference between the two last experienced
RTTs. The period in this case is � �� � .

The problem when using such a method to probe avail-
able bandwidth appears when we have a session with mul-
tiple links. The path between the sender and the receiver
can change and this would give erroneous results. [13]
pointed out that TCP Vegas suffers from similar situations
since rerouting a path may change the propagation delay
of the connection which could result in a substantial in-
crease/decrease in throughput. To overcome this problem,
we propose to use a per-section bandwidth probing ap-
proach. A section is defined as the set of point-to-point links
and traditional routers that connect two active routers or an
active router to a terminal node (a receiver or the source).
The main concern is to be able to estimate the RTT varia-
tions in a per-section fashion and then how these RTT vari-
ations are aggregated before giving them to the source. To
do so, we have to establish communications between every
node and its neighbor in a connection.

3.2. RTT Estimation

A straightforward solution to estimate the RTTs between
each receiver and the source consists in sending ping mes-
sages periodically from the receivers to the source. This

i

S

1

2

0

i−1

n

n−1

R

n-2

� � � �����
���
	 ����� � � ���� � � �
����	 ����� � � � ��� � � �
� ����
	 ����� � ��� � ���� � ��� � � ���
��� 	 ����� � ��� � ����� � � � ���

� ��	 ����� � ��� � ���� � � � ���
� ������	 ����� � ��� � ����� � ��� � � ���
� � �!��	 ����� � ��� � � ��� � ��� � � ���

"$# ��� "$# % ��� � � �
"$# ��� "$# ���� � � �

"$# � ��� � "$# � ��� � ��� � � ���
"$# �&� "$# � '������ � ��� � �
"$# � ��� � "$# � ��� ��� � � % � � ���
"(# � ��� � "(# � ��� � ��� � � ���
"$# � � " � � ��� � �

"$# � "$# �

Figure 3. RTT estimation and CRs aggregation

naive solution would however overload the source in the
presence of a large number of receivers. Instead of estimat-
ing directly the RTTs between the source and each receiver,
we begin by estimating the RTTs between every node and
its parent in the multicast tree. This mechanism meets also
the per-section RTT measurements required by our hop-by-
hop bandwidth probing procedure (section 3.1). To illus-
trate our method we show in figure 3, one linear path of
the multicast tree that connects the sender (labelled by

)
)

to one of the receivers with label � . Intermediate nodes la-
belled from � to �+* � are the routers. The generalization of
our method to the other receivers and intermediate nodes is
straightforward.

Special messages called heartbeat messages (HB and
HB RESP) are periodically exchanged between each node� and its parent ���,* ��� in the same way the ping/pong mes-
sages do. The first HB message is sent by the receiver. The
reception of a HB by a router triggers the emission of a
HB message to its parent in addition to responding with a
HB RESP message. Let -/.10 2 be the computed RTT between
the � th and the 3 th node (we have 4 �(5 3768-�.0 2+9:-;2<0 .). Con-
sequently, -/.1=?>@0 . is the RTT between node � and its parent,
and -BA;0 . is the RTT between node � and the source.

A node � , in order to compute its RTT to the source,
first computes its RTT to its parent node by sending a HB
message timestamped with the emission time. The parent
node, on the reception of the HB message, responds with
a HB RESP that contains its RTT to the source that has al-
ready been computed. Node � , on receipt of the HB RESP
message is then able to compute its RTT to the source as the
sum of the RTT of its parent to the source and its own RTT
to its parent as follows:C�DFEHGJI@KLM N $ KLM NOFP + K<NOFPQM N

(5)

Initially (right side of figure 3), the source responds with
a special message HB RESP S which contains its own RTT
to itself (of course we have -/A;0 A+9)

) in the data packets it
sends. Node number � will update -�A�0 > using (5) and for-
wards it downstream with the newly computed RTT. Node
number R will in turn update - A;0 S using the same equation

and forwards it downstream and so on (figure 3). After-
wards the use of the HB and HB RESP messages will be
sufficient to estimate the different RTTs.

3.3. Congestion Feedback

In AMCA, every receiver sends a CR to the source ev-
ery T packets received so the source can learn about the
congestion situation in the multicast tree. We chose to send
a CR on the reception of a given number of packets rather
than sending a CR every a constant period. The congestion
situation is then probed proportionally to the emission rate.
The resulting period is 9UT � � which represents the ex-
pected time to receive T data packets by a receiver where is the emission rate of the source. In the case where no
data packet is received, a NACK could be sent instead of a
CR to indicate that a packet is missed by a receiver. With 9:T � �� , from (4) the queue size variation can be given
by: !E" $WV !#A!#A�+ 7 (6)

We introduce ���@X defined as the queue size variation per
packet: !E"ZY#$!E"

V $!#A!#AH+ 7 (7)

The periodicity of sending the CRs varies because it de-
pends on the current reception rate. To make the source
aware of the current period, a receiver reports it in the

� �	����/[field of a CR packet (figure 1).
In what follows, we note by � - .10 2 the experienced RTT

variation between the � th and the 3 th node. For the � th link
that connects the ����* ��� th and the � th node, the RTT varia-
tion is � - .=\>(0 . . Additionally we note by �@? . the RTT vari-
ation of the ���]* �	� th intermediate node and the receiver.
The overall experienced RTT variation between the source
and the receiver is �@? 9 �@? > . Initially, a receiver (left side
of figure 3) computes the RTT variation � -�^ =?>@0 ^ of its up-
stream link (number �) using the last two RTT measures to
its parent with the mechanism described in section 3.2. Af-
terwards the receiver includes the computed RTT variation
in the CR to be sent to the source. The receiver’s parent (i.e.
node �+* �) adds the RTT variation reported by the receiver
and its own RTT variation to its upstream node to obtain the
RTT variation of its parent (� �H* R � th node) to the receiver:

�@? ^ =?> 9 ��? ^`_ � -/^ =aS�0 ^ =?>
Node (�7* �) will then report �@? ^ =\> in the � cb �� field
of the CR. In this way, a parent node � , on receipt of a CR
from node ��� _ ��� adds its RTT variation to node ���,* �	� to
the received one before forwarding the CR with the newly
computed RTT variation:

�@? . 9 �@? .�d�> _ � - .1=?>@0 .
The sender will end up by receiving the RTT variation �@?
experienced on the whole linear connection. This latter can

�

���

�

���
��� ��	� �

���
 ����

Figure 4. CRs aggregation in a multicast tree

be used in equation (3) or (7) to have respectively a lower
bound for the bottleneck rate � or the estimated queue
length variation per packet ��� X during the previous period.

3.4. Feedback Suppression/Aggregation

To achieve scalability, a mechanism of aggrega-
tion/suppression is performed. We use the physical multi-
cast tree to hierarchically aggregating feedbacks at the inter-
mediate nodes (routers). A suppression mechanism is per-
formed on NACKs thus allowing just one NACK per loss
to be sent upstream. Since we do not suppose that all the
routers are active, more than one NACK for the same loss
could be received by the source. To avoid reacting to dupli-
cate NACKs, the source reacts to the first one and ignores
the subsequent ones for a given period of time which de-
pends on the multicast tree structure.

The CRs are aggregated at the intermediate nodes. An
active router aggregates the received CRs from the down-
stream links in one CR to be forwarded upstream. The
aggregated CR contains the sequence number of the mini-
mum last ordered and the maximum last received data pack-
ets among those reported by the CRs received from down-
stream. For the aggregation of the RTT variations reported
by the CRs from downstream in the case of a multi-path
connection, we illustrate our solution with the simple two-
level tree depicted in figure 4. We consider two receivers� > and � S connected to the source � via one active router�

. Receivers � > and � S send CRs to the active router with
their respective RTT variations ��? > and �@? S . Once these
children CRs are received, the active router

�
sends its CR

to the source with �@? computed using:

��? 9 �@?��X _ ���;� � �@? > 56�@? S �
where �@?��X is the RTT variation of the source link (

� 5 �).
This latter is extracted from the HB RESP message sent by
the source. Using this method in aggregating the RTT vari-
ation, the source ends up by receiving the RTT variation
experienced by the worst end-to-end path of the multicast
tree.

3.5. Rate Regulation

In AMCA, the regulation parameter is the rate. A min-
imum and a maximum rates �� . ^ and ������ are set by the

application. Any receiver that could not support the min-
imum transmission rate has to leave the multicast session.
Initially, the source starts to send data packets with a rate
equal to the minimum rate � . ^ . Then it tries to increase
its rate if no congestion indication is received without ex-
ceeding the maximum rate ����� . The source uses the infor-
mation fed back in the CRs and NACKs to update its rate.
The RTT variation field of every CR is used by the source
to compute the queue size variation per packet ����X during
the previous period. The goal is to maintain ��� X as small as
possible. During a phase similar to the slow start phase of
TCP, the source would increase its rate by � � � ������ (bits
per second) every time it receives a CR that gives a queue
size variation ���@X���� , where � is a positive number to be
chosen in �) 5 ��� . Increasing the rate by � � � ������ where� ����� is the maximum experienced RTT among the re-
ceivers, is equivalent to adding 1 to the congestion window
for the largest end-to-end connection of the multicast tree.
This behavior makes our congestion avoidance algorithm
fair with TCP from the beginning of the multicast session.

However, the network could be already congested from
the beginning of the session. To avoid aggravating the situ-
ation, we need an other congestion indicator to be sure that
there is no congestion in the network. This can be done by
examining the successive values of the last ordered field of
the CRs. This gives a measure of the difference between the
emission and the reception rate. This difference is propor-
tional to the number of data packets which are not acked yet
which can be given by:!E"! E$#"%$'& ' G)(+*-, 0 * �.

(8)

where ��. and � � are respectively the number of sent and
acked packets during the previous period. Since a CR is
sent to the source every T packets received during a period , we have: � . 9 � 9 T
The number of acked packets is computed using:

��� 9
 � .�d�> *
 � .
where
 � .�d > and
 � . are respectively the values of the last
ordered field of the newly received and previously received
CR. Finally:!E"� B$�"%$'& ' G)(V 0 '0/21 N03 P 04/21 N .�.

(9)

The source, on the reception of a CR, extracts the current
period () and the RTT variation (�@?). Afterwards, in addi-
tion to the queue size variation per packet ��� X , the number
of data packets not acked yet ����� is also computed using
(9). The aim is to maintain ��� � in � 5 5�67� , where 5 and 6
are similar to the two parameters of TCP-Vegas. In the slow
start phase, the source continues increasing its rate every
time it receives a CR that indicates �@� X �8� and ��� � �86 .
The source enters the congestion avoidance phase when it
receives a NACK or a CR with ���@X:9;� or �@�)�<9=6 .
On the receipt of a NACK, the source reduces the rate by

half. Subsequent NACKs are ignored during a period es-
timated by the difference between the current RTT to the
source of the farthest and the closest receiver in the multi-
cast tree ��� ����� * � � . ^�� . To avoid decreasing dra-
matically the rate because of isolated losses, we check the
�� and
� fields of the NACKs and reduce the rate only if
� *D
������ ; otherwise we just retransmit the corresponding
repair.

During the congestion avoidance phase, on the reception
of a CR with a RTT variation ��? and a period , the source
updates its rate depending on the current values of both �@�;X
and ����� . When these two measures do not indicate conges-
tion (�@�@X�� �) 5	�	� and ����� � 6), the rate is multiplied by� . ^�� chosen slightly greater than 1. In the other cases, the
rate is multiplied by � 9 ���� _ �@?1� which is derived from
(3) and allows the rate to converge to the bottleneck rate.
When the emission rate is greater than the bottleneck rate,
a queue will build up in the bottleneck link. This will be
translated by a positive RTT variation �@? and thus � � � .
Multiplying by � will decrease the transmission rate and
this is the appropriate action from the source. In the reverse
situation where the emission rate is less than the available
bandwidth, ��? is negative and multiplying by � 9 � will
increase the transmission rate. In addition to the proposed
mechanisms, a severe congestion is detected if no CR, HB
or NACK is received during a relatively long period which
is set to twice the current period (R). In this case the rate
is dropped to its minimum value �� . ^ .

Since DyRAM implements a local recovery mechanism,
we have to be careful about the local recovery problem.
Many reliable protocols perform local recovery which leads
to the coexistence of multiple data sources. This is why not
only the original source has to be congestion controlled, but
retransmitting entities (receivers, routers or servers) should
also be controlled. Additionally, a feedback suppression is
implicitly or explicitly performed which would make the
source unresponsive to congestion variations. Suppose that
behind a congested link, one or more receivers have sent
NACKs that will be received by a replier instead of the
source. The replier will retransmit the missed packets and
the source is never aware of the congestion and would con-
tinue to send with the same rate (even with a higher rate).
As a result the congestion situation is aggravated. This is
the so called local recovery problem [14]. In our scheme,
we propose to make the source aware about any NACK that
has been forwarded downstream to an elected replier. An
active router when aggregating the CRs, includes NACK
information mainly in the
 � and
� fields of the aggregated
CRs. In this way, the source is always aware about losses
that occur in the multicast tree even in the presence of lo-
cal recoveries. The retransmission rate from the repliers is
also controlled to do not aggravate a congestion situation
until the source adapts its rate. When an elected replier has

to retransmit more than one packet, then it sends repairs
with a rate equal to the current rate of the source divided
by ��
� *
�� ��� which is proportional to the congestion de-
gree. Finally, it is worth mentioning that the DyRAM loss
detection service at the routers could be very helpful for the
congestion control. A NACK is sent to the source as soon
as a loss is detected and the source would reduce its rate
rapidly which could enhance the responsiveness of the pro-
posed congestion avoidance algorithm.

4. Simulation Results

A simulation model of AMCA with DyRAM has been
implemented using ns-2.1b8 (network simulator [7]). For
all the simulations the data packet size is set to 1024 bytes
and the NACK/CR packet size is set to 32 bytes. The mini-
mum and maximum rates are set respectively to � and �)�)!)�)
packets per second. While � is set to

)
	 R , 5 and 6 are re-
spectively set to � and � . For the rate regulation, � . ^�� is set
to �)�� . A receiver sends a CR every T 9 � R data packets
received unless said otherwise. For all the simulations, we
used the simple topology of figure 5 with four receivers sep-
arated by two routers from the source. The bottleneck link

has a bandwidth of
)
	 � ��� ��� . � is the DyRAM source

that multicasts data to the receivers � � and � R . � � and � R
are used as sources for TCP (Vegas) flows to study the fair-
ness of DyRAM with TCP. ��� and ��� are the TCP sinks of� � and � R respectively.

S A2A1

R1

R2

R3

R4

L

0.9M−10ms

2M−10ms3M−10msS1

S2

Figure 5. The used topology

4.1. Convergence of the algorithm

A first set of experiments is conducted with just one mul-
ticast flow. The source � � multicasts data using DyRAM to
the receivers of figure 5. The purpose of this first set of ex-
periments is to show how our congestion algorithm probes
and makes use of the available bandwidth. Figure 6 shows
the achieved throughput by the receivers for different values
of T . We can see that the algorithm converges to the bot-
tleneck available bandwidth of

��)�)�� � � � and then makes
use of the available bandwidth during all the simulation. It
is worth showing that there is a tradeoff between the re-
sponsiveness (quick reaction) and the stability (in terms of
oscillations) depending on the CRs periodicity. We can see
that the smaller T is, the more responsive the algorithm is.
However the oscillations are smoother when we increase T .

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM

(a) (b)

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM

(c) (d)

Figure 6. Responsiveness/stability tradeoff, N
set to (a) 16, (b) 32, (c) 64, (d) 128

4.2. Fairness with TCP

Since most of the Internet traffic is transported by TCP,
the fairness to TCP flows is an important issue. To evalu-
ate the fairness of our scheme, experiments have been con-
ducted on the topology depicted in figure 5. One experi-
ment is performed with one DyRAM flow competing with
two TCP flows. The DyRAM source is � and the 2 TCP
flows are sent by � � and � R to the receivers ��� and � � re-
spectively. The simulation is run for 200 seconds. All of the
three flows are started at the same time. Figure 7a shows the
achieved throughput by the different flows. We can see that
the bottleneck link of

) 	 � � is almost equally shared among
the three flows.

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM
TCP
TCP

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM
TCP

(a) (b)

Figure 7. Fairness with TCP, (a) two TCP flows,
(b) one TCP flow.

To show the dynamic behavior of our congestion algo-
rithm, we have run a simulation with one DyRAM multi-
cast flow in the background and one TCP flow started at 20s
and stopped at 100s. Figure 8a shows the achieved through-
put by DyRAM and TCP. We can see that DyRAM makes
use of all the available bandwidth while the TCP flow is
not started yet. In the presence of the two flows, the avail-
able bandwidth is shared equally among them. When the
TCP flow is stopped, DyRAM is able again to make use of

the available bandwidth. We note that the time required by
DyRAM to react to both the existence and the absence of
the TCP flow is very small. Figure 8b shows the sequence
numbers of data packets received by the DyRAM receivers.
We can observe that DyRAM dynamically adjusts its rate
and the slope angle of the sequence number line is divided
by 2 in the presence of the TCP flow. An other interest-
ing observation is that there is no packet loss during all the
simulation.

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM
TCP

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100 120 140 160 180 200

se
qu

en
ce

 n
um

be
rs

Time (s)

(a) (b)

Figure 8. Dynamic behavior of DyRAM with
one TCP flow

Figure 9 shows the results of a simulation run with two
TCP flows and one DyRAM multicast flow. DyRAM is run
from 0 to 200s and the two TCP flows are run respectively
from 30 to 100s and 70 to 150s. We can note the same ob-
servations as for the previous experiment. DyRAM equally
shares the available bandwidth with two TCP flows and al-
ways react quickly to the network dynamics. DyRAM is
always fair and never aggressive with TCP.

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM
TCP
TCP

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160 180 200

se
qu

en
ce

 n
um

be
rs

Time (s)

(a) (b)

Figure 9. Dynamic behavior of DyRAM with
two TCP flows
An other simulation has been performed with TCP in the

background and the DyRAM flow run from 20 to approxi-
mately 118s (the time required to send 5000 data packets).
Figure 7b shows the achieved throughput by the two flows.
It is clear that once more DyRAM is proved to be TCP-
friendly and shares equally resources with any TCP flow.

4.3. Multiple bottleneck links

To see the behavior of our congestion avoidance algo-
rithm with TCP flows in the presence of multiple bottleneck
links, we have performed simulations with the same topol-
ogy of figure 5 with some lower capacity links. The sim-
ulations are performed with 2 TCP flows and one DyRAM

flow. The TCP flows are from S1 and S2 to R3 and R4 re-
spectively. S is the DyRAM source that multicasts to the
receivers R1 and R2. We set the link bandwidth of receivers
R2 (one of the DyRAM flow receivers) and R4 to

)
	 R ��� � �
instead of R ��� ��� . Figure 10a shows that DyRAM achieves
a throughput that corresponds to the minimum available on
the whole multicast tree (

) 	 R ��� ���). The TCP flow to R4
uses the remaining bandwidth of link

. Figure 10b shows

the achieved throughput by the different flows where the
bandwidth of the TCP receivers (R3 and R4) links is set to)
	 R ��� � � . We can see that the 2 TCP flows use the avail-
able

) 	 R ��� ��� bandwidth for each of them and that DyRAM
makes use of the remaining bandwidth on the bottleneck
link.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM
TCP1
TCP2

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

K
B

it/
s)

Time (s)

DyRAM
TCP1
TCP2

(a) (b)
Figure 10. Multiple bottleneck links

5. Conclusion

In this paper, we have presented AMCA an active-based
congestion avoidance algorithm for multicast communica-
tions. The proposed scheme is validated with an active re-
liable multicast protocol (DyRAM). Nevertheless AMCA
can be used by any other active reliable multicast protocol
and particularly in the case of unicast as an enhancement of
TCP Vegas. Our congestion algorithm relies on the active
networking technology to perform a per-section dialogue to
probe for available bandwidth along a multicast tree. This
is done by using the RTT variations experienced by every
section in the multicast tree. The RTT variations are then
appropriately aggregated by intermediate nodes before they
are given to the source.

A set of simulations have been conducted using ns-2.1b8
network simulator to study the behavior of our congestion
avoidance algorithm. It has been shown that AMCA con-
verges and makes use of the available bandwidth and reacts
rapidly to the dynamic changes in by the multicast tree. In
addition, simulations have shown that there are few packet
losses because AMCA reacts before a loss occurs. More-
over our algorithm is proved to be fair with TCP.

AMCA has to be experimented on larger topologies that
reflect the actual Internet. Moreover the congestion param-
eters that we used have to be studied in more detail to deter-
mine their optimal values. AMCA is a single-rate approach
and the emission rate is adapted according to the worst re-
ceiver in the multicast group. Currently an adaptation of

AMCA to support heterogeneous receivers is under study
and results will be available soon.

References

[1] A. Azcorra et al. Multicast congestion control for active
network services. European Transactions in Telecommuni-
cations, 10(3), May/June 1999.

[2] L. Brakmo and L. Peterson. End to end congestion avoid-
ance on a global internet. IEEE JSAC, 13(8), October 1995.

[3] D. M. Chiu et al. TRAM: A tree-based reliable multicast
protocol. Technical Report TR-98-66, SUN, July 1998.

[4] D. M. Chiu et al. A congestion control algorithm for tree-
based reliable multicast protocols. Technical Report TR-
2001-97, Sun Microsystems Labs, 2001.

[5] D. DeLucia and K. Obraczka. Multicast feedback suppres-
sion using representatives. In INFOCOM, 1997.

[6] T. Faber. Experience with active congestion control. In
DARPA ANCE, San Francisco, CA, May 29-30 2002.

[7] K. Fall et al. Ns notes and documentation ucb/lbnl/vint.
http://www.isi.edi/nsnam/ns, July 1999.

[8] S. Golestani and K. Sabnani. Fundamental observations
on multicast congestion control in the internet. In INFO-
COM’99.

[9] V. Jacobson. Congestion avoidance and control. In ACM
SIGCOMM ’88, 1988.

[10] S. Kasera and S. Bhattacharya. Scalabe fair reliable multi-
cast using active services. IEEE Network Magazine’s Spe-
cial Issue on Multicast, 2000.

[11] M. Maimour and C. Pham. Dynamic Replier Active Reliable
Multicast (DyRAM). In ISCC’02, July 1-4 2002, Taormina,
Italy. A more recent version is available as technical report
RR-4635, INRIA, 2002.

[12] M. Mathis et al. The macroscopic behavior of the tcp con-
gestion avoidance algorithm. Computer Communication Re-
view, 27(3):62–82, 199.

[13] J. Mo et al. Analysis and comparison of TCP reno and vegas.
In INFOCOM, pages 1556–1563, 1999.

[14] T. Montgomery. A loss tolerant rate controller for re-
liable multicast. Technical Report NASA-IVV-97-011,
NASA/WVU, August 1997.

[15] J. Padhye et al. Modeling tcp throughput: a simple model
and its empirical validation. In SIGCOMM, 1998.

[16] I. Rhee et al. MTCP : Scalable tcp-like congestion control
for reliable multicast. Technical Report TR-98-01, 1998.

[17] L. Rizzo. pgmcc: a tcp-friendly single-rate multicast. In
SIGCOMM, 2000.

[18] T. Speakman et al. PGM reliable transport protocol specifi-
cation. internet draft, 1998.

[19] H. Wang and M. Schwartz. Achieving bounded fairness for
multicast and TCP traffic in the internet. In SIGCOMM’98.

[20] J. Widmer and M. Handley. Extending equation-based con-
gestion control to multicast applications. In ACM SIG-
COMM (San Diego,CA), August 2001.

[21] L. Yamamoto and G. Leduc. An active layered multicast
adaptation protocol. In IWAN, pages 179–194, 2000.

