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The effect of structural irregularities in photonic crystal fibers on scalar and vector modulational instability 
(MI) processes is studied by numerical simulations and experiments. For an anomalous-dispersion regime 
pump, variations in core ellipticity as small as 0.5% over length scales of the order of several meters are 
shown to have a negligible effect on scalar MI, yet they completely suppress vector MI. In contrast, for a 
normal-dispersion regime pump, vector MI is shown to be robust against such f luctuations. 

The ability to engineer the dispersion and nonlinear-
ity of photonic crystal f ibers (PCFs) has led to the
observation of a number of novel nonlinear effects in
optical f ibers.1 – 3 Modulational instability (MI) is a
particular nonlinear process that has been the subject
of recent study in PCFs, leading to the discovery of
a new scalar MI window in the normal-dispersion
regime4 that is due to higher-order dispersion phase
matching.5,6 The design freedom of PCFs allows
unusual dispersion to be combined with engineered
birefringence, and preliminary studies of polarization-
dependent vector MI in PCFs have also been re-
ported.7 Recent theoretical work has also treated
related processes in small-core fibers with dispersion
profiles similar to those of PCFs.8

MI is associated with exponential gain for signals at
frequencies symmetric about an injected continuous-
wave pump and has important applications in para-
metric frequency conversion and in the generation
of ultrashort pulse trains.9 MI gain depends on
phase-matching conditions that involve f iber nonlin-
earity, group-velocity dispersion (GVD), and, for vector
MI, the group-velocity mismatch (GVM) between or-
thogonal polarizations. These parameters in a solid
core PCF depend strongly on the air hole distribution
about the core, and irregularities in the PCF structure
would be expected to affect the MI gain signif icantly.
In this Letter we present a numerical and experimen-
tal study of these effects, including the sensitivity
of both scalar and vector MI processes to struc-
tural irregularities along the length of an elliptical-
core birefringent PCF. Beam propagation method
calculations allow GVD and GVM variations to be
determined directly from PCF structural f luctuations,
and MI gain calculations and nonlinear Schrödinger
equation simulations are used to examine the conse-

quences for both scalar and vector instabilities. Our
major result is that variations in core ellipticity as
small as 0.5% over several meters have significantly
different effects on scalar and vector MI processes in
the anomalous- and normal-dispersion regimes. In
particular, for anomalous-dispersion regime pumping,
structural irregularities are shown to have little effect
on scalar MI but to completely suppress vector MI
processes that depend on polarization coupling.

We consider 3.9 m of OFS Laboratories PCF based
on a hexagonal arrangement of circular air holes sur-
rounding a central solid elliptical core (see Ref. 1 for
an electron micrograph). The zero-dispersion wave-
length is �760 nm, and the birefringence is Dn � 1023.
The hexagonal cladding design is standard for highly
nonlinear PCF and is usually specified in terms of air
hole diameter f and the center-to-center spacing be-
tween adjacent holes L.5 One can model the ellipti-
cal core by inscribing the ring of air holes immediately
surrounding the core in an ellipse with semimajor and
semiminor axes �1 1 e�L and L, respectively.7

Assuming identical GVD and equal pumping along
each axis of a highly birefringent f iber, the expected
MI gain9 is g � 2 Im�K�. Here, the wave vector
K is obtained from the dispersion relation ��K 2 b�2 2
H � ��K 1 b�2 2 H � � Cx

2, where V is the frequency off-
set from the pump and b � �b1x 2 b1y �V�2 takes into
account the GVM. H � b2V2�b2V2�4 1 gP �, and the
cross-phase modulation parameter Cx � �2�3�b2gPV2.
The f iber GVD and GVM were determined for wave-
lengths in both the anomalous- �l � 1064 nm� and the
normal- �l � 624.5 nm� dispersion regimes by use of
imaginary distance vector beam propagation method
calculations.10 Parameters f � 1.4 mm, L � 1.6 mm,
and e � 0.05 yielded values of GVD and GVM in
excellent agreement with experiments. We used a
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convergence study to test the calculation fidelity by
methodically reducing the computational resolution to
determine optimal values that maximized accuracy
and minimized computation speed. Transverse and
longitudinal resolutions of l�20 were found to yield
consistent results.

The calculated GVD for the polarization eigenaxes
differed by only 2%, consistent with the assumption
of the linearized theory. We also used calculations
to determine nonlinear parameter g. The values ob-
tained at 1064 nm were jb1x 2 b1y j � 3.25 ps m21, av-
erage b2 � 277.5 ps2 km21, and g � 76 W21 km21.
At 624.5 nm the values obtained were jb1x 2 b1y j �

0.947 ps m21, average b2 � 26.9 ps2 km21, and g �

149 W21 km21. We consider equal pump powers on
each axis of P � 27.5 W at 1064 nm and P � 45 W
at 624.5 nm (corresponding to our experiments below).

Figure 1 shows the gain curves calculated for
these parameters. For an anomalous-dispersion
regime pump, Fig. 1(a) shows that both scalar and
vector MI are expected. The broad scalar MI gain
peak grows from the pump �V � 0�, with a maxi-
mum near Vs�2p � 1�2p�2gP�jb2j�

1�2
� 1.2 THz.

The narrow vector MI peak is displaced near
Vv�2p � 1�2pjb1x 2 b1y j�jb2j � 6.7 THz. For
the normal-dispersion regime pump, Fig. 1(b) shows
the vector gain peak centered on Vv�2p � 3.7 THz.
Complementary nonlinear Schrödinger equation simu-
lations were also carried out for pump and fiber
parameters as above, with Gaussian input pulses of
durations 0.8 ns at 1064 nm and 1 ns at 624.5 nm
(also corresponding to the experiment). The bottom
curves in Fig. 1 present these results, clearly showing
the growth of distinct scalar and vector MI sidebands
in each case.

The positions of the MI gain peaks are, however,
strongly dependent on the f iber GVM and GVD,
and any longitudinal variations in these parameters
would lead to reduced accumulated gain over the fiber
length. In this context, we note that such variations
have been extensively observed in standard fiber11

and were previously inferred for this PCF from differ-
ences in the zero-dispersion wavelength between fiber
segments.12 Such variation can arise from complex
changes in hole size and position along the f iber, but
for purposes of studying the effect on MI we use a
simplified model that involves only the longitudinal
variation in the ellipticity parameter e about its mean
of 0.05. Based on electron micrograph images at
different points (�1-m separation), we estimated an
upper bound of 5% variation in ellipticity. Within
this constraint, we used beam propagation method
calculations to quantify the corresponding effect on
GVD and GVM. The calculations showed that the
GVM is particularly sensitive to structural nonuni-
formity, even with levels of ellipticity variation as
low as 0.5%. For example, a 0.5% variation in e
gave GVM variations over the range 2.9 3.6 ps m21

(�10% about the mean), whereas the corresponding
variation in the average GVD (absolute value) was
76.5 78.5 ps2 km21 (�1% about the mean). Note
that the magnitudes of these parameter f luctuations
that we obtained are comparable with those seen in

standard fiber11 and with those used in recent studies
of scalar supercontinuum generation in PCF.13

We can conveniently examine the effects of these
longitudinal f luctuations by assuming a 0.5% periodic
variation in e over a characteristic length of 2 m
(consistent with f luctuation length scales of standard
fibers11). To illustrate the consequences for the MI
gain, in Fig. 2 we show again the MI gain curves but
recalculated locally at different points along the fiber.
In the anomalous-dispersion regime, Fig. 2(a) reveals
a minimal effect on the position of the scalar MI
gain peak, yet it shows a signif icant variation in the
position of the vector MI gain peak. In the normal-
dispersion regime, Fig. 2(b) shows some variation in
the vector MI gain curve, although the oscillation is
less apparent because of the larger intrinsic MI gain
bandwidth in this case.

Fig. 1. Top, calculated MI gain curves and bottom, cor-
responding simulated output spectra for anomalous- and
normal-dispersion regime pumps.

Fig. 2. Calculated MI gain curves assuming a periodic
variation in core ellipticity of 0.5% for (a) anomalous- and
(b) normal-dispersion regime pumps.
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Fig. 3. Top, simulated and bottom, experimental output
spectra after 3.9 m of PCF propagation with a pump polar-
ized at 45± to the principal axes for anomalous- and normal-
dispersion regime pumping.

For our parameters, the MI gain occurs on a length
scale of g21 � 0.2 m, which is much less than the
length scale of 2 m that describes the longitudinal
f luctuations. It would thus be expected that the os-
cillations seen in Fig. 2 would significantly modify the
accumulated gain. However, Fig. 2 also suggests
differences between the anomalous- and the normal-
dispersion regimes. In the anomalous-dispersion
regime the robustness of scalar MI to structural
irregularities would be expected to lead to exponential
gain for this process. Yet, because the variation in
the position of the vector MI peak exceeds its intrinsic
peak width, the gain of vector MI would be reduced.
In contrast, for the normal-dispersion regime, the
greater intrinsic width of the vector MI peak ensures
that, despite oscillations in position, there always
remains a frequency range over which gain is present,
so signif icant vector MI in this pumping regime would
be expected.

This interpretation was confirmed by simulations
that explicitly include the longitudinal GVD and
GVM variations. Figure 3(a) shows results for the
anomalous-dispersion regime. In contrast with the
simulations with constant parameters shown in
Fig. 1(a) (where the amplitude of the vector MI peak
was comparable with the second-order scalar MI
peak), the vector MI peak in the presence of varying
GVM is almost completely suppressed. The scalar
sidebands are still clearly observed, however. For the
normal-dispersion regime, Fig. 3(b) shows clear vector
MI sidebands even with varying GVM. We note also
that, although these results were obtained with the
assumption of a smooth periodic variation in the PCF
dimensions, we have verified that simulations that use
other models for the longitudinal parameter variation
yield comparable results.11,13

These MI processes were also studied experimen-
tally. At 1064 nm, 0.8-ns pulses from a microchip
laser were injected equally along the polarization
eigenaxes of a 3.9-m PCF with parameters as above.
The output spectrum was measured for the different
polarization states by an optical spectrum analyzer

with dynamic range suff icient to permit nearly four
orders of scalar MI to be observed. The bottom curve
in Fig. 3(a) shows the results. Although, in the ab-
sence of structural nonuniformity the vector MI peak
would be expected to have an amplitude comparable
with the second-order scalar MI peak (see Fig. 1), no
experimental evidence of vector MI is seen. We inter-
pret the absence of the vector MI peak as confirming
the suppression of vector MI caused by variation in
the longitudinal GVM. In contrast, when 1-ns pulses
were used at 624.5 nm (in the same PCF), the bottom
curve of Fig. 3(b) shows that clear vector MI sidebands
were observed. This result confirms the robustness
of vector MI in the normal-dispersion regime to GVM
variations.

The important conclusion to be drawn from our re-
sults is that irregularities in a PCF structure at a level
that has negligible consequences for scalar nonlinear
effects can nonetheless strongly inf luence polarization-
dependent vector nonlinear processes. Although we
have considered only modulational instability, a simi-
lar conclusion would be expected to hold for other
nonlinear processes in PCF when they involve coupling
between orthogonal polarizations. Our results have
important consequences for the design of PCF-based
devices that rely on polarization-dependent nonlinear
effects, as it implies the need for stringent design
and manufacturing tolerances to prevent longitudinal
GVM f luctuations in the GVM. Our results also indi-
cate, however, that the introduction of controlled GVM
variations will be advantageous when the suppression
of polarization-dependent nonlinearities is desirable.

J. M. Dudley’s e-mail address is john.dudley@
univ-fcomte.fr.
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