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Optical phase jitter limits the performance of amplified differential-phase-shift-keyed optical communication 

systems. We propose an approach to evaluate the phase jitter for arbitrary pulses in dispersion-managed 

links based on the moment method. This calculation requires only the knowledge of the unperturbed optical 
signal, therefore avoiding computationally intensive Monte Carlo simulations. We apply this method to a 

dispersion-managed soliton system and a quasi-linear dispersion-compensated channel and demonstrate its 

validity by comparing the obtained results with Monte Carlo simulations. 

1. INTRODUCTION

There has recently been a renewed effort to develop coher-

ent optical communication systems, particularly differen-

tial phase-shift keying1–3 (DPSK), which does not require

a local oscillator to perform decoding. The motivation to

use differential phase-shift keying in wavelength-

division-multiplexed (WDM) systems is twofold. First,

modulation formats based on phase show an increased ro-

bustness to nonlinear impairments such as cross-phase

modulation4 and nonlinear polarization rotation,5 mostly

because the time dependence of the optical power is de-

terministic and periodic. Second, coherent formats may

allow a higher spectral efficiency,6 since both in-phase and

quadrature dimensions of the signal space are available

to encode information. Optical phase is also used in

intensity-modulated direct-detection systems as an extra

degree of freedom, for example, to provide better resis-

tance to intrachannel four-wave mixing7 or to increase

spectral efficiency in duobinary modulation.

The physical mechanism that limits performance in co-

herent systems is amplified-spontaneous-emission (ASE)

noise-induced phase jitter.8 Analytic derivations of the

phase uncertainty for soliton systems were carried out by

use of perturbation theory and the variational method.

These studies assume an analytically determined pulse

shape and a constant-dispersion optical link.9,10 A semi-

analytic model of the phase jitter was recently proposed

for dispersion-managed (DM) soliton transmission,11

based on a Gaussian ansatz for the optical field. Here we

propose a semianalytic approach that is valid for arbi-

trary pulses in DM optical links, following the methodol-

ogy presented in Ref. 12. The principle of this derivation

is to split the propagation problem into its deterministic

and random parts. The probabilistic aspect of the prob-

lem is solved analytically, thereby avoiding the computa-

tion of average quantities over a statistically significant

number of noise sample functions. The deterministic

part of the problem is carried out numerically by use of

the split-step Fourier algorithm. The obtained unper-

turbed optical field is used together with the moment

method13 and statistical properties of the noise to evalu-

ate phase jitter to first order. This approach is validated

by comparison with direct Monte Carlo simulations in a

DM soliton system and a quasi-linear channel, and both

show excellent agreement. The computation time neces-

sary to evaluate the impact of phase jitter on a communi-

cation system is thereby reduced from hours to seconds on

current desktop computers. This method also provides

some physical insight about the mechanisms that create

phase jitter in the context of arbitrary optical pulses.

2. DERIVATION OF THE PHASE JITTER

Optical pulse propagation in the picosecond regime is de-

scribed by the scalar nonlinear Schrödinger equation
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where u(z, t) is the pulse envelope in a comoving frame,

g(z) is the local net gain, and b2(z) is the local group-

velocity dispersion. The coefficient g 5 n2v0 /cAeff is the

local nonlinearity, where n2 is the Kerr nonlinear index,

v0 is the signal’s central angular frequency, c is the speed
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of light, and Aeff is the fiber’s effective cross section. The

noise source term is described by its autocorrelation func-

tion

^F̂~z, t !F̂*~z8, t8!& 5 2g0\v0nsp~z !d ~z 2 z8!d ~t 2 t8!,

(2)

where nsp is the spontaneous emission factor, g0 is the

amplification coefficient inside the amplifier, and \v0 is

the photon energy at the signal frequency. We define the

following quantities averaged over time:
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where the subscript t denotes the partial time derivative.

The quantities E, P, F, and V2, respectively, represent

the energy, power, phase, and square of the angular fre-

quency of the optical field at a given distance. Differen-

tiating F and P with respect to z and using the propaga-

tion equation (1), we obtain the dynamic equations
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If we assume that the pulse exhibits mostly linear chirp,

then arg(u)(z, t) ' f0(z) 1 f2(z)(t 2 t0)
2, where t0 is the

temporal position of the pulse, and these dynamic equa-

tions can be rewritten as14
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These equations have simple physical interpretations.

The mean phase accumulates proportionally to power

through self-phase modulation (SPM). Phase variations

also arise from chirp fluctuations through group-velocity

dispersion. The last two terms in Eq. (9) represent the

direct contribution of noise to phase evolution. The

power varies as a function of gain and dispersion. Noise

also contributes directly to power variations through the

last term on the right-hand side of Eq. (10). Using the

method of variation of parameters, we can implicitly inte-

grate the dynamic equation that governs the evolution of

power:
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Similarly, an implicit solution for the mean phase equa-

tion is given by
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Under these assumptions, the noise-free field can be used

in the right-hand sides of Eqs. (11) and (13), since the per-

turbed field adds only second- and higher-order correc-

tions to the phase. The phase variance can be calculated

by use of Eqs. (2), (11), and (13):
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we find
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The cross products ^F1F3& and ^F2F3& are reduced to

zero owing to orthogonality properties of the noise compo-

nents. Equations (18)–(26) represent the main result of

this paper and are valid for arbitrary pulse shapes and

communication systems, provided that the chirp remains

essentially linear throughout the propagation. Once the

deterministic optical field is known, one can use it in the

right-hand sides of Eqs. (23)–(26) to evaluate the phase

jitter. The quantity ^F1
2& can be identified as the phase

jitter induced by power fluctuations through SPM, ^F2
2&

and ^F3
2& are direct contributions from the noise to phase

jitter, and ^F1F2& is the interference term between these

two effects.

Note that our method takes into account only the inter-

action of a single pulse with ASE noise, neglecting other

contributions to phase jitter that might arise in WDM

systems, such as pulse-to-pulse intra- and interchannel

interactions. This point will be further discussed at the

end of Section 3.

3. APPLICATION TO DISPERSION-
MANAGED SYSTEMS

We tested the validity of the moment-method approach by

comparing it with direct Monte Carlo simulations. A

single pulse was propagated by use of the split-step Fou-

rier algorithm for two systems. The time, frequency, and

distance resolutions were 500 fs, 2 GHz, and 1 km, respec-

tively.

First, we considered a DM soliton link consisting of al-

ternating spans of anomalous dispersion fiber with D1

5 11 (ps/nm)/km, length L1 5 30 km, and Aeff

5 50 mm2 and normal dispersion fiber with D2

5 210 (ps/nm)/km, L2 5 30 km, and Aeff 5 50 mm2. An

unchirped sech-shaped pulse was launched at the mid-

point of the normal dispersion span, with duration

tFWHM 5 20 ps and peak power P0 5 7.2 mW.

The second transmission system was a quasi-linear

dispersion-compensated link formed by our alternat-

ing spans of standard single-mode fiber with

D1 5 16 (ps/nm)/km, L1 5 50 km, and Aeff 5 80 mm2

and dispersion-compensating fiber with D2

5 280 (ps/nm)/km, L2 5 10 km, and Aeff 5 45 mm2,

yielding a zero average dispersion. An unchirped

Gaussian-shaped pulse was launched at the midpoint of

the normal dispersion span, with duration tFWHM

5 20 ps and peak power P0 5 0.1 mW.

For both systems, lumped optical amplifiers were

placed every 60 km along the link, with nsp 5 1.5. The

average phase of the field was numerically evaluated by

use of Eq. (5) over an ensemble of 500 simulations with

different ASE noise to infer the phase variance. As only

single pulses at a single wavelength were considered, pat-

terning effects that may arise in real WDM communica-

tion systems are not studied here.

The phase standard deviation is plotted in Fig. 1 for

propagation distances less than 1 Mm. For the quasi-

linear system, we observe a global linear dependance of

the phase variance on propagation distance because

terms ^F2
2& and ^F3

2& dominate owing to the low peak

power. The phase uncertainty exhibits rapid oscillations

that are imparted by the dynamics of the pulse inside a

DM cell. As the variation of group-velocity dispersion is

large in the case of the quasi-linear system, these oscilla-

tions are particularly strong. Our method reproduces

these oscillation locations and amplitudes accurately.

For the DM soliton system, the cubic dependence of the

phase variance obtained in the case of constant-

dispersion soliton channels9 is still observed. This is due

to the predominance of the ^F1
2& term, since the large op-

tical peak power gives rise to significant SPM, thus trans-

ferring amplitude noise to the phase. Variations at the

scale of the DM cell are small because of the low value of

the dispersion map strength considered.

For distances over 1 Mm, we plotted only the phase

standard deviation at the locations of optical amplifiers

for clarity (Fig. 2). For the quasi-linear case, the

moment-method results are in good agreement with

Monte Carlo simulations for all distances. For the DM

soliton case, we note that the oscillations of the phase un-

certainty on a long-distance scale are reproduced with

good accuracy. The moment method slightly overesti-

mates the locations of these oscillations, probably because

of second-order effects. We note that the phase jitter

curves for the two systems cross at approximately 1 Mm.

This observation can be physically interpreted as follows.

Equations (20)–(22) show that the impact of noise on

phase jitter is inversely proportional to the energy per

Fig. 1. Standard deviation of the phase as a function of distance
over 1 Mm. Quasi-linear system: Monte Carlo (solid curve)
and moment method (dashed curve). DM soliton system:
Monte Carlo (dashed–dotted curve) and moment method
(crosses).
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pulse. In the short-distance case, the direct contribution

from ASE to phase noise predominates. The quasi-linear

system, operating at low energy per pulse, is more af-

fected by noise. As the propagation distance grows, the

contribution from nonlinear phase noise grows rapidly

when the operating power is high. Therefore the phase

jitter in the DM soliton case grows faster than in the

quasi-linear case, resulting in a higher phase jitter for

distances greater than 1 Mm. This shows the need for

phase-control techniques, particularly in the case of

highly nonlinear transmission systems.

We now discuss potential additional effects that might

participate in the generation of phase jitter in WDM sys-

tems. Both four-wave mixing and cross-phase modula-

tion result in interactions between pulses within a chan-

nel and from different channels. In DM systems,

interchannel four-wave mixing is not phase matched, so

that its overall influence on the propagation is small.

The contribution from interchannel cross-phase modula-

tion to phase jitter was shown to grow as the distance

square in a constant-dispersion soliton system.15 How-

ever, it has a small impact on the performance of such

systems because the random phase shifts experienced by

successive pulses are highly correlated, so that they can-

cel when a differential modulation format is used.

The impact of intrachannel effects on phase jitter is not

yet clearly assessed. To make a first evaluation of their

eventual contribution, we made simulations of the propa-

gation of seven pulses, each carrying a random phase cho-

sen in the set [0, p], in both of the aforementioned sys-

tems. The phase jitter for the central pulse was

evaluated by use of Monte Carlo simulations, which take

pulse-to-pulse interactions into account, and we also used

the moment-method approach, which takes into account

only the interaction with ASE noise. The isolation of the

central pulse was performed by evaluation of all time in-

tegrals over the central bit slot only. The pulse repetition

period was T 5 100 ps, which yielded a moderate overlap

in the DM soliton system (maximum FWHM pulse

width–to–time slot ratio tmax /T 5 0.34) and a strong

overlap for the quasi-linear system (tmax /T 5 0.70).

The phase standard deviation as a function of distance

at chirp-free points obtained in the multipulse simulation

is plotted in Fig. 3. For the DM soliton system, the result

is very similar to the single-pulse case, which indicates

that intrachannel pulse-to-pulse interactions play a mi-

nor role in the generation of phase jitter for this link.

For the quasi-linear case, the overlap is strong, so that

the computation of the average phase of a pulse given by

Eq. (5) is meaningful only at chirp-free points, when

pulses are confined to their time slot. At other points,

the contribution of neighboring pulses to the integral

makes impossible the numerical evaluation of the aver-

age phase for a given pulse. This comment applies to

both the Monte Carlo and the moment method. We ob-

serve that the Monte Carlo curve does not deviate signifi-

cantly from the single-pulse case, indicating that intrac-

hannel effects bring only a weak contribution to phase

jitter. However, the moment method is less accurate

than in the single-pulse case because the scalar products

of Eqs. (23)–(26) are nonzero only at amplifier locations,

where the overlap is maximum. Despite this effect, the

moment method performs reasonably well. Thus, for the

systems considered here, ASE noise and SPM appear to

be the dominant mechanisms at the origin of phase jitter.

However, the effects of intrachannel interactions in the

general context of phase-encoded signals remain to be

studied in depth.

4. CONCLUSION

We have derived an approach to compute phase jitter for

arbitrary pulse shapes in dispersion-managed links based

on the moment method. This approach assumes only

that the pulse essentially exhibits linear chirp. The mo-

ment method was applied to DM soliton and quasi-linear

dispersion-compensated communication systems. Com-

parisons with Monte Carlo simulations show an excellent

agreement, and the moment method requires only a frac-

tion of the computational time. Further research will in-

clude the study of the stabilizing influence of phase-

control techniques such as in-line filtering13 and active2

and passive1 nonlinearity compensation on such systems.
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