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Informatique Théorique et Applications

ON AN ALGORITHM TO DECIDE WHETHER A FREE

GROUP IS A FREE FACTOR OF ANOTHER ∗

Pedro V. Silva1 and Pascal Weil2

Abstract. We revisit the problem of deciding whether a finitely gen-
erated subgroup H is a free factor of a given free group F . Known
algorithms solve this problem in time polynomial in the sum of the
lengths of the generators of H and exponential in the rank of F . We
show that the latter dependency can be made exponential in the rank
difference rank(F ) − rank(H), which often makes a significant change.

Résumé. Nous revenons sur la question de décider si un sous-groupe
finiment engendré H est facteur libre d’un groupe libre donné F . On
trouve dans la littérature des algorithmes qui résolvent ce problème en
temps polynomial en la somme des longueurs des générateurs de H , et
exponentiel en le rang de F . Nous montrons que l’on peut remplacer la
dépendance exponentielle en rank(F ) par une dépendance exponentielle
en la différence rank(F )− rank(H), ce qui change souvent les choses de
façon considérable.

1991 Mathematics Subject Classification. 20E05,05C25.

The combinatorial aspects of group theory have attracted the attention of the-
oretical computer scientists for a long time, and for a variety of reasons. There
is no need to recall the importance of the concept of monoid (e.g. free, finite)
in the theory of automata since the foundational results of Schützenberger and
Eilenberg (see the books [1, 18]), and groups form a special case of monoids that

Keywords and phrases: combinatorial group theory, free groups, free factors, inverse au-
tomata, algorithms

∗ The first author acknowledges support from C.M.U.P., financed by F.C.T. (Portugal)
through the programmes POCTI and POSI, with national and European Community struc-
tural funds. Both authors acknowledge support from the European Science Foundation pro-
gram AutoMathA.
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sometimes play an important role in purely language- and monoid-theoretic ques-
tions (e.g. the type II conjecture, see [6] for a survey). Algorithmic questions
(the word problem, the conjugacy problem, etc.) have been very influential in
group theory throughout the 20th century, starting from the work of Dehn, and
specialists of combinatorics on words find a particular interest in the challenges
posed by the analogous combinatorics of the free group. Recent work on impor-
tant non-commutative groups like the Thompson group and the so-called automata
groups strongly relies on the formalism of finite state automata (see [3, 7, 22] for
recent examples). It is already a classical result that these automata-theoretic
and combinatorial points of view converge in the (admittedly simpler) study of
the subgroups of free groups, this is central in the algorithmic problem tackled
here and is discussed in detail in the first part of this paper.

Let us also mention another reason for the recent multiplication of research
projects on the boundary between computer science and combinatorial group the-
ory. Public-key cryptography relies heavily on group theory: sometimes finite
groups such as the groups of units in modular arithmetic, or the groups of ratio-
nal points on elliptic curves over finite fields, sometimes infinite non-commutative
groups like the braid groups (see for instance [2, 4, 21] and many others). At
any rate, the design of more robust cryptographic schemes and the attack of such
schemes rely on a deeper understanding of the combinatorial and algorithmic prop-
erties of non-commutative groups.

As mentioned above, the combinatorial and algorithmic problems concerning
free groups are of special interest. Free groups are archetypal groups, whose struc-
ture is far from being totally elucidated, and the efficient solution of standard
problems in their context can shed some light on the possible solution of the same
problems in more complex groups. Moreover, the solution of algorithmic prob-
lems in free groups may be more attainable since we can use the resources of
combinatorics on words and automata theory.

We now present the specific algorithmic problem addressed in this paper. For
the classical facts about free groups recorded below without a reference, we refer
the reader to the book by Lyndon and Schupp [12]. It is well-known that the
minimal sets of generators, or bases, of a free group F all have the same cardinality,
called the rank of F . Moreover, if F has finite rank r, every r-element generating
set of F is a basis, see [12, Prop. I.3.5]. In this paper, we consider only finite rank
free groups.

Let H be a subgroup of a free group F , written H ≤ F . Then H itself is a free
group whose rank may be greater than the rank of F . We say that H is a free

factor of F , written H ≤ff F , if there exist bases B of H and A of F such that
B ⊆ A (free factors can be defined in all groups by a universal property, but the
operational definition given here is sufficient for the purpose of this study). It is
well known that one can decide whether a given finite rank subgroup H ≤ F is
a free factor of F , but the known algorithms have a rather high time complexity.
More precisely, the best of these algorithms require time that is polynomial in the
size of H and exponential in the rank of F , see Section 1.3 below for the details.
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Here, the size of H is taken to be the sum of the lengths of a finite set of generators
of H in F .

We propose a new algorithm to decide whether a given finitely generated sub-
group H is a free factor of the free group F , which is polynomial in the size of H
and exponential in the rank difference between F and H . In many instances, this
represents a substantial advantage over exponential dependency in the rank of F .

Our algorithm relies essentially on a careful analysis of the construction of the
graph representation ofH . More precisely, once a basis A of the ambient free group
F is fixed, there is a natural and elegant representation of the finitely generated
subgroups of F by A-labeled graphs (or inverse automata). This construction —
a graphical representation of ideas that go back to the early part of the twentieth
century [19, Chap. 11] — was made explicit by Serre [20] and Stallings [23]. It has
been used to great profit by many authors since the late 1970s, see [8, 13, 14, 26]
for recent examples. Given a finite set of generators of H (as reduced words
over the alphabet A ∪ A−1), the graph representation of H can be effectively
constructed (see [23], [14], etc). The number of vertices and edges of this graph
is bounded above by ℓ, the sum of the lengths of a set of generators of H , and
the whole representation can be computed in time at most O(ℓ2) (in fact, in time
O(ℓ log∗ ℓ) according to a recent announcement1 by Touikan [25]). We discuss this
representation in more detail in Section 1.2 below, and we show in Sections 2 and
3 how to use it to decide more efficiently the free factor relation.

It is interesting to note that our algorithm is the first to be expressed entirely
in terms of the graph representation of H . Let us also emphasize that we do not
claim that our algorithm is optimal. It is an open question whether one can decide
the free factor relation H ≤ff K in time polynomial both in the size of H and in
the size, or the rank of K.

1. Background

If A is a basis of a free group F , we often write F = F (A) and we represent the
elements of F as reduced words over the alphabet A. More precisely, we consider
the set of all words on the symmetrized alphabet Ã = A ∪ A−1, where A−1 =
{a−1 | a ∈ A} is a set that is disjoint from A, equipped with an explicit bijection
with A, namely a 7→ a−1. It is customary to extend the mapping u 7→ u−1 to all
words u ∈ Ã∗ by letting (a−1)−1 = a for each a ∈ A, 1−1 = 1 (where 1 denotes the

empty word) and (a1a2 · · · an)−1 = a−1
n · · · a

−1
2 a−1

1 for all a1, . . . , an ∈ Ã. A word

in Ã∗ is reduced if it contains no factor of the form aa−1 or a−1a with a ∈ A, and
it is well known that F can be identified with the set of reduced words over A.
We denote by ρ the map that assigns to each word u the corresponding reduced
word uρ ∈ F (A), obtained by iteratively deleting all factors of the form aa−1 or
a−1a (a ∈ A).

1For a positive integer n, log∗(n) is the least integer k such that the k-th iterate of the log
function of n is at most 1. The growth of log∗(n) is so slow that it can be considered a constant
for all practical purposes. . .
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1.1. On inverse automata

We describe the main tool for the representation of subgroups of free groups
in terms of automata (see [17]). Readers less familiar with this terminology may
think of automata as edge-labeled directed graphs.

An automaton on alphabet A is a triple of the form A = (Q, q0, E) where Q is
a finite set called the state set, q0 ∈ Q is the initial state, and E ⊆ Q × A × Q
is the set of edges, or transitions. A transition (p, a, q) is said to be from state p,
to state q, with label a. The label of a path in A (a finite sequence of consecutive
transitions) is the sequence of the labels of its transitions, a word on alphabet A,

that is, an element of the free monoid A∗. We write p
u
−→ q if there is a path from

state p to state q with label u. The language accepted by A is the set L(A) of all
words in A∗ which label a path in A from q0 to q0.

This definition of automata leads naturally to the definition of a homomorphism

ϕ from an automaton A = (Q, q0, E) to an automaton A′ = (Q′, q′0, E
′) (over the

same alphabet A): ϕ is a mapping from Q to Q′ such that ϕ(q0) = q′0, and such
that whenever (p, a, q) ∈ E, we also have (ϕ(p), a, ϕ(q)) ∈ E′. The homomorphism
ϕ is an isomorphism if it is a bijection and if ϕ−1 is also a homomorphism.

The automaton A is called deterministic if no two distinct edges with the same
initial state bear the same label, that is,

(p, a, q), (p, a, q′) ∈ E =⇒ q = q′.

The automaton is called trim if every state q ∈ Q lies in some path from q0 to q0.
In the sequel, we consider automata where the alphabet is symmetrized, that

is, the alphabet is of the form Ã = A ∪ A−1. We say that A is dual if for each
a ∈ A, there is an a-labeled edge from state p to state q if and only if there is an
a−1-labeled edge from q to p,

(p, a, q) ∈ E ⇐⇒ (q, a−1, p) ∈ E.

Let us immediately record the following fact.

Fact 1.1. Let A be a deterministic dual automaton. If a word u labels a path
in A from state p to state q, then so does the corresponding reduced word uρ.
Moreover L(A) is a submonoid of Ã∗ and L(A)ρ is a subgroup of F (A).

Now let A = (Q, q0, E) be a trim dual automaton and let p, q ∈ Q be states

of A. If w = a1 · · ·an ∈ Ã
∗ is a non-empty word, the expansion of A by (p, w, q)

is the automaton obtained from A by adding n − 1 vertices q1, . . . , qn−1 and 2n
edges

p
a1−→ q1

a2−→ . . .
an−1

−→ qn−1
an−→ q

and

q
a−1

n−→ qn−1

a
−1

n−1

−→ . . .
a
−1

2−→ q1
a
−1

1−→ p.

Note that this automaton is still trim and dual. Moreover, if p = q = q0, then we
observe the following.
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Proposition 1.2. Let A = (Q, q0, E) be a trim dual automaton, let H = L(A)ρ
and let w be a non-empty word. If B is the expansion of A by (q0, w, q0), then

L(B)ρ is the subgroup generated by H and wρ, that is, L(B)ρ = 〈H,w〉.

Proof. Let C be the dual automaton consisting of the state q0 and the states and
edges added to A in the expansion. It is immediate that L(C)ρ is the subgroup of
F (A) generated by wρ.

If u ∈ L(B), we can factor a path q0
u
−→ q0 according to the successive visits

of state q0. The resulting factorization of u makes it clear that u is a product of
elements of L(A) and L(C). Thus, L(B) is the submonoid generated by L(A) ∪
L(C), and L(B)ρ is the subgroup generated by L(A)ρ and wρ. This concludes the
proof. �

1.2. Reduced inverse automata

The automaton A is called inverse if it is deterministic, trim and dual. It is
reduced if every state q ∈ Q lies in some path from q0 to q0, labeled by a (possibly
empty) reduced word. We note the following result, a cousin of [24, Thm 1.16].

Proposition 1.3. If A and B are reduced inverse automata such that L(A)ρ =
L(B)ρ, then A and B are isomorphic.

Proof. Let A = (Q, q0, E) and B = (P, p0, D) be reduced inverse automata such
that L(A)ρ = L(B)ρ. We construct an isomorphism ϕ between A and B as follows.
We first let ϕ(q0) = p0.

Let q ∈ Q. Since A is reduced, there exist reduced words u and v such that the

word uv is reduced, q0
u
−→ q and q

v
−→ q0. Then uv ∈ L(A)ρ, so uv ∈ L(B)ρ, and

hence uv ∈ L(B) by Fact 1.1. Thus uv labels a path in B from p0 to p0, and we

let ϕ(q) be the unique state in P such that p0
u
−→ϕ(q)

v
−→ p0.

We first verify that ϕ is well defined. Suppose that uv and u′v′ are reduced

words such that q0
u
−→ q

v
−→ q0 and q0

u′

−→ q
v′

−→ q0 in A. We want to show that

if p0
u
−→ p

v
−→ p0 and p0

u′

−→ p′
v′

−→ p0 in B, then p = p′. We note that u′v labels
a path from q0 to q0 in A. If u′v is a reduced word, then by the same reasoning

as above, u′v labels a path in B from p0 to p0, say, p0
u′

−→ p′′
v
−→ p0 and the

deterministic property of B implies that p′ = p′′ = p.
If u′v is not reduced, and a is the first letter of v, then the last letter of u′ is

a−1 while the last letter of u is not a−1. Therefore u′u−1 is reduced, u′u−1 ∈ L(A)

and again, there is a path in B of the form p0
u′

−→ p′′
u−1

−→ p0. By determinism, it
follows that p′ = p′′ = p.

This shows that ϕ is well defined. A dual construction yields a well-defined

mapping ψ from P to Q such that, whenever p0
u
−→ p

v
−→ p0 in B and uv is a

reduced word, then q0
u
−→ψ(p)

v
−→ q0 in A. Using the determinism of A and B, it

is now immediate that ψ ◦ ϕ is the identity on Q and ϕ ◦ ψ is the identity on P .
There remains to verify that ϕ and ϕ−1 are homomorphisms. The case of ϕ−1

is dual of that of ϕ and we treat only the latter. That is, we want to show that if
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(q, a, q′) is a transition in A, then (ϕ(q), a, ϕ(q′)) is a transition in B. Let uv and

u′v′ be reduced words such that q0
u
−→ q

v
−→ q0 and q0

u′

−→ q′
v′

−→ q0. In particular,

we have p0
u
−→ϕ(q)

v
−→ p0 and p0

u′

−→ϕ(q′)
v′

−→ p0 in B.

q0

q

q′

q0

u v

a

u′ v′

If uav′ is reduced, then in B, there is a path from p0 to p0 labeled uav′, and
by determinism, there is a transition (ϕ(q), a, ϕ(q′)). If uav′ is not reduced, then
either ua is not reduced or av′ is not reduced. If ua is not reduced, then u =

u1a
−1 and by determinism, q0

u1−→ q′. As in the first part of the proof, it follows

that at least one of u1v
′ and u1u

′−1
is reduced, so p0

u1−→ϕ(q′) in B and hence
there is a transition (ϕ(q), a, ϕ(q′)). The case where av′ is not reduced is handled
symmetrically, and this concludes the proof. �

Let H be a subgroup of F (A). Say that an automaton A on alphabet A repre-

sents H if A is reduced and inverse and if L(A)ρ = H . Proposition 1.3 shows that
there exists at most one such automaton, and we denote it by ΓA(H) if it exists.
We now discuss the existence and the construction of ΓA(H) when H is finitely
generated. (As it turns out, ΓA(H) always exists, but our interest in this paper is
restricted to the finite rank case.)

Let A be an automaton and let p, q be distinct states of A. The automaton
obtained from A by identifying states p and q is constructed as follows: its state
set is Q \ {p, q}∪{n}, where n is a new state; its initial state is q0 (or n if p or q is
equal to q0); and its set of transitions is obtained from E by replacing everywhere
p and q by n. If A is trim or dual, then so is the automaton obtained from A by
identifying a pair of states.

Now let A be a dual automaton. If A is not deterministic, there exist transitions
(r, a, p) and (r, a, q) with p 6= q and a ∈ Ã. Identifying p and q yields a new dual
automaton B, and we say that B is obtained from A by an elementary reduction

of type 1.

Fact 1.4. Let A be a dual automaton and let B be obtained from A by an
elementary reduction of type 1. Then L(A)ρ = L(B)ρ.

Proof. It is easily seen that L(A) ⊆ L(B). For the converse, we use the notation
given above: in B, the states p and q of A are replaced with a new state n. Let
u ∈ L(B). Then there exists a path labeled u from the initial state of B (say, q0)
to itself. If that path does not visit state n, then u also labels a path from q0 to
itself in A and hence u ∈ L(A).
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If that path does visit state n, we consider the factorization of u given by the
passage of that path through n: we have u = u0u1 · · ·ur, r ≥ 1 and

q0
u0−→n

u1−→n · · ·n
ur−→ q0.

It follows that in A, ui-labelled paths exist, with end states p or q (or q0). Then
one of u0 and u0a

−1a labels a path in A from q0 to q. Similarly, one of ur and
a−1aur labels a path from q to q0 (making due allowance if p or q is equal to q0).
And for each 1 ≤ i ≤ r, one of ui, a

−1aui, uia
−1a and a−1auia

−1a labels a path

in A from q to q. Therefore, there exists a path in A of the form q0
v
−→ q0 such

that uρ = vρ, which concludes the proof. �

Now assume that A is a deterministic dual automaton.

Fact 1.5. Let A be an inverse automaton. Then A is non-reduced if and only if
there exist states q 6= q0 and p, and a letter a ∈ Ã such that the only transitions
of A involving q are (p, a, q) and (q, a−1, p).

In graph-theoretic terms, this means that A is reduced if and only if no vertex
of A has degree one (more precisely: no vertex is adjacent to a single A-labeled
edge), except possibly q0.

Proof. By definition, A is not reduced if and only if there exists a state q that
does not lie on any path from q0 to itself, labeled by a reduced word. We first
observe that the state q cannot be equal to q0 since the empty word is reduced,
and labels a path from q0 to itself. Suppose now that there exist reduced words
u, v with distinct last letters, labeling paths from q0 to q: then uv−1 is a reduced
word, labeling a path from q0 to itself and visiting q. On the other hand, if every
reduced word labeling a path from q0 to q ends with, say, letter a ∈ Ã, then every
path from q0 to itself visiting q has a non-reduced label. Thus A is not reduced
if and only if there exists a state q 6= q0 and every reduced word labeling a path
from q0 to q ends with the same letter. By determinism, this is equivalent to the
existence of another state p such that the transitions involving q are (p, a, q) and
(q, a−1, p). �

Let A be inverse and not reduced, and let a, p, q be as in Fact 1.5. If B is
obtained from A by omitting state q and the transitions involving it, we observe
that B is again an inverse automaton, and we say that B is obtained from A by
an elementary reduction of type 2.

Fact 1.6. Let A be an inverse automaton and let B be obtained from A by an
elementary reduction of type 2. Then L(A)ρ = L(B)ρ.

Proof. Let a be a letter and let p, q be states of A as in Fact 1.5, and let us assume
that B is obtained from A by omitting state q and the transitions involving it. It is
easily seen that L(B) ⊆ L(A). Conversely, let u ∈ L(A). By Fact 1.1, uρ ∈ L(A).

Now Fact 1.5 shows that the path q0
u
−→ ρq0 in A cannot visit state q, since uρ is

a reduced word. It follows that this path is also a path in B, uρ ∈ L(B) and hence
uρ ∈ L(B)ρ. �
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Let A be a trim, dual automaton, and let B be an automaton obtained by
iteratively performing elementary reductions, first of type 1 until the automaton
is inverse, and then of type 2 until none is possible. Then B is a reduced inverse
automaton, we write B = Aρ and we say that B is obtained from A by reduction.
Moreover, Facts 1.4 and 1.6 show that L(A)ρ = L(B)ρ.

This leads directly to the well-known algorithm to construct a reduced inverse
automaton representing a given finitely generated subgroup H . Let h1, . . . , hn

be generators of H , and let us consider the automaton obtained from the trivial
automaton (one vertex q0, no transitions) by performing successively expansions
by (q0, hi, q0) (1 ≤ i ≤ n) and then reducing the automaton. It follows from
Propositions 1.2 and 1.3 that the resulting automaton is ΓA(H). Note that it
does not matter which set of generators of H was used, nor in which order the
elementary reductions were performed.

Remark 1.7. This construction of ΓA(H) is well known, and can be described in
many different ways, notably in terms of immersions over the bouquet of circles
(Stallings [23]) or of closed inverse submonoids of a free inverse monoid (Margolis
and Meakin [13]).

Fact 1.8. There is a well-known converse to the above construction: if A is a
reduced inverse automaton and H = L(A)ρ, then H has finite rank and a basis for
H can be computed as follows (see Stallings [23]). Given a spanning tree T of the
(graph underlying the) automaton A, for each state p, let up be the reduced word
labeling a path from q0 to p inside the tree T . For each transition e = (p, a, q), let
be = upau

−1
q : then a basis of H consists of the elements be, where e runs over the

transitions e = (p, a, q) not in T and such that a ∈ A.
We note that, given a finite set h1, . . . , hn of elements of F (A) with total length

ℓ =
∑

i |hi|, one can construct ΓA(H) in time at most O(ℓ2) and ΓA(H) has
v ≤ ℓ − n+ 1 states. Moreover, finding a basis of H can be done in time at most
O(v2) (O(v log∗ v) according to Touikan’s announcement [25]), and the rank of H
is equal to e− v + 1, where e is the number of edges in ΓA(H).

1.3. On the complexity of Whitehead and other algorithms

It is well known that one can decide, given a subgroup H of a finite rank free
group F , whether H is a free factor of F . We briefly describe here the main known
algorithms and discuss their complexity.

Let H be a finitely generated subgroup of a free group F of rank r, with basis
A. Let h1, . . . , hn be a generating set of H . By the results summarized in Fact 1.8,
up to a quadratic time computation, we may assume that h1, . . . , hn is a basis of
H . Let ℓ = |h1|+ · · ·+ |hn| be the total length of the tuple (hi)i, and let d = r−n
be the rank difference between F and H – which we assume to be positive, since
H can be a proper free factor of F only if n < r.

Federer and Jónsson (see [12, Prop. I.2.26]) gave the following observation and
decision procedure: H is a free factor of F if and only if there exist d words
hn+1, . . . , hr, each of length at most max{|hi| | 1 ≤ i ≤ n}, such that h1, . . . , hr
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generate the whole of F . The resulting algorithm requires testing every suitable
d-tuple of reduced words on alphabet A. Each of these tests (does a certain r-tuple
of words generate F?) takes time polynomial in the total length of the r-tuple,
and hence in dℓ. However, the number of tests is O(rdℓ), which is exponential in
ℓ and d.

This approach leads to the following.

Fact 1.9. Deciding whether H ≤ff K is in NP , with respect to dℓ.

Proof. To verify that H ≤ff K, we need to guess d words of length at most ℓ, and
verify that together with H , they generate F , which can be done in O((dℓ)2). �

Another approach is based on the use of Whitehead automorphisms. We refer
the readers to [12, Sec. I.4] for the definition of these automorphisms, it suffices to
note here that the set W of Whitehead automorphisms of F which do not preserve
length, has exponential cardinality (in terms of r). A result of Whitehead [12,
Prop. I.4.24] shows the following: if there exists an automorphism ϕ of F such
that the total length of (ϕ(hi))i is strictly less than ℓ, then there exists such an
automorphism in W . In particular, an algorithm to compute the minimum total
length of an automorphic image of the tuple (hi)i consists in repeatedly applying
the following step: try every automorphism ψ ∈ W until the total length of (ψ(hi))i

is strictly less than the total length of (hi)i; if such a ψ exists, replace (hi)i by
(ψ(hi))i; otherwise, stop and output the total length of (hi)i.

This applies to the decision of the free factor relation since H ≤ff F if and
only if there exists an automorphism ϕ mapping a basis of H to a subset of A.
Thus an algorithm consists in first computing a basis of H , and assuming that
h1, . . . , hn is a basis, verifying whether the minimum total length of (ϕ(hi))i when
ϕ runs over the automorphisms of F , is exactly n. This algorithm may require
O((ℓ−n)card(W )) steps, each of which consists in computing the image of a tuple
of length at most ℓ under an automorphism, and hence has complexity O(ℓ). Thus
the time complexity of this algorithm is O(ℓ2 card(W )), which is quadratic in ℓ

and exponential in r.
A variant of this algorithm was established by Gersten [5], who showed that a

similar method applies to find the minimum size (number of vertices) of ΓA(ϕ(H)),
when ϕ runs over the automorphisms of F (A). It is clear that H is a free factor
of F (A) if and only if there exists an automorphism ϕ such that ΓA(ϕ(H)) has a
single vertex. The time complexity is computed as above, where the number of
vertices of ΓA(H) is substituted for the total length of a basis for H . As noted
earlier, this number of vertices is usually substantially smaller than the total length
of a basis, but the two values are linearly dependent, so the order of magnitude of
the time complexity is not modified, notably the exponential dependence in r.

Remark 1.10. The discussion of Whitehead’s algorithm above concerns only
the so-called easy part of the algorithm (see for instance Kapovich, Miasnikov
and Shpilrain [9]). Results by Miasnikov and Shpilrain [15], Khan [10], and most
recently by Donghi Lee [11] on the possible polynomial complexity of the hard part
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of the algorithm also consider the rank of the ambient free group as a constant,
and do not question the actual exponential dependence in that parameter.

2. A careful look at the expansions and reductions of

inverse automata

Let A be a reduced inverse automaton.
Let B be obtained from A by performing an expansion, say by (p, w, q), and

then reducing the resulting automaton. In this situation, we write A −→
(p,w,q)
exp B,

or simply A −→exp B. We distinguish two special cases.
• If the reduction following the expansion does not involve identifying or omit-

ting states of A, or equivalently if A embeds in B, we say that B is obtained from

A by a reduced expansion and we write A −→
(p,w,q)
re B or A −→re B.

• If the states p and q are equal to the distinguished state q0 of A, we say that
B is obtained from A by an e-step and we write A −→w

e B, or simply A −→e B.
Finally, let B be obtained from A by identifying two distinct vertices p and q,

and then reducing the resulting automaton. Then we say that B is obtained from
A by an i-step and we write A −→p=q

i B, or simply A −→i B.
Note that if A −→exp B, A −→re B, A −→e B or A −→i B, then B is a reduced

inverse automaton.
We first record a few facts.

Fact 2.1. Let u be a reduced word labeling a path in A from a state p to a state
p′, and from a state q to a state q′,

p
u
−→ p′, q

u
−→ q′.

By definition of the reduction of dual automata, the identification of p and q

implies that of p′ and q′, and the converse holds as well. Thus A −→p=q
i B if and

only if A −→p′=q′

i B.

Let us now examine in detail the effect of an operation of the form −→exp.

Fact 2.2. Let p, q be states of A and let w be a non-empty reduced word. Let
u be the longest prefix of w that can be read in A from state p, and let v be the
longest suffix of w that can be read in A to state q (that is, v−1 is the longest
prefix of w−1 that can be read in A from state q). We distinguish two cases:

(1) If |u| + |v| < |w|, then w = uw′v for some non-empty reduced word w′.
If we let p′ (resp. q′) be the end (resp. start) state of the path labeled u

(resp. v) and starting in p (resp. ending in q),

p
u
−→ p′

w′

−→ q′
v
−→ q,

then the reduction process on the result of the expansion of A by (p, w, q)
identifies the |u| first edges and the |v| last edges of the added path with
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existing edges of A, so that A −→
(p,w,q)
exp B if and only if A −→

(p′,w′,q′)
exp B

and the latter is a reduced expansion.
(2) If |u|+ |v| ≥ |w|, then there exist words x, y, z, possibly empty, such that

u = xy, v = yz and w = xyz. Let p′, p′′, q′, q′′ be the states of A defined
by the following paths

p
x
−→ p′

y
−→ p′′, q′

y
−→ q′′

z
−→ q.

Then A −→
(p,w,q)
exp B if and only if A −→p′=q′

i B, if and only if A −→p′′=q′′

i

B.

We derive from Fact 2.2 the following statement.

Proposition 2.3. Let A and B be inverse automata. If A −→w
e B, then A −→i B

or A −→
(p,u,q)
re B for some states p and q and a reduced word u such that |u| ≤ |w|.

The following converse statements are derived from Facts 2.1 and 2.2.

Proposition 2.4. Let A be a reduced inverse automaton, let H = L(A)ρ, let u and

v be reduced words labeling paths q
v
−→ q0

u
−→ p in A, and suppose that A −→p=q

i B.

Then A −→uv
e B and L(B)ρ = 〈H,uv〉.

In particular, rank(L(B)ρ) ≤ 1 + rank(H). If rank(L(B)ρ) = 1 + rank(H), then

H ≤ff L(B)ρ and if C is a basis of H, then C ∪ {uv} is a basis of L(B)ρ.

Proof. Let A′ be the expansion of A by (q0, uv, q0). The analysis in Fact 2.2 (2)
shows that a step in the reduction of A′ is provided by the automaton obtained
in identifying p and q. By Proposition 1.2 we have L(B)ρ = 〈H,uv〉 (hence the
rank inequality), and the uniqueness statement in Proposition 1.3 then shows that
A −→uv

e B.
Let us now assume that rank(L(B)ρ) = 1 + rank(H), and that C is a basis of

H . Then C ∪ {uv} is a generating set of L(B)ρ with cardinality equal to the rank
of L(B)ρ, so C ∪ {uv} is a basis of that subgroup by [12, Prop. I.3.5]. �

Proposition 2.5. Let A and B be reduced inverse automata, let w be a reduced

word such that A −→
(p,w,q)
re B, let H = L(A)ρ, and let u and v be reduced words

labeling paths q
v
−→ q0

u
−→ p in A. Then A −→uwv

e B and L(B)ρ = 〈H,uwv〉.
Moreover, H ≤ff L(B)ρ, rank(L(B)ρ) = 1 + rank(H) and if C is a basis of H,

then C ∪ {uwv} is a basis of L(B)ρ.

Proof. Since the expansion of A by (p, w, q) is a reduced expansion, the word uwv
is reduced and the expansion by (q0, uwv, q0) falls in the situation described in
Fact 2.2 (1). Together with Proposition 1.2, it follows that A −→uwv

e B, which
concludes the verification that of the first part of the proposition.

The free factor and the rank statements follow from the statement on a basis
for L(B)ρ, which is a direct consequence of the definition of a reduced expansion
and of the discussion on bases and spanning trees in Fact 1.8. �

We now introduce a measure of the cost of a reduced expansion or an i-step
σ, written λ(σ): if σ is an i-step, then λ(σ) = 0; if σ is a reduced expansion,
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σ =−→
(p,w,q)
re , its cost is the length of w, λ(σ) = |w|. We extend this notion of

cost to finite sequences of i-steps and reduced expansions: if σ̄ = (σ1, . . . , σn) is
such a sequence, we let

λ(σ̄) = (λ(σ1), . . . , λ(σn)).

Finally, we introduce an order relation on the set of finite sequences of non-negative
integers. Let k̄ = (k1, . . . , kn) and ℓ̄ = (ℓ1, . . . , ℓm) be such sequences. We say that
k̄ � ℓ̄ if

either n < m,
or n = m and

∑n

i=1 ki <
∑m

i=1 ℓi,
or n = m,

∑n
i=1 ki =

∑m
i=1 ℓi and k̄ precedes ℓ̄ in the lexicographic order.

It is routine to check that � is a well-order on the set of finite sequences of
non-negative integers, which is stable under the concatenation of sequences. We
write k̄ ≺ ℓ̄ if k̄ � ℓ̄ and k̄ 6= ℓ̄.

Proposition 2.6. Let A, A′ and B be inverse automata such that A′ is obtained

from A by a reduced expansion σ1 and B is obtained from A′ by an i-step σ2,

A −→re A
′ −→i B.

Then there exist a sequence of reduced expansions or i-steps σ̄′ of length 1 or 2

such that B is obtained from A by applying the steps in σ̄′ and λ(σ̄′) ≺ λ(σ1, σ2).

Proof. Suppose that A −→
(p,w,q)
re A′ −→r=s

i B with r 6= s. The cost of this
sequence of transformations is (|w|, 0).

Let Q be the state set of A and let u and v be reduced paths,

q
v
−→ q0

u
−→ p.

Then uwv is a reduced word and L(A′)ρ = 〈L(A)ρ, uwv〉 by Proposition 2.5. We
distinguish three cases, depending whether or not r and s lie in Q.
Case 1: Both r and s are in Q. Let x and y be reduced words labeling paths in A

s
y
−→ q0

x
−→ r. Then the same words label similar paths in A′ and it follows from

Proposition 2.4 that

L(B)ρ = 〈L(A′)ρ, xy〉 = 〈L(A)ρ, uwv, xy〉.

Let also A′′ and B′ be determined by A −→r=s
i A′′ −→uwv

e B′. Then L(B′)ρ is
also equal to 〈L(A)ρ, xy, uwv〉, so that B = B′ by Proposition 1.3.

Note that the words u and v label paths from and into state q0 in A′′ as well.
It follows from Proposition 2.3 that, if uwv 6∈ L(A′′), then B can be obtained from

A′′ by an i-step or by a reduced expansion of the form −→
(t,z,t′)
re with |z| ≤ |w|.

Thus B is obtained from A either by a sequence of 1 or 2 transformations, of
cost 0 or (0, k) with 0 ≤ k ≤ |w|. This is ≺-less than (|w|, 0), as expected.
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Case 2: Exactly one of r and s is in Q. Without loss of generality, we may assume
that r ∈ Q and s 6∈ Q. Let z be a reduced word labeling a path from q0 to r in
A, and hence also in A′. Let g be the unique reduced word labeling a path from
p to s in A′, using only edges that were not in A. By assumption, g is a proper,
non-empty prefix of w. Moreover, by Propositions 1.2 and 2.4,

L(B)ρ = 〈L(A′)ρ, ugz−1〉 = 〈L(A)ρ, uwv, ugz−1〉.

Let h be the longest common suffix of g and z, so that g = g′h, z = z′h, g′z′
−1

is reduced and we have the following paths in A′,

q0
z′

−→ r′
h
−→ r, p

g′

−→ s′
h
−→ s.

Fact 2.1 shows that A′ −→r′=s′

i B, so we may assume that h = 1, g = g′ and
z = z′. There is a possibility that the word g is now empty (if h was in fact equal
to g), but in that case, we are returned to the situation of Case 1, with s′ = p.
Thus we may still assume that g 6= 1. In particular, the word ugz−1 is reduced.

Then let A′′ and B′ be defined by A −→ugz−1

e A′′ −→uwv
e B′. Again L(B′)ρ =

〈L(A)ρ, uwv, ugz−1〉, so B = B′ by Proposition 1.3.
Proposition 2.3 states that each e-step can be replaced by an i-step or by a

reduced expansion of cost bounded above by the cost of the e-step. Going back to

Fact 2.2, we see that the e-step A −→ugz−1

e A′′ can be replaced by a transformation
of cost k ≤ |g| since both u and z can be read from state q0 in A (in fact, of cost
exactly |g| by definition of g). As for the e-step A′′ −→uwv

e B, it can be replaced
by a transformation of cost ℓ ≤ |w| − |g| since ug (a prefix of uw) and v can be
read to state q0 in A′′.

Now, it suffices to verify that (k, ℓ) ≺ (|w|, 0), which is easily done if we observe
that k + ℓ ≤ |w| and k < |w|.
Case 3: Neither r nor s is in Q. Without loss of generality, we may assume that r
occurs before s along the w-labeled path from p to q. Thus, the word w factors as
w = w1w2w3 and the path in A′ made of edges added to A factors as

p
w1−→ r

w2−→ s
w3−→ q.

Since r 6= s and these vertices are not in Q, each of the three factors w1, w2, w3 is
non-empty. Moreover,

L(B)ρ = 〈L(A′)ρ, uw1w3v〉 = 〈L(A)ρ, uwv, uw1w3v〉.

Let h be the longest common suffix of w1 and w−1
3 , so that w1 = w′

1h, w3 =
h−1w′

3, w
′
1w

′
3 is reduced and we have the following paths in A′,

p
w′

1−→ r′
h
−→ r

w2−→ s
h
←− s′

w′

3−→ q.

Proposition 2.1 shows that A′ −→r′=s′

i B, so we may assume that h = 1, w1 = w′
1

and w3 = w′
3. There is a possibility that the words w1 or w3 be now empty (if h
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was in fact equal to w1 or w3), but in that case, we are returned to the situation
of Cases 1 or 2, with r′ = p or s′ = q. Thus we may still assume that w1 6= 1 and
w3 6= 1. In particular, the word uw1w3v is reduced.

Then let A′′ and B′ be defined by A −→uw1w3v
e A′′ −→uwv

e B′. Then L(B′)ρ =
〈L(A)ρ, uwv, uw1w3v〉, so B = B′ by Proposition 1.3.

As in Case 2, we use Fact 2.2 to verify that the e-step A −→uw1w3v
e A′′ can be

replaced by a reduced expansion of cost k = |w1w3| since u and v are the maximal
prefix and suffix of uw1w3v that can be read from and to state q0 in A. As for the
e-step A′′ −→uwv

e B, it can be replaced by a reduced expansion of cost ℓ = |w2|
since uw1 and w3v are the maximal prefix and suffix of uwv that can be read from
and to state q0 in A′′.

Now, it suffices to verify that (k, ℓ) ≺ (|w|, 0), which is easily done if we observe
that k + ℓ = |w| and k < |w|. �

3. Deciding the free factor relation

3.1. A geometric characterization of free factors

We put together the technical results from Section 2 to prove the following
characterization of free factors.

Theorem 3.1. Let H,K be finitely generated subgroups of F = F (A) and assume

that d = rank(K)− rank(H) > 0. Then H is a free factor of K if and only if the

inverse automaton ΓA(H) can be transformed in ΓA(K) by a sequence of d′ ≤ d

i-steps followed by d− d′ reduced expansions.

Proof. We first observe that H is a free factor of K if and only if there exist d
elements k1, . . . , kd of F (A) such that 〈H ∪ {k1, . . . , kd}〉 = K. This follows from
the fact that an r-element generating set in a rank r free group, is a basis [12, Prop.
I.3.5].

By definition of e-steps, this means that H ≤ff K if and only if ΓA(H) yields
ΓA(K) by a sequence of d e-steps.

Now Propositions 2.3, 2.4 and 2.5 show that this is equivalent to the fact that
ΓA(H) yields ΓA(K) by a sequence of d i-steps or reduced expansions.

Since � is a well-order on the set of finite sequences of non-negative integers,
we may consider a sequence σ̄ of d i-steps and reduced expansions leading from
ΓA(H) to ΓA(K), which is �-minimal. Proposition 2.6, together with the stability
of � under concatenation, then shows that the i-steps in σ̄ come before the reduced
expansions. Thus, H ≤ff K if and only if ΓA(H) yields ΓA(K) by a sequence of
d′ i-steps followed by d− d′ reduced expansions. �

It follows from the discussion on bases and spanning trees in Fact 1.8 that if
ΓA(H) embeds in ΓA(K), then H is a free factor of K. Not every free factor of K
occurs that way, and those that do are called the graphical free factors of K (with

respect to A). It is easily verified that H is a graphical free factor of K if and only
if ΓA(H) yields ΓA(K) by a sequence of reduced expansions.
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Corollary 3.2. Let H,K be finitely generated subgroups of F = F (A) and assume

that d = rank(K)− rank(H) > 0. Then H is a free factor of K if and only if the

inverse automaton ΓA(H) can be transformed by a sequence of d′ ≤ d i-steps into

some ΓA(L) such that rank(L) = rank(H) + d′ and L is a graphical free factor of

K with respect to A.

Proof. Let us first assume that H ≤ff K. By Theorem 3.1, for some d′ ≤ d, ΓA(H)
can be taken to some ΓA(L) by a sequence of d′ i-steps, and ΓA(L) can be taken to
ΓA(K) by a sequence of d−d′ re-steps. Since rank(K) = rank(H)+d and an i-step
or an re-step can increment the rank by at most one (Propositions 2.4 and 2.5), L
must have rank exactly rank(H) + d′.

Conversely, suppose that a sequence of d′ ≤ d i-steps takes ΓA(H) to ΓA(L)
in such a way that rank(L) = rank(H) + d′ and ΓA(L) embeds in ΓA(K). By
Propositions 2.4 and 2.5 again, we have H ≤ff L ≤ff K, and hence H ≤ff K. �

Remark 3.3. We observe the following by-product of the proof of Corollary 3.2:
if ΓA(H) can be transformed into ΓA(L) by a sequence of d′ i-steps such that
rank(L) = d′ + rank(H), then for every i-step A −→i B occurring in that sequence,
we have rank(L(B)ρ) = 1 + rank(L(A)ρ). We say that such an i-step is rank-

incrementing.

In the special case where K = F , we have the following statement.

Corollary 3.4. Let H be a finitely generated subgroup of F = F (A), let A0

be the set of letters in A that occur in ΓA(H) and let d = |A0| − rank(H) =
rank(F (A0)) − rank(H). Then H is a free factor of F if and only if d ≥ 0 and

ΓA(H) can be transformed into a one-vertex automaton by a sequence of d i-steps.

Proof. By Corollary 3.2, H is a free factor of F (A) if and only if ΓA(H) yields
a one-vertex automaton B by a sequence of d′ ≤ |A| − rank(H) i-steps, in such a
way that L(B)ρ has rank d′ + rank(H). Now the set of letters occurring in such
an automaton B must be exactly A0, so L(B)ρ = F (A0) and d′ = d. �

3.2. Deciding whether H ≤ff F

We first consider the problem of deciding whether a given finitely generated
subgroup H of F = F (A) is a free factor of F . With the notation of Corollary 3.4
and Remark 3.3, the algorithm to decide whether H ≤ff F consists of the follow-
ing. We need to explore the sequences of rank-incrementing i-steps, starting from
ΓA(H) and of length d = |A0| − rank(H). Then H ≤ff F if and only if one of
the automata occurring at the end of one of these sequences has a single vertex.
Note that no automaton obtained after less than d i-steps could be a single-vertex
automaton.

These automata can be viewed as nodes of a tree, rooted at ΓA(H), in which
the children of a node are the automata produced by a rank-incrementing i-step.
Let n be the number of states of ΓA(H). Then every automaton occurring along
this tree has at most n states.
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If A is such an automaton, then A has at most 1
2 (n2 − n) pairs of distinct

vertices, and hence at most 1
2 (n2 − n) children, each of which has at most n − 1

states. The computation of the children of A is done by computing all the (at most
1
2 (n2 − n)) possible i-steps, computing the ranks of the corresponding subgroups
and retaining only those of rank 1 + rank(L(A)ρ). It follows from Fact 1.8 that
the cost of the computation of the children of A is O(n4).

Moreover, there are at most O(n2d−2) nodes of the tree at depth at most d− 1,
and the computation of these nodes and their children requires time O(n2d+2). For
each of the O(n2d) automata at depth d, the verification whether the automaton
has a single node takes constant time, so the total cost of the algorithm isO(n2d+2).

Finally, if H is given by a finite set of generators, of total length ℓ, we recall
that computing ΓA(H) takes time O(ℓ2) and that ΓA(H) has at most ℓ states and
ℓ edges. This discussion justifies the following statement.

Theorem 3.5. Let h1, . . . , hn be a set of reduced words in F (A), with total length

ℓ. One can decide whether the subgroup H generated by the hi is a free factor of

F (A) in time O(ℓ2d+2), where d = |A0| − rank(H) and A0 is the set of letters in

A that occur in the hi.

Remark 3.6. The tree exploration described above can be speeded up by the
following observation. If the automaton A occurs in a sequence of rank-incre-
menting i-steps from ΓA(H) to the one-vertex automaton ΓA(F (A0)) (a winning

sequence), then L(A)ρ ≤ff F (A0), which implies that L(A)ρ is a free factor of
every subgroup of F (A0) containing it. It follows that, if some i-step A −→i B
does not increment the rank, then A does not occur in a winning sequence, that
is, we may ignore the subtree below A.

There are undoubtedly other implementation tricks and ideas that can reduce
the decision process, however without changing the worst-case complexity.

Remark 3.7. In view of Touikan’s announcement (see Fact 1.8), the time com-
plexity in the above theorem can be lowered to O(ℓ2d+1 log∗ ℓ).

The above discussion of complexity depends on a uniform cost assumption, by
which we assume that the elementary operations on A (reading or writing a letter,
comparing two letters) require unit time. In other words, we have been assuming
that A is fixed, and not part of the input. We will shortly consider the problem
of deciding whether H ≤ff K where both H and K are part of the input, and for
the purpose of that discussion, we reconsider the algorithm and the complexity
established above under the bit cost assumption: we let r be the cardinality of A,
and we consider that each letter is identified by a bit string of length at most log r,
so that the elementary operations on A require O(log r) units of time.

Let f(ℓ, r) be the complexity of reducing a dual automaton on Ã with at most
ℓ vertices and ℓ edges. The computation of the automaton obtained by an i-step
from an ℓ-vertex automaton takes time at most f(ℓ, r). To compute the tree
of rank-incrementing i-steps rooted at ΓA(H), we need to compute the at most
O(ℓ2) children of at most ℓ2d−2 nodes, which requires time O(ℓ2df(ℓ, r)). Finally,



TITLE WILL BE SET BY THE PUBLISHER 17

deciding whether an automaton has a single vertex takes constant time, so the
total complexity of the algorithm is O(ℓ2df(ℓ, r)).

We now give an upper bound of f(ℓ, r). Let A be an A-automaton with at
most ℓ states and ℓ edges. The identifiers of states require space O(log ℓ) and the
identifiers of letters require space O(log r). Moreover, we assume that the set of

states and the set Ã are linearly ordered, and equipped with a constant time next

function.
The automaton can be viewed as the lexicographically ordered list of all triples

(u, a, v) such that either a ∈ A and there is an a-labeled edge from state u to state
v, or ā ∈ A and there is a ā-labeled edge from state v to state u. Each entry of
this list requires space O(log ℓ+ log r) = O(log(ℓr)), and the list contains at most
ℓ entries. In particular, a complete scan of the list takes time O(ℓ log(ℓr)).

The reduction of A consists in performing elementary reductions of type 1 as
long as it is possible, and then elementary reductions of type 2. To find out whether
a type 1 reduction is possible, one needs to scan the list to find two (consecutive)
cells of the form (u, a, v) and (u, a, v′), requiring O(ℓ log(ℓr)). Performing the
identification consists in reading through the list, replacing every occurrence of v′

by v, and reordering the list: this takes time O(ℓ log(ℓr)). To find out whether
an elementary reduction of type 2 is possible, one scans the list to find a vertex u
such that there is a unique triple of the form (u, a, v) in the list: again, this takes
time O(ℓ log(ℓr)). Finally, performing the reduction consists simply in deleting
the entries (u, a, v) and (v, ā, u) in the list.

Summarizing, since we will perform at most ℓ reductions, we can take the
function f(ℓ, r) to be equal to ℓ2 log(ℓr) and the complexity of deciding whether
H ≤ff F is O(ℓ2d+2 log(ℓr)) (with the notation in Theorem 3.5).

3.3. Deciding whether H ≤ff K

We now suppose that H and K are subgroups of F (A), given by sets of genera-
tors with total length ℓ, and we consider the problem of deciding whether H ≤ff K.
The algorithm is the following: we first compute ΓA(K) and we verify whether
each generator of H can be read as a loop at q0, the designated vertex of ΓA(K).
If not, then H is not contained in K, and cannot be a free factor.

We now assume that H ≤ K and we compute a spanning tree T of the graph
ΓA(K). This spanning tree determines a basis B of K, indexed by the edges of
ΓA(K) that are not in T (see Fact 1.8), and we express the given generators of
H in terms of this basis: it suffices to read the generators of H as loops at the
designated vertex in ΓA(K), and to record the sequence of edges traversed and
not in T . In particular, each generator of H is expressed as a reduced word in
B̃∗, that is no longer than its expression as a reduced word in Ã∗. We then use
this expression of the generators of H to construct ΓB(H), and the algorithm in
Section 3.2 to decide whether H is a free factor of the ambient free group, namely
K.

Let us now discuss the complexity of this algorithm, assuming thatH andK are
given by tuples of generators of total length ℓ and that F has rank r. As discussed
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in the previous section, computing ΓA(K) takes time O(ℓ2 log(ℓr)). Running a
word w ∈ F (A) in the automaton ΓA(K) requires reading sequentially each letter
of w (time O(log r)) and looking for the corresponding transition in the table
representing the automaton (time O(ℓ log(ℓr))). If w has length ℓ′, this takes time
O(ℓ′ℓ log(ℓr)). In order to decide whether H is contained in F , this must be done
for every generator of H , and since the total length of these generators is at most
ℓ, this requires time O(ℓ2 log(ℓr)).

Assuming that H is indeed contained in K, the next step is to construct a
spanning tree T of ΓA(H), for instance by marking certain edges in the list rep-
resenting ΓA(K). Again, this can be done in time O(ℓ2 log(ℓr)). The positively
labeled edges of ΓA(K) not in T are in bijection with a basis B of K. In particular,
the rank of K is at most ℓ, an upper bound of the number of edges in ΓA(K). The
elements of B, seen as words in F (A), consist of the label of a path in T , followed
by the label of an edge not in T , followed by the label of a path in T . In particular,
their length is at most twice the number of vertices of ΓA(K) plus one, that is
O(ℓ). But we do not need to compute these words: it suffices to number (from 1
to rank(K) ≤ ℓ) the positively labeled edges not in T . Then, for each generator h
of H , reading h in ΓA(K) from state q0 and keeping track of the (identifier of the)
edges traversed that are not in T , provides an expression of h in B. Moreover, the
total length of the expression of the generators of H in this basis of K is at most
ℓ.

We now simply apply the complexity computation discussed at the end of the
previous section to a length ℓ set of generators of a subgroup of a free group of
rank at most ℓ, to justify the following corollary.

Corollary 3.8. Given tuples of generators for subgroups H and K of F (A), with

total length ℓ, one can decide whether the subgroup H is a free factor of K in time

O(ℓ2d+2 log(ℓr)), where d = rank(K)− rank(H).

Remark 3.9. Corollary 3.2 suggests an alternative algorithm to decide whether
H ≤ff K: one may explore the sequences of rank-incrementing i-steps of length at
most d = rank(K)− rank(H), starting from ΓA(H) and producing only represen-
tations of subgroups contained in K. Each ΓA(L) occurring in such a sequence
must be checked to verify whether it can be embedded in ΓA(K): if it can, then
H ≤ff K, and if it cannot, then the automata produced by a rank-incrementing
i-step from it must be computed and checked in their turn.

3.4. Complement of a free factor

By definition of a free factor (see the introduction), H ≤ff K if there exists a
basis C of H and a disjoint set D ⊆ K such that C ∪D is a basis of K. In that
case, the subgroup generated by D is called a complement of H in K. It is easy
to see that this complement is not uniquely defined.

If H is indeed a free factor of the free group F , the algorithm described in
Section 3.2 also provides a sequence of rank-incrementing i-steps taking ΓA(H) to
ΓA(F (A0)), where A0 is the set of letters of A that occur in the generators of H .
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Repeated applications of Proposition 2.4 then yield a basis of F (A0) containing a
basis of H , and hence a complement of H in F (A0).

We can be a little more precise. If A is a reduced inverse automaton, let
diamq0

(A), the q0-diameter of A, be the longest shortest path in A from q0 to a
state, that is

diamq0
(A) = max

q

(

min{|u| | u is a reduced word and q0
u
−→ q in A}

)

.

Then Proposition 2.4 shows that if A −→i B and L(A)ρ ≤ff L(B)ρ, then a com-
plement of L(A)ρ is generated by a word of length at most 2 diamq0

(A).
This justifies the following statement.

Proposition 3.10. Let H be a free factor of F (A). Then one can construct

effectively a basis for a complement of H in F (A), consisting of words of length at

most 2 diamq0
(ΓA(H)).

It is interesting to observe that this is a graphical analogue – and a minor
improvement – of Federer and Jónsson’s result (see [12, Prop. I.2.26]) mentioned
in Section 1.3. Indeed, if h1, . . . , hn are a set of generators of H , then every
edge of ΓA(H) is on a loop at q0 labeled by some hi, and hence maxi |hi| ≥
2 diamq0

(ΓA(H)).
Let us now consider the problem of constructing a basis of a complement of H

in K, whereH andK are given finitely generated subgroups of F (A) and H ≤ff K.
The algorithm described in Remark 3.9 (based on Corollary 3.2) shows that one
can construct effectively a graphical free factor L of K such that H ≤ff L. As
above, in view of Proposition 2.4, the same algorithm can produce a basis of a
complement of H in L consisting of words of length at most 2 diamq0

(ΓA(H)).
There remains to construct a basis for a complement of L in K.

In view of Fact 1.8 (and using the notation therein), one can find a (basis of a)
complement of L in K by considering a spanning tree of ΓA(L), extending it to a
spanning tree T of ΓA(K), and considering the elements be associated with edges
of ΓA(K) that are neither in ΓA(L) nor in T . In particular, the words be have
length at most 1 + 2 diamq0

(Γ(K)). Thus we have the following statement.

Proposition 3.11. Let H,K be finitely generated subgroups of F (A). If H ≤ff K,

then one can construct effectively a basis for a complement of H in K, consisting

of words of length at most max(2 diamq0
(ΓA(H)), 1 + 2 diamq0

(ΓA(K))).

The authors wish to thank both anonymous referees for their many helpful comments,
which have substantially contributed to the improvement of the paper. All remaining
shortcomings are naturally ours.
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[20] J.-P. Serre. Arbres, amalgames, SL2, Astérisque 46, Soc. Math. France, 1977. English trans-

lation: Trees, Springer Monographs in Mathematics, Springer, 2003.
[21] V.M. Sidelnikov, M.A. Cherepnev, V.Y. Yaschenko. Systems of open distribution of keys

on the basis of non-commutative semigroups, Ross. Acd. Nauk Dokl. 332-5 (1993). English
translation: Russian Acad. Sci. Dokl. Math. 48-2 (1994) 383-386.

[22] P. V. Silva, B. Steinberg. On a class of automata groups generalizing lamplighter groups,
Intern. J. Algebra and Computation 15 (2005) 1213-1234.

[23] J. Stallings. Topology of finite graphs, Inventiones Mathematicæ 71 (1983) 551–565.
[24] J. Stephen. Applications of automata theory to presentations of monoids and inverse

monoids, Ph.D. Dissertation, University of Nebraska, 1987.
[25] N. Touikan. A fast algorithm for Stalling’s folding process, preprint, 2005, www.math.mcgill.

ca/~touikan/crypto_seminar/FastFolding.pdf.
[26] E. Ventura. On fixed subgroups of maximal rank, Comm. Algebra, 25 (1997), 3361-3375.

Communicated by (The editor will be set by the publisher).

(The dates will be set by the publisher).

arXiv:math.GR/0401269
www.math.mcgill.ca/~touikan/crypto_seminar/FastFolding.pdf
www.math.mcgill.ca/~touikan/crypto_seminar/FastFolding.pdf

