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DESIGN OF HIGH ROTATION FREQUENCY COMPOSITE TUBES.

O. Montagnier and Ch. Hochard
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31 chemin Joseph Aiguier, 13402 Marseille Cedex 20
e-mail : oliviermontagnier@yahoo.fr

ABSTRACT

This work relates to the sizing of subcritical and supercritical laminated composite drive shafts. The hollows
drive shafts are designed to transmit the torsional load and to minimize the dynamic effects due to rotation. To
meet this need, these structures must combined strength, rigidity and lightness. New high modulus carbon fibres
can be adapted to a progress in this field. This work presents sizing tools for optimisation of supercritical drive
shafts mounted on viscoelastic suspensions. Two items are discussed: dynamic analysis (response to forces
excitation; free motion; instability), strength (buckling of thin tubes; torsional strength). Supercritical drive shafts
examples made of high modulus fibres or high-strength fibres are presented.
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1. INTRODUCTION

This work relates to the sizing of subcritical and supercritical laminated composite drive
shafts.

Composite materials drive shafts are new potential candidates in many applications [1]. Drive
shafts are designed to minimize the dynamic effects due to the rotation. In the case of a
subcritical drive shaft, the first critical speed (which is given in a first approximation by Eq.
1) must not be reached, and this structure must therefore be both stiff along the rotational axis

and lightweight.
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where: [ is the bending moment of inertia, S the tube section surface, £ the modulus along
tube axis, L the tube length and p the material density.

A high specific rigidity (modulus/density), typical of carbon/epoxy materials, makes it
possible to increase the first critical speed or to produce longer subcritical drive shaft. When
there is no satisfactory subcritical solution, which can be the case of helicopter rear drive
shaft, the solution can be supercritical. In this case, the angular frequency is higher than the
first critical speed (Eq.1). The design is more complex; it is necessary to know what happens
when the shaft goes through a critical speed (transient motion) and to know the stability. It is
also necessary to optimise the position of the eigen frequencies. It can be noted that lightness
minimizes also rotational inertia.

Of course, drive shafts are also sizing to transmit the torsional load. In the case of hollow
laminated composite tubes (thin-walled tubes), the drive shaft must be both resistant and stiff
in torsion due to the risk of torsional buckling.



The emergence of high modulus carbon fibres for a reduced cost can be adapted to this
application. Indeed, a quasi-isotropic ([0°,90°,45°,-45°]s) material reinforced with Dialead
K63712 fibres is twice as stiff as aluminium although its density is 1.6 times lower.

This work presents tools for drive shaft design. The objective is optimisation of drive shafts
and comparison of high modulus carbon/epoxy and high resistance carbon /epoxy in this area.
Two items are discussed: the dynamic performances and the strength.

2. DYNAMIC ANALYSIS

Many works relates to the analysis of the critical speeds of thin-walled composite shafts with
or not supported bearings: equivalent modulus beam theory [2] ; Timoshenko beam theory
with the Donnel thin shell theory [3]; finite element approach [4-5] ; shell theory of first order
[6-7] ; first order shear deformable beam theory [8]. Few works investigate the transient
motion and the stability of the system [9]. A study of an isotropic drive shaft on rigid
supports, with a simple model of internal and external damping, shows the instability of the
system for very high speeds compare to the first critical speed [10].

In this work, we investigate the problem of thin-walled composite shafts with viscoelastic
supports at the ends of the tube. Our objective being optimisation of a high-speed drive shaft,
we solve an analytical problem. We relate the response to force excitation, the free motion
and the stability.

2.1 Modeling

“Fig. 1. (a) Testing machine for high-speed tubes; (b) viscoelastic supports (natural rubber) in shear.”

The modelling is issued from the original testing machine for high-speed tubes (Fig. 1. - a).
The shaft is represented as a beam with a circular cross-section with simply supported ends
(Fig. 2). Oxyz is the inertial frame. The beam theory used is the Bernoulli beam theory with an
equivalent modulus. The shaft length is supposed to be great in front of the diameter. The
viscoelastic support is defined by a stiffness k£ and a viscous damping ¢, ; there are supposed
to be the same in all the directions in the plane Oxy (Fig. 1. - b). The self-aligning ball



bearings at the ends of the tube allow us neglecting the bending of the supports. The
connection between the shaft and the viscoelastic support is defined by a mass m,, .

“Fig. 2. Shaft in rotation with viscoelastic supports.”

The displacement of the tube axis is composed of a displacement u; and a rotation & (s for
support). The displacement of the centre of the beam cross-section with respect to the tube
axis is noted u,. The total displacement results in:

u(z,t)=u, (t)+l_%€s ®)+u,(z,1) Vze[0,/] ()

The local dynamic equation for the shaft in respect with the Timoshenko assumptions,
including the internal viscous damping (viscous damping of the material) and neglecting the
gyroscopic effect, can be written as

i+ —iu)=eQ%?  Vze[0,]] 3)
oS oS

where: (2 is the angular speed, ¢; the internal viscous damping and € the distance between the
inertial centre of the cross section and the tube axis (function of z) ; f'=9f/0z , f =df /ot .

The displacement boundary conditions are:

u’(0,)=0,u’(1,£)=0 (4)
u,(0,)=0 ,u,(1,6)=0 (5)

The dynamics equations for the viscoelastic supports are:
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2.2 Response to unbalance tube
Here only the steady-state response is calculated. The general solution is not considered. The

steady-state solutions assume the displacements are in phase with the rotation (u, =i€2u, ) that

implies the response is independent of the internal viscous damping. The local dynamic
equation can be rewritten as:

ii+ﬂu””—é£22e"‘” Vze[0,/] (8)
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To solve the equation system, the displacement base chosen for u, is the exact modes shape of
a beam with constant cross-section in bending, simply supported at both ends. The axis
displacement is represented for the first and second modes (Fig. 3). The centre of the cross-
section displacement expression is:
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where: U,, 6, and U, are displacement functions of the plane Oxy (complex number), and n
number of the mode.

(2) (b)

“Fig. 3. Response to unbalance tube: near the first mode (a) and near the second mode (b).”



The equation system has been solved with the virtual work principle. We supposed that the
eigen frequencies are enough separate to assume mode independency. Thus, the unbalance
response can be written as:
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The internal viscous damping has no effect in the steady state solution. For the rotational
speed 2, the shaft turns bended. The mode amplitude is only governed by the external
damping, the tube defects, and the geometrical parameters. Let us notice that the mode
amplitude of a simply supported beam in bending is only governed by the internal damping,
the excitation force and the geometrical parameters. We note here the difference between the
two problems in respect with the damping.

From that solution, we deduce the # critical rotational speed (notation: y=u if n is odd; =6 if
n is even):
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2.3 Free motion and instability

Tondl performed the study of the stability for the case of a symmetric rotor with a disk and a
viscoelastic shaft [10]. The shaft was modelling with a viscous damping and a stiffness, only
the first mode was taken into account. Tondl showed the shaft instability appears when the
rotational speed is superior to:

~0, (143 (19)
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where : A4, is the external viscous damping and 4, the internal viscous damping.

The author concluded that after the critical speed, the external damping is a stabilising
parameter and on the other hand the internal damping is a destabilising parameter.

In our case, we used the same method to conclude about the effect of the damping parameters.
Here, for the free motion, the dynamic system can be written as:
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To solve the dynamic system, we used the same assumption on the displacements than the
case of force excitation. In a classic manner, we introduced an eigen value 4, unknown in the
time function. For the transient mode #, the displacement expression is:
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u(z,t) ={U ot e, +U, sin(%z)}e“"’ (23)

where: U,,, 6, and U,, are displacement functions of the plane Oxy (complex number), and 4,
the eigen frequencies of the transient mode n (complex number).

The equation system has been solved with the virtual work principle. We wrote the eigen
frequencies with a real part and an imaginary part:

A =g, +ih, (24)

n



The equation system can be written as a simple complex equation of order 4 in 4, .
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The real part of A, is an eigen value and the imaginary part represented a viscous damping,
that implies that g,>>#,. This remark allows us to find analytical solutions approximate to the
Eq. 25 and to conclude on the stability of these transient modes. For each n, we found two
stable transient modes and two unstable. For the unstable transient modes, the instability
appears when the rotational speed is superior to:
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It is then enough to determine the frequency limit lowest to conclude. We find in our case of,
the result obtained by Tondl on a simplified rotor (Eq. 19), which is the external damping is a
stabilising parameter and the internal damping is a destabilising parameter.

2.4 Internal viscous damping

The calculation of internal viscous damping (noted &) was carried out starting from an strain
energy approach carried out by Ni et al. [11] and Adams [12]. This theory was applied to the
laminates theory. The strain energy is calculated by separating energy in the longitudinal
direction, in the transverse direction and in shear. Dissipated energy is calculated by
multiplying each of the three energies by the corresponding damping. The damping is
obtained by dividing the dissipated energy by the strain energy. The damping which appears
in the stability problem (2.3) is given by the traction of the laminate according to the tube
axis. The frequency response of the viscoelastic properties is not taken into account.

3. TORSION BUCKLING AND STRENGTH



3.1 Torsion Buckling of hollow laminated composite shaft

For the case of isotropic materials, Fliigge carried out the analytical calculation of the
buckling moment in torsion (noted Cp,ciing) 0f thin-walled tubes with the assumption of tubes
infinitely long [13]. This assumption supposes that the end effects are negligible. This
solution correlates the experimental results of Donnel [14] with an error lower than 10% when
the thin tube length is at least forty times higher than the diameter. Here, for the case of the
carbon/epoxy materials, the theory of the laminates is associated to the Fliigge thin shell
theory. This method is presented in works of Bert et al. [15]. On the other hand, we used the
assumption of tubes infinitely long to calculate a quasi-analytical solution (minimisation of a
determinant), which does not require iterative calculations expensive in time.

3.2 Strength

We limit ourselves to an application of supercritical drive shaft where the shaft goes through a
critical speed within significant torque. The problems of bending and torsion are dissociated.
In practice, for the case of helicopter rear supercritical drive shafts, the rotational speed
increasing until the nominal speed is carried out during the launching phase.

The rupture torque (noted Cry,i,) 1s calculated by the Tsai-Wu criterion. This approach is
however insufficient. The behaviour of the carbon/epoxy composite being non-linear
particularly in compression, works must be directed towards a more complete calculation in
strength. The measurement of behaviour in compression was carried out by a new pure
bending test [16].

4. EXAMPLE: COMPARISON OF HIGH MODULUS CARBON FIBRES / HIGH
RESISTANCE CARBON FIBRES

The study is carried out with a shaft length, a thickness and a diameter known (L=2m,
e=1.5mm,D=80mm). For the computation, the connection mass m,, is 3kg, the shaft defect €1is
0.1mm, the support stiffness & is 4,8.10°N/m and the external viscous damping & is 5%.

The carbon/epoxy unidirectional materials compared are the T300/G947 (high resistance
fibres) and the Dialead® K63712/R367-2 (high modulus fibres) (Table 1). Traditional
measures of viscous damping are carried out on T300 material; these values are also used for
the Ko63712. The studied laminates are representative of a population of tubes in
carbon/epoxy, of the same thickness, adapted to the case of a transmission power (Table 2).

“Table 1. Material characteristics (V~=0.6).”
Material d E, E, G, Vi X X’ Y Y S h & & &r

GPa GPa GPa Mpa MPa MPa MPa MPa mm % % %
K63712 170 370 54 40 03 1500 470 35 200 75 025 0.11 0.58 0.80
T300 1.53 130 93 46 03 1650 1650 70 215 100 0.25 0.11 0.58 0.80

The steady-state solution (Eq.10-13) revealed two peaks corresponding to the rigid mode (fp
=63Hz; Eq. 12) and to the first shaft bending mode. When these two frequencies are distinct,
the bending mode is largely prevalent in amplitude (Fig. 4 (a)). The rigid mode is negligible.
If the frequency of the rigid mode is close to the first Eigen frequency (Fig. 4 (b)), the effect
of external damping is amplified what implies a disappearance of the peak. The amplitude of
the two peaks is very low.



The results present the prevalent mode in amplitude (Tab. 2). The displacement of the mass
and the tube centre displacement for the first mode are respectively noted U; and U,.

“Table 2. Mechanical and dynamics characteristics of laminate tubes.”

Laminate (/x) Material  Cryimu  Chuckiing E f U, U, ¢
N.m N.m GPa Hz mm mm %
[45.-45]4 1 T300 6030 947 16.3 34.5 1.20 22.8 0.73
2 K63712 2332 2015 15.4 31.8 1.38 29.5 0.77
[30.-30]4 3 T300 4578 681 45.0 50.7 0.43 1.54 0.46
’ 4  Ke63712 2032 1066 54.9 76.6 0.35 1.32 0.62
[15.-15]5 5 T300 2768 832 106 101 0.89 5.65 0.18
6 K63712 1278 1739 248 145 1.70 12.4 0.24
[45,15,-15,-45,- 7 T300 1955 1038 76 88.2 0.62 3.27 0.21
15,15] 8 K63712 1161 2472 193 128 1.40 9.74 0.16
9 T300 2323 821 93.1 95.9 0.78 4.65 0.15

[0::45,-45.0] 10 K63712 842 1866 253 146 1.72 12.6 0.13

11 T300 2797 1131 57.8 79.8 0.43 1.86 0.18
12 K63712 1094 2787 152 115 1.15 7.51 0.15
13 T300 4936 1214 41.0 49.5 0.47 2.02 0.26
14 K63712 2129 2995 99.5 95.3 0.77 4.18 0.17

[0,90,45,-45,90,0]

[45,-45,0,90,-45,45]

45 . . 4.5

- \ug\ (paliers) —_ \us\ (paliers)
4 — Iu/ (centre du tube) B L] — fu (centre du tube)
3.5r R 3.5
T 3 1 E 3t
g £
g 25) ] §2~5
§ A B 8 2r
= =
é& L5t 1 ‘§ L5t
1+ . 1t
0.5r q 0.5r
0 L 0 .
0 50 100 150 0 50 100 150
Fréquence (Hz) Fréquence (Hz)
(a) (b)

“Fig. 4. Steady-state solution for unbalance composite tubes: 14 (f;=83Hz) (a) and 13 (b) (f;=62Hz).”

The tubes made of high modulus fibres have a good behaviour in respect with buckling. For
these tubes, the rupture is material type. The tubes made of high strength fibres break in
buckling, the ratio thickness/diameter being particularly weak in this example.

For this kind of tubes (diameter and thickness imposed), the high modulus fibres offer overall
better performances. This first stage being qualitative, a stage of optimisation is necessary.

5. CONCLUSIONS
This work highlights some points of the sizing of subcritical and supercritical drive shafts in
carbon/epoxy composite. The high modulus fibres are particularly penalized by their low



resistance in compression. The laminates used are not optimal, the maximum couple being
generally reached in only one direction. Low resistance in compression can be optimising by a
greater number of folds with -45°. The load of the unbalance being proportional at its square
speed, the optimisation of a supercritical problem will have to minimize the magnitude of the
peaks by carrying out a good distribution of the eigen frequencies. The optimal solution will
have to also check the dynamic stability of the system. Let us notice that the increase in
rigidity is associated to a reduction of the internal damping.
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