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1 Introduction and outline of main results

Ten years ago, motivated by simplicial quantum gravity and the statistics of
branched polymers, a model nicknamed the zeta-urn model was introduced (see
[1], [2] and [3]). This model consists in a symmetric balls in boxes model with
many interesting features both at and out of equilibrium (see [8]). The pur-
pose of this work is to further investigate the statistical equilibrium properties
of the zeta urn model. It is first underlined that the model is in the Bose-
Einstein statistics class where undistinguishable particles are allocated within
distinguishable boxes, the energy required to place particles within each box be-
ing independent of box label. As a result, it may be seen as a random allocation
scheme obtained while conditioning on its sum a vector of infinitely divisible
zeta-distributed discrete random variables. This class of models has recently
received considerable attention (see [11] and [4], for instance).

One of the specificities of this model is that it presents a phase transition
between a fluid and a condensed phase at finite inverse-temperature β > 1. This
is because box energy is sub-linear (actually logarithmic). The critical proper-
ties are governed by the Riemann zeta function ζ (β). We recall this property
and investigate some further statistical consequences in some details. Then, we
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focus on the canonical partition function when the number of boxes and parti-
cles are fixed. Next, the box occupancies are investigated in the thermodynamic
limit. Fixing the number of boxes, we give the asymptotic behaviour of box oc-
cupancies when the number of particles becomes large, for different regimes in
parameter space β. The total energy of the configurations is next studied under
the same limiting conditions. We use singularity analysis of poly-logarithmic
functions to do so (see [6]). In the sequel, the number of states (boxes) with
prescribed number of particles is studied in the canonical ensemble. In partic-
ular, since the number of occupied states deserves interest, we shall study it in
some detail. Several other statistical issues of interest are briefly discussed.

The last Section is devoted to the occupancy distributions in the grand-
canonical ensemble after the number of particles was suitably randomized. In
a specific low temperature - large number of boxes asymptotical regime, it is
shown that occupancies are governed by uniques or singletons as in Fermi-Dirac
statistics.

2 Urn models and occupancies

To fix the background, we start with generalities on thermalized urn models
before concentrating on the remarkable zeta-urn sub-class.

2.1 Generalities on thermalized urn models

Consider an urn model with n distinguishable boxes within which k particles
are to be allocated ‘at random’. Suppose first the energy required to put km

particles within box number m, m = 1, .., n, is ekm,m > 0. Two cases arise:
1/ ekm,m depends explicitly on box label m. A famous example is ekm,m =

kmεm where εm is the energy required to put a single particle within box number
m, m = 1, .., n. Typically, εm = mα, for some α > 1. Note that ekm,m is an
increasing sequence in both arguments (km, m). In this case, energy is box
dependent (BDE).

2/ ekm,m does not depend on m, hence ekm,m = ekm
where ekm

is simply
assumed to increase with km. In this case, energy is box independent (BIE).

Occupancy distributions which we shall consider are Gibbs distributions
which can be obtained while maximizing occupancies distribution entropy un-
der the constraint that the average total energy 〈h〉 := 〈hk,n〉 of the k−particle
system configurations within n boxes is fixed. In this setup, as usual, a parame-
ter β (the inverse of temperature) pops in; it is the Legendre conjugate to the
average energy 〈h〉. Let N0 := {0, 1, 2, ..}. We shall be interested into the law of

Kk,n := (Kk,n (1) , ..., Kk,n (n)) ∈ N
n
0
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which is an integral-valued random vector which counts the occupancy num-
bers within the n different boxes in a k−system of particles. Depending now
on whether particles to be allocated are distinguishable or not, two additional
cases arise; finally, we are left with four cases:

• Assume first particles to be allocated within labelled boxes are distinguish-
able (Maxwell-Boltzmann statistics).

- With
∑n

m=1 km = k and kn := (k1, ..., kn) ∈ N
n
0 , if energy is box dependent,

Kk,n follows the BDE-DP (box-dependent energy, distinguishable particles)
distribution if:

P (Kk,n = kn) =
1

Zk,n (β)

n∏

m=1

σ−β
km,m

km!
,

where partition function

Zk,n (β) =
[
zk
] n∏

m=1

Qβ,m (z) and Qβ,m (z) =
∑

km∈N0

zkm

km!
e−βekm,m

is a product of ‘exponential’ generating functions [In the latter formula,
[
zk
]
f (z)

stands for the zk−coefficient in the series expansion of function f (z)]. Here,

σ−β
km,m := e−βekm,m are the usual Boltzmann weights. In addition, β and 〈h〉 :=

〈hk,n〉 are Legendre conjugates, related as usual through −∂β log Zk,n (β) = 〈h〉.

- when energy is box independent, Kk,n follows the BIE-DP (box-independent
energy, distinguishable particles) distribution if:

P (Kk,n = kn) =
1

Zk,n (β)

n∏

m=1

σ−β
km

km!
,

where, with σk := exp ek

Zk,n (β) =
[
zk
]
Qβ (z)

n
and Qβ (z) =

∑

k∈N0

zk

k!
e−βek .

In this case, the distribution of Kk,n is exchangeable or symmetric (as a result
of its invariance under permutation of the entries).

• Assume now particles are undistinguishable (Bose-Einstein statistics).
- If energy is box-dependent, Kk,n follows the BDE-UP distribution if:

P (Kk,n = kn) =
1

Zk,n (β)

n∏

m=1

σ−β
km,m,
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where partition function

Zk,n (β) =
[
zk
] n∏

m=1

Pβ,m (z) with Pβ,m (z) =
∑

km∈N0

zkme−βekm,m

is now the product of ‘ordinary’ generating functions.

- if energy is box-independent, Kk,n follows the BIE-UP distribution if:

P (Kk,n = kn) =
1

Zk,n (β)

n∏

m=1

σ−β
km

,

where
Zk,n (β) =

[
zk
]
Pβ (z)n and Pβ (z) =

∑

k∈N0

zke−βek .

2.2 Zeta-urns: statistical properties

In this manuscript, we shall limit ourselves to the BIE-UP distribution. We
shall therefore suppose that the energy required to put km particles within box
number m, m = 1, .., n, is ekm

> 0 where ekm
is an increasing function with km,

independently of box label m. Assume e0 := 0. We shall also further specify and
assume that

ek

k
→

k↗∞
0

meaning that energy is sub-linear. For example, ek = kα with α ∈ (0, 1) and
ek = log (1 + k) would do. Interest into such specific allocation models is because
they are likely to present a phase transition phenomenon at all temperatures in
the first case and when temperature is small enough in the second case. We shall
in fact further restrict ourselves to the BIE-UP model with ek = log (1 + k) or
equivalently σk = 1 + k, which is the zeta urn model (see [1] and [8]).

• Occupancy distribution statistics
With

∑n
m=1 km = k and kn := (k1, ..., kn) ∈ N

n
0 , the zeta occupancy num-

bers Kk,n within the n different boxes in a k−system of particles follows the
exchangeable distribution:

P (Kk,n = kn) =
1

Zk,n (β)

n∏

m=1

σ−β
km

,(2.1)

with E (Kk,n (m)) = k/n and σk = 1 + k. Clearly,

Zk,n (β) =
[
zk
]
Dβ (z)n(2.2)

where Dβ (z) := 1 +
∑

k≥1 σ−β
k zk is a thermalized ordinary generating function

(here, a Dirichlet series). Because all the information on the model is enclosed

4



in the two-parameters function Dβ (z), let us first study it before proceeding
with the evaluation of Zk,n (β).

• Some properties of the function Dβ (z)
First, the (real) definition domain of Dβ (z) is β > 0 and z ∈ [0, 1) or

β > 1 and z = 1. Incidentally, with Γ (.) the Euler gamma function, Dβ (z) has
alternative Bose-Einstein integral representation:

Dβ (z) =
1

Γ (β)

∫ ∞

0

tβ−1e−t

1 − ze−t
dt,

expressing the poly-logarithmic (multiplicative) Dirichlet series

zDβ (z) :=
∑

k≥1

k−βzk

as a Mellin transform of its additive counterpart
∑

k≥1 e−βktzk = ze−t/ (1 − ze−t),
t > 0. This straightforward number theoretic representation is well-known, es-
pecially for Dβ (1) =: ζ (β), the Riemann zeta function. Next, when β > 0 and
z ∈ [0, 1)

Dβ+1 (z) =
1

z

∫ z

0

Dβ (z′) dz′.

From the statistical point of view, this suggests to consider the positive
random variable Tβ,z with generalized Planck density (see [12]), namely

fTβ,z
(t) =

1

Γ (β) · Dβ (z)

tβ−1e−t

1 − ze−t
, t > 0

where β > 0 and z ∈ [0, 1) or β > 1 and z = 1. This family of probability densi-
ties includes the classical (standard) Planck density (z = 1) and the gamma(β)
densities (z = 0). Actually, it is a discrete scale-mixture of gamma(β) distribu-
tions, since

fTβ,z
(t) =

∑

k≥0

zk (1 + k)−β

Dβ (z)

(1 + k)β

Γ (β)
tβ−1e−(1+k)t.

In other words, Tβ,z
d
= Sβ,z ·Tβ,0 where Sβ,z := (1 + Kβ,z)

−1
is the random scale

change. In the latter expression, Kβ,z is such that P (Kβ,z = k) = zk(1+k)−β

Dβ(z) ,

k ∈ N0; it is a (say) discrete zeta(β, z)−distributed random variable, indepen-
dent of gamma(β)−distributed Tβ,0 with shape parameter β. When β > 1,
z → Dβ (z) is absolutely monotone on (0, 1) in the sense that order l derivatives

D
(l)
β (z) ≥ 0 for all l ≥ 0 and z ∈ (0, 1) . Indeed, Dβ (z) /Dβ (1) is the gener-

ating function of the integral valued random variable Kβ,1. Raising Dβ (z) to
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the power n also gives an absolutely monotone z−function on (0, 1) (because,
up to a constant, it is the generating function of the sum of n independent and
identically distributed (iid) copies of Kβ,1).

We finally note from the expression of fTβ,z
(t) that for β > 0 and z ∈ [0, 1)

E
(
T β−1

1,z

)
= Γ (β)

Dβ (z)

Dβ (1)

where Γ (β) = E
(
T β−1

1,0

)
. Thus D̃β (z) :=

Dβ(z)
Dβ(1) also interprets as the moment

function of Sz := (1 + K1,z)
−1

, namely: D̃β (z) = E
(
Sβ−1

z

)
recalling that

T1,z
d
= T1,0 · Sz

where T1,0 has exponential distribution and is independent the lattice scale

random variable Sz supported by (1 + k)
−1

, k ∈ N0. As a scale mixture of
exponentially distributed random variables, the random variable T1,z is infinitely
divisible (see [13]).

This shows that, with z ∈ [0, 1), the function β → D̃β (z) is completely

monotone as a function of β (in the sense that (−1)
n

∂n
β D̃β (z) ≥ 0 for all

β > 1). Indeed, by Bernstein theorem, D̃β (z) is the Laplace-Stieltjes transform

of − logSz > 0. Raising D̃β (z) to the power n also gives rise to a completely
monotone β−function on (1,∞) (because it is the moment function of the prod-
uct of n iid copies of Sz).

Since energy is sub-linear, the convergence radius of the series Dβ (z) is
zc = 1. Function Dβ (z) is absolutely monotone on (0, zc) . It increases with z

and its l−th derivative at point 1, say D
(l)
β (1), is finite if and only if β > l + 1.

In particular, Dβ (1) is finite if and only β > 1 and both Dβ (1) and D′
β (1) are

finite if and only β > 2.

• Canonical partition function
Let us now turn back our attention to Zk,n (β) . Clearly, Zk,n (β) fulfills the

recurrence:

Zk,n+1 (β) =

k∑

l=0

Zk−l,n (β) σ−β
l , n ≥ 1

with boundary conditions Zk,1 (β) = (1 + k)
−β

, k ≥ 0 and Z0,n (β) = 1, n ≥ 1.
Let N := {1, 2, ..} . By Faa di Bruno formula for potentials (integral powers),

with {n}l := n (n − 1) .. (n − l + 1) , a closed-form solution is

Zk,n (β) =
1

k!

k∑

l=1

{n}l Bk,l

(
•!σ−β

•

)
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where, with x• := (x1, x2, ..), Bk,l (x•) is a Bell polynomials in the variables x•

(see [5]):

Bk,l (x•) :=
k!

l!

∑

km∈N:
∑

l
m=1

km=k

l∏

i=1

xkm

km!
, l = 1, .., k.

In other words, after some simplifications

Zk,n (β) =

k∧n∑

p=1

(
n

p

) ∑

km∈N:
∑p

m=1
km=k

p∏

m=1

(1 + km)
−β

is the closed-form expression of Zk,n (β) . Note that, with

σ ∈ Span

{
n∏

1

(1 + km) , when k1, .., kn ∈ N
n
0 and k1 + .. + kn = k

}

we also have
Zk,n (β) =

∑

σ

|Ck,n (log σ)|σ−β

where |Ck,n (h)| = #Ck,n (h) and

Ck,n (h) =

{
k1, .., kn ∈ N

n
0 : k1 + .. + kn = k and log

n∏

m=1

(1 + km) = h

}
.

• The thermodynamic limit and evidence of a phase transition
Let ρ > 0 and assume k = κn := bnρc, so that ρ interprets as the box density

of particles. When n ↗ ∞, we further get the thermodynamic limit. Observing
that

Zk,n (β) =
1

2iπ

∮
z−(k+1)Dβ (z)

n
dz,

a saddle point estimate gives

−
1

n
log Zbnρc,n (β) ∼

n↗∞
−

1

n
log
[
zβ (ρ)−κn Dβ (zβ (ρ))n

]

∼
n↗∞

ρ log zβ (ρ) − log Dβ (zβ (ρ)) =: βFβ (ρ)

where saddle point zβ (ρ) is defined implicitly by

zβ (ρ) Φ′
β (zβ (ρ)) = ρ and Φβ (z) := log Dβ (z) .

The function Fβ (ρ) is the free energy per box in the thermodynamic limit.
The range of the function zΦ′

β (z) when z ∈ (0, 1) is (0, ρc) where ρc = ∞ if
β ≤ 2 and ρc = Φ′

β (1) = ζ (β − 1) /ζ (β) − 1 < ∞ if β > 2. Since z ∈ (0, 1) →
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zΦ′
β (z) is monotone increasing, zβ (ρ) is uniquely defined for each ρ ∈ (0, ρc).

By the Lagrange-inversion formula, when ρ ∈ (0, ρc):

zβ (ρ) = 1 +
∑

l≥1

ρl

l
hl (β) with hl (β) :=

[
zl−1

]
Φ′

β (z)
−l

.

For each β > 0, the free energy function ρ → Fβ (ρ) is a convex function of ρ > 0.
Further Fβ (0) = 0, F ′

β (0) = −∞ and Fβ (ρ) decreases with ρ. When β > 1,

Fβ (ρc) = − 1
β

log ζ (β) ∈ (−∞, 0) and F ′
β (ρc) = 0. Next, ρc = ∞ if β ∈ (1, 2]

whereas, when β > 2, ρc < ∞ and Fβ (ρ) = Fβ (ρc) in the range ρ ∈ [ρc,∞) .
In any case, when β > 1, Fβ (ρ) is bounded below by Fβ (ρc) whereas it is
unbounded below when β ∈ (0, 1). When β > 2, the critical density ρc < ∞
separates a fluid phase (ρ < ρc) from a condensed phase (ρ > ρc). Clearly, the
critical properties of this phase transition model are dictated by the Riemann
zeta function.

The partition function behaviour shows that, in the thermodynamic limit,
Kκn,n is asymptotically iid in the sense that

−
1

n
logP (Kκn,n = kn) ∼

n↗∞
−

1

n
log

[
n∏

m=1

σ−β
km

zβ (ρ)km

Dβ (zβ (ρ))

]
.

• Additional aspects of the occupancy distribution
We now draw various immediate conclusions from the occupancy distribu-

tion expressions.

(i) The conditional probability to occupy state m is

πm := P (Kk,n (m) > 0) = 1 −
Zk,n−1 (β)

Zk,n (β)
.

(ii) If k ≤ n, with 1k := (0, 1, 0, ...1, 0, 1) a vector with k “1” in any of the(
n
k

)
possible positions

P (Kk,n = 1k) =

(
n

k

)
σ−βk

1

Zk,n (β)

is the probability that the k particles will occupy any k distinct boxes.

(iii) (Bose-Einstein): When β tends to 0, the joint law of Kk,n looks uniform

P (Kk,n = kn) =
1(

n+k−1
k

)
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and the 1−dimensional distribution reads

P (Kk,n (1) = l) =

(
n+k−l−2

k−l

)
(
n+k−1

k

) , l = 0, ..., k.

(iv) Occupancies Kk,n have exchangeable distribution. We observe from
Eqs. (2.1, 2.2) that

E

(
n∏

m=1

u
Kk,n(m)
m

)
=

[
zk
]∏n

m=1 Dβ (umz)

[zk] Dβ (z)
n .

Putting u2 = .. = un = 1, the one-dimensional distribution of Kk,n (1) can
easily be checked from the convolution formula to be

P (Kk,n (1) = l) =
σ−β

l Zk−l,n−1 (β)

Zk,n (β)
, l = 0, ..., k.(2.3)

(v) Using the saddle-point analysis of Zk,n (β), in the thermodynamic limit,
we immediately have

Kκn,n (1)
d
→

n↗∞
Kρ

where Kρ has zeta(β, zβ (ρ)) distribution, namely:

P (Kρ = l) =
σ−β

l · zβ (ρ)l

Dβ (zβ (ρ))
, l ∈ N0.

Assuming β > 1, when ρ ↗ ρc, zβ (ρ) ↗ 1 and Kρc
has zeta(β)− distribution

with power-law tails:

P (Kρc
= l) =

σ−β
l

ζ (β)
, l ∈ N0.

The critical random variable Kρc
has finite moments of order strictly less than

β − 1. Its distribution is zeta(β) law, also known as Zipf law (see [10]).

(vi) Let us now investigate correlations.
The joint falling factorial moments of (Kk,n (m))

r

m=1 are also available in
closed form. Let us also consider the falling factorial moments of Kk,n. Fix
ln := (l1, .., ln) ∈ N

n
0 , summing to l with l ≤ k. Expressing the joint generating

function E
(∏n

m=1 u
Kk,n(m)
m

)
in terms of vm = um − 1, we have

E

[
n∏

m=1

{Kk,n (m)}
lm

]
=

∏n
m=1 lm!

[
zk
]∏n

m=1

[
vlm

m

]
Dβ (z (vm + 1))

[zk] Dβ (z)
n .
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Let {k}l := k (k − 1) .. (k − l + 1) stand for the l−falling factorials of k. Since

lm!
[
vlm

m

]
Dβ (z (vm + 1)) =

∑
km≥lm

{km}lm
σ−β

km
· zkm , with kn summing to k,

we get

E

[
n∏

m=1

{Kk,n (m)}
lm

]
=

∑
kn≥ln

∏n
m=1 {km}lm

σ−β
km

Zk,n (β)
=

[
zk
]∏n

m=1 D
(lm)
β (z)

Zk,n (β)
.

(2.4)
Particularizing lm = 1, m = 1, ..., r, lm = 0, m = r+1, ..., n, we get the joint

moments

E

(
r∏

m=1

Kk,n (m)

)
=

[
zk
] (

D′
β (z)

r
Dβ (z)

n−r
)

Zk,n (β)
.

If in particular l1 = 2, lm = 0, m = 1, ..., n

E
(
{Kk,n (1)}2

)
=

[
zk
] (

D
′′

β (z)Dβ (z)n−1
)

Zk,n (β)

in such a way that

σ2 (Kk,n (1)) =

[
zk
] (

D
′′

β (z)Dβ (z)
n−1
)

Zk,n (β)
+

k

n

(
1 −

k

n

)
.

Squaring
∑n

m=1 Kk,n (m) = k, averaging and using exchangeability, for each
m1, m2 ∈ [n], m1 6= m2, we get the covariance

Cov (Kk,n (m1) , Kk,n (m2)) = −
σ2 (Kk,n (1))

n − 1
.

(vii) Fixed number of boxes and large number of particles: We now prove
the following convergence in distribution.

Lemma 1 Assume n (1 − β) /∈ {−1,−2, ..}.

(i) Let (S1, .., Sn) := Sn
d
∼ Dn (1 − β) , the Dirichlet distribution on the

simplex with parameter 1 − β. If β ∈ (0, 1), it holds that

Kk,n/k
d
→ Sn as k ↗ ∞.(2.5)

In particular,

Kk,n (1) /k
d
→ Sn

d
∼ beta (1 − β; (n − 1) (1 − β)) as k ↗ ∞.

(ii) If β > 1,

Kk,n (1)
d
→ Kn

d
∼

1

n
δ∞ +

(
1 −

1

n

)
zeta (β) , as k ↗ ∞,
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where a N0−valued random variable has the zeta(β) distribution if its probability

generating function is Dβ (u) /Dβ (1).

Proof: Suppose n (1 − β) /∈ {−1,−2, ..} (If this were not the case, the
singularity would be logarithmic and would deserve a special treatment which
we skip).

(i) When β ∈ (0, 1), to the leading algebraic order, we have

Dβ (z)
n

∼
z↗zc=1

Γ (1 − β)
n
· (1 − z)

−n(1−β)

where Dβ (z) :=
∑

k≥0 σ−β
k zk. [The exact asymptotic equivalent of Dβ (z) is

Dβ (z) ∼
z↗zc=1

Γ (1 − β) (− log z)
−(1−β)

+
∑

l≥0

(−1)l

l!
ζ (β − l) zl. ]

It follows from standard singularity analysis (see [6] for generalities on transfer
theorems and [7] for the specific poly-log functions) that

Zk,n (β) :=
[
zk
]
Dβ (z)

n
∼

k↗∞

Γ (1 − β)
n

Γ (n (1 − β))
kn(1−β)−1

Next, we have

P (Kk,n (1) = l) =
Zl,1 (β) Zk−l,n−1 (β)

Zk,n (β)
, l = 0, ..., k.

Thus, with s ∈ (0, 1), as k ↗ ∞

kP

(
Kk,n (1)

k
= s

)
∼

Γ (n (1 − β))

Γ (1 − β) Γ ((n − 1) (1 − β))
s(1−β)−1 (1 − s)

(n−1)(1−β)−1

where one recognizes the density of a Beta(1 − β, (n − 1) (1 − β)) distributed
random variable Sn. This shows that

Kk,n (1)

k

d
→

k↗∞
Sn

d
∼ Beta (1 − β, (n − 1) (1 − β)) .

This limiting distribution is the marginal of a Dirichlet distribution Dn (1 − β)
with parameters n and (1 − β) towards which Kk,n/k, more generally, converges

weakly as k ↗ ∞. We recall that the density on the simplex of Sn
d
∼ Dn (1 − β)

is exchangeable with

fSn
(s1, .., sn) =

Γ (n (1 − β))

Γ (1 − β)
n

n∏

m=1

s(1−β)−1
m δ(

∑
n
1

sm=1).

11



(ii) If β > 1, Dβ (z) ∼
z↗zc=1

Dβ (1) + Γ (1 − β) · (1 − z)
β−1

. Thus,

Dβ (z)n ∼
z↗zc=1

Dβ (1)n + nΓ (1 − β) ζ (β)n−1 (1 − z)−(1−β) .

By singularity analysis,

Zk,n (β) =
[
zk
]
Dβ (z)n ∼

k↗∞
nζ (β)n−1 k−β.

We have

EuKk,n(1) =

[
zk
] (

Dβ (zu)Dβ (z)
n−1
)

Zk,n (β)
∼

k↗∞

(
1 −

1

n

)
Dβ (u)

Dβ (1)

because the dominant singularity of Dβ (zu)Dβ (z)n−1 is at z = 1 so that the

analysis of the numerator reduces to Dβ (u)
[
zk
]
Dβ (z)

n−1
= Dβ (u)Zk,n−1 (β) .

This shows that, as k goes to ∞, with probability 1/n, Kk,n (1) = ∞ whereas
with probability 1 − 1/n, Kk,n (1) converges weakly to a zeta(β) distributed

N0−valued random variable whose generating function is
Dβ(u)
Dβ(1) , u ∈ [0, 1] . �

• Energy of the configurations
A random variable of interest: the total energy of the occupancy configura-

tions. It is the random variable

Hk,n :=
n∑

m=1

eKk,n(m).

Clearly, it is characterized by its Laplace-Stieltjes transform (LST)

E
(
eλHk,n

)
=

Zk,n (β + λ)

Zk,n (β)
; λ ≥ 0.

With h ∈ Sk,n := Span{
∑n

m=1 ekm
, when k1, .., kn ∈ N

n
0 and k1 + .. + kn = k},

this is also

P [Hk,n = h] =
∑

k1+..+kn=k

1

(
n∑

m=1

eKk,n(m) = h

) ∏n
m=1 σ−β

km

Zk,n (β)

=
e−βh · |Ck,n (h)|

Zk,n (β)
,

where |Ck,n (h)| = #Ck,n (h) and

Ck,n (h) =

{
k1, .., kn ∈ N

n
0 : k1 + .. + kn = k and

n∑

m=1

ekm
= h

}
.

12



Recalling ekm
= log (1 + km), we also have h ∈ Sk,n if and only if σ := eh and

σ ∈ Span

{
n∏

1

(1 + km) , when k1, .., kn ∈ N
n
0 and k1 + .. + kn = k

}
.

Next, Ck,n (log σ) := {k1, .., kn ∈ N
n
0 : k1 + .. + kn = k and

∏n
1 (1 + km) = σ}

where σ is an integer belonging to the above set. There is no known explicit
expression of the number of both additive and multiplicative integer ‘composi-
tions’, namely of |Ck,n (log σ)|.

Note however that, as a probability,
e−βh·|Ck,n(h)|

Zk,n(β) ≤ 1 so that

log |Ck,n (h)| ≤ βh + log Zk,n (β) .

Finally, the joint law of the occupancies conditionally given Hk,n = h is also
of interest in the micro-canonical ensemble: With kn ∈ Ck,n (h) and h ∈ Sk,n,
we have

P [Kk,n = kn | Hk,n = h] =
1

|Ck,n (h)|

and the distribution is uniform over the set Ck,n (h).

Remark: As is well-known, in a neighborhood of β = 1, ζ (β) = (β − 1)
−1

+
c+ o (1) where c is Euler’s constant. Thus ζ (β)n ∼

β↘1
(β − 1)−n. Let Sn (σ′) :=

Span{k1 + .. + kn, when k1, .., kn ∈ N
n
0 and

∏n
1 (1 + km) = σ′} . It follows from

singularity analysis that

σ∑

σ′=1

∑

k∈Sn(σ′)

|Ck,n (log σ′)| ∼
σ↗∞

σn−1

Γ (n)

Note that
∑

k∈Sn(σ′) |Ck,n (log σ′)| = # {k1, .., kn ∈ N
n
0 :
∏n

1 (1 + km) = σ′} is

the number of multiplicative compositions of σ′ with n summands each possibly
taking the value 0. ♦

We now supply limit laws for total configurational energy when k ↗ ∞ in
the different regimes for β.

Proposition 2 (i) Let β ∈ (0, 1). Let η0 > 0 be a random variable with

gamma(n (1 − β)) distribution. With η0 independent of Hk,n

Hk,n − n log

(
k

η0

)
d
→

n∑

m=1

ηm as k ↗ ∞

where (ηm; m = 1, .., n) are exp-gamma(1 − β) real-valued iid random variables.

13



(ii) When β > 1 is not integer, we get

Hk,n − log k
d
→

n−1∑

m=1

δm as k ↗ ∞

where (δm; m = 1, .., n) are iid infinitely divisible random variables with common

lattice exp-zeta(β) distribution

P (δ1 = log l) =
l−β

ζ (β)
, l ∈ N := {1, 2, ..} .

Proof:
(i) β ∈ (0, 1): In this case,

Zk,n (β) =
[
zk
]
Dβ (z)

n
∼

k↗∞

Γ (1 − β)
n

Γ (n (1 − β))
kn(1−β)−1

and so

Zk,n (β + λ)

Zk,n (β)
∼

k↗∞
k−nλ

(
Γ (1 − β − λ)

Γ (1 − β)

)n
Γ (n (1 − β))

Γ (n (1 − β − λ))
.

From this, the law of η0 can be read: it is given by Eη−λ
0 = Γ(n(1−β)−λ)

Γ(n(1−β)) , λ <

n (1 − β) . Also, the ones of (ηm; m = 1, .., n) are seen to be given by Ee−λη1 =
Γ(1−β−λ)

Γ(1−β) for λ < 1 − β. Thus η0 and e−η1 are gamma distributed with the

announced parameters and Part (i) follows up.

(ii) β > 1: Recalling Zk,n (β) =
[
zk
]
Dβ (z)

n
∼

k↗∞
nζ (β)

n−1
k−β , we indeed

have

Ee−λ(Hk,n−log k) = kλ Zk,n (β + λ)

Zk,n (β)
∼

k↗∞

(
ζ (β + λ)

ζ (β)

)n−1

which is a product LST of the δms, with E
(
e−λδ1

)
= ζ (β + λ) /ζ (β). It is

known (see [9]) that δ1 is an infinitely divisible compound Poisson distribution,
namely:

δ1
d
=

P∑

q=1

εq

with (εq ; q ≥ 1) an iid sequence, independent of P
d
∼Poisson(log ζ (β)) and com-

mon law:

P (ε1 = log i) =
φi (β)

log ζ (β)
, i = 2, 3, ...

In the latter expression, φi (β) = Λ(i)·i−β

log i
, where Λ (i) = log p · 1

(
i = pl

)
(for

some prime p ≥ 2 and some integer l ≥ 1) is the von Mangoldt function. This
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follows from taking the logarithm of Euler product representation of Riemann
zeta function, stating that, for β > 1

ζ (β) =
∏

p≥2

(
1 − p−β

)−1

where the infinite product runs over all prime numbers p. Stated differently, the
jumps law also reads

P (ε1 ∈ dx) =
∑

p≥2

∑

l≥1

p−lβ

l
δl log p (dx) . �

• Occupancy distribution as a random allocation scheme
Let z ∈ (0, 1) . Let (ξz,m; m ≥ 1) be an iid sequence on N0 := {0, 1, ...}, with

discrete zeta(β, z) distribution, namely

P (ξz,1 = k) =: p (k) =
σ−β

k zk

Dβ (z)
, k ∈ N0.(2.6)

The generating function of ξz,1 is

E
(
uξz,1

)
=

Dβ (zu)

Dβ (z)
, 0 ≤ u < 1/z.(2.7)

The random variable ξz,1 has mean ρ = z
D

′

β(z)

Dβ(z) and finite variance σ2.

Let P (k) :=
∑k

k1=0 p (k1) and P (k) := 1−P (k) the tail distribution of ξz,1.

Then, P (k)

P (k−1)
≤ z ∈ (0, 1) and

p (k1) ∼
k1↗∞

k−β
1 zk1

Dβ (z)

P (k) ∼
k↗∞

k−βzk

Dβ (z)
.

The distribution of ξz,1 can be obtained as follows: suppose we randomize
the success probability p of a geometrically distributed random variable N by:

p → P := ze−X where z ∈ (0, 1] and X
d
∼ gamma(β), independent of N . We

assume β > 0 if z ∈ (0, 1) and β > 1 if z = 1. Then, with k ∈ N0

P (N ≥ k) = E
(
P k
)

= zkE
(
e−kX

)
= (1 + k)

−β
zk.

N is a log-gamma-geometric mixture with mean E (N) =
∑

k≥0 (1 + k)−β zk =
Dβ (z) .

Next, ξz,1 is the size-biased of N for which P (ξz,1 = k) = P (N ≥ k) /E (N),
also interpreting as the limiting residual lifetime in a discrete renewal process
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generated by N . Because of this representation, the sequence P (ξz,1 = k) is
completely monotone and so ξz,1 is infinitely divisible, meaning that it is a
compound Poisson random variable, with

ξz =

Pz∑

q=1

εz,q

where Pz is a Poisson random variable with intensity Φβ (z) := log Dβ (z),
independent of the iid sequence of jumps (εz,q; q ≥ 1) with common generating
function

E (uεz,1) =
log Dβ (zu)

log Dβ (z)
.(2.8)

Therefore, with ϕk (β) :=
[
zk
]
(log Dβ (z)) > 0

P (εz,1 = k) =
zkϕk (β)

log Dβ (z)
, k ∈ N.

Let ζz,n :=
∑n

m=1 ξz,n, n ≥ 1, be the partial sum sequence of (ξz,m; m ≥ 1)
with ζz,0 := 0. Then, for any ρ > 0, one can easily check that

P (Kk,n = kn) = P (ξz,1 = k1, ..., ξz,n = kn | ζz,n = k) .

The zeta-urn distribution is in the class of random allocation schemes as the ones
obtained by conditioning a random walk by its terminal value (see [11] and [4]).
Further, the involved random variables (ξz,m; m = 1, ..n) are compound Poisson.

• Order statistics: Let

Kk,(n) :=
(
Kk,(n) (1) , ..., Kk,(n) (n)

)

be the ordered version of Kk,n, with Kk,(n) (1) ≥ ... ≥ Kk,(n) (n). Due to the
random allocation scheme representation of Kk,n, it follows that

P
(
Kk,(n) (m) ≤ r

)
=

m−1∑

l=0

(
n

l

)
P (r)l P (r)n−l P (ζz,l + ζz,n−l = k | ξz,1, .., ξz,n ≤ r)

P (ζz,n = k)
.

In particular, if m = 1, with r > k
n

P
(
Kk,(n) (1) ≤ r

)
=
(
1 − P (r)

)n P (ζz,n = k | ξz,1, .., ξz,n ≤ r)

P (ζz,n = k)

whereas, for m = n, with r < k
n

P
(
Kk,(n) (n) ≤ r

)
= 1 − P (r)

n P (ζz,n = k | ξz,1, .., ξz,n > r)

P (ζz,n = k)
.
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Let κn = bnρc in such a way that κn/n →n↗∞ ρ (the asymptotic occupancy
density). As n ↗ ∞, the occupancy Kκn,(n) (1) of the box with largest amount
of particles satisfies

P
(
Kκn,(n) (1) = rn − 1

)
→ e−1

P
(
Kκn,(n) (1) = rn

)
→ 1 − e−1

where rn is the sequence fulfilling nP (rn) → 1, which is of order

rn ∼ − logzβ(ρ)

(
n

Dβ (zβ (ρ))

[
− logzβ(ρ)

(
n

Dβ (zβ (ρ))

)]−β
)

.(2.9)

The support of Kκn,(n) (1) law consists in the two points rn − 1 and rn, where
rn slowly moves to infinity as indicated. The discreteness of the distributions
involved prevents the maximum from converging properly and instead forces
this oscillatory behavior.

The smallest term Kκn,(n) (n) tends to 0 with probability 1 as n ↗ ∞.

• Sampling without replacement from zeta urn
Let (ξz,m; m ≥ 1) be an iid sequence of zeta(β, z) distributed random vari-

ables on N0, with mean ρ > 0. Let ζz,n :=
∑n

m=1 ξz,n, n ≥ 1. As noted above:

Kk,n
d
= (ξz,1, ..., ξz,n | ζz,n = k) .

Assume the number of particles k is larger than n. We would like to extract
a random sub-sample of size n, without replacement, from Kk,n.

Let Kn := (Kn (m) , m = 1, .., n) be the number of occurrences of energy
state m in this random size-n sub-sample, with

∑n
m=1 Kn (m) = n. With

(k1, ..., kn) ∈ N
n
0 satisfying

∑n
m=1 km = n, the sampling without replacement

strategy yields:

P (Kn (1) = k1, .., Kn (n) = kn) =
1

{k}n

n!∏n
m=1 km!

E

(
n∏

m=1

{Kk,n (m)}
km

)

=
1(
k
n

)
[
zk
]∏n

m=1 D
(km)
β (z) /km!

Zk,n (β)
,

where, in the second step, we used the expression of the falling factorial mo-
ments of Kk,n displayed in Eq. (2.4). In the sub-sampling without replacement
strategy, a knowledge of these moments is essential.

2.3 Frequency of frequencies: canonical approach

• The number of non-empty states
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Let now Pk,n :=
∑n

m=1 I (Kk,n (m) > 0) count the number of non empty
cells. With p ≤ n∧k, using exchangeability of Kk,n, with kp := (k1, .., kp) ∈ N

p

summing to k

P (Kk,n (1) = k1, .., Kk,n (p) = kp; Pk,n = p) =

(
n

p

)∏p
q=1 σ−β

kq

Zk,n (β)

is the probability that p cells only are occupied with occupancy numbers kp.
Thus

P (Pk,n = p) =

(
n

p

)
1

Zk,n (β)

∑

kp≥1:k1+..+kp=k

p∏

q=1

σ−β
kq

(2.10)

=

(
n

p

)[
zk
]
(Dβ (z) − 1)

p

[zk] Dβ (z)
n

and

P (Kk,n (1) = k1, .., Kk,n (p) = kp | Pk,n = p) =

∏p
q=1 σ−β

kq

[zk] (Dβ (z) − 1)
p .

• The number of states with prescribed number of particles
This suggests to look at the frequency of frequencies distribution problem.

For i = 0, .., k, let now

Ak,n (i) =

n∑

m=1

I (Kk,n (m) = i)(2.11)

count the number of cells visited i times by the k−sample, with Ak,n (0) =
n−Pk,n, the number of empty cells. Let (a0, a1, .., ak) be non-negative integers
satisfying

∑n
i=0 ai = n and

∑n
i=1 iai = k. Then

P (Ak,n (0) = a0, Ak,n (1) = a1, .., Ak,n (k) = ak) =
n!

Zk,n (β)

k∏

i=0

σ−βai

i

ai!
.

Note from this that, with
∑n

i=1 iai = k and
∑k

1 ai ≤ n, the normalization
condition gives

∑

a1,..,ak

1(
n −

∑k
1 ai

)
!

k∏

i=1

σ−βai

i

ai!
=

Zk,n (β)

n!
.(2.12)

From this, we get
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Proposition 3 If p = n − a0, the joint distribution of (Ak,n (1) , .., Ak,n (k))
and Pk,n reads

P (Ak,n (1) = a1, .., Ak,n (k) = ak; Pk,n = p) =
{n}p

Zk,n (β)

k∏

i=1

σ−βai

i

ai!
.(2.13)

so that

P (Ak,n (1) = a1, .., Ak,n (k) = ak | Pk,n = p)

=
p!

[zk] (Dβ (z) − 1)
p

k∏

i=1

σ−βai

i

ai!

Let us now compute the falling factorial moments of Ak,n (i), i = 1, ..k.

Proposition 4 Let ri, i = 1, .., k be non-negative integers satisfying
∑k

1 ri =

r ≤ n and
∑k

1 iri = κ ≤ k. We have

E

[
k∏

i=1

{Ak,n (i)}
ri

]
= {n}r

Zk−κ,n−r (β)

Zk,n (β)

k∏

i=1

σ−βri

i .(2.14)

Proof:

E

[
k∏

i=1

{Ak,n (i)}
ri

]
=

n!

Zk,n (β)

∑

a1,..,ak

1(
n −

∑k
1 ai

)
!

k∏

i=1

{
σ−βai

i

(ai − ri)!

}

=
n!

Zk,n (β)

k∏

i=1

σ−βri

i

∑

a1,..,ak

1(
n −

∑k
1 ai

)
!

k∏

i=1

{
σ
−β(ai−ri)
i

(ai − ri)!

}
.

The normalization condition (2.12) gives:

∑

a1,..,ak

1(
n −

∑k
1 ai

)
!

k∏

i=1

{
σ
−β(ai−ri)
i

(ai − ri)!

}
=

Zk−κ,n−r (β)

(n − r)!
.

Finally, we get

E

[
k∏

i=1

{Ak,n (i)}
ri

]
= {n}r

Zk−κ,n−r (β)

Zk,n (β)

k∏

i=1

σ−βri

i . �

In particular, if all ri = 0, except for one i for which ri = r, then

E
[
{Ak,n (i)}

r

]
= {n}r

Zk−i,n−r (β) σ−β
i

Zk,n (β)
.(2.15)
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If all ri = 0, except for one i for which ri = r = 1, then

E [Ak,n (i)] = n
Zk−i,n−1 (β) σ−β

i

Zk,n (β)
= nP (Kk,n (1) = i) .(2.16)

This shows that the expected number of cells visited i times is n times the
probability that there are i visits to (say) cell one. From this, we more generally
get

Proposition 5 In the thermodynamic limit, with ρ ∈ (0, ρc):

1

n
Abnρc,n (i)

a.s.
→ P (Kρ = i) as n ↗ ∞.

Proof: In the thermodynamic limit κn = bnρc, n ↗ ∞, Kκn,n is asymptoti-

cally iid with components law: P (Kρ = l) =
σ
−β

l
·zβ(ρ)l

Dβ(zβ(ρ)) , l ∈ N0. The above state-

ment therefore follows from Ak,n (i) =
∑n

m=1 I (Kk,n (m) = i) and the strong
law of large numbers. �

3 Grand canonical occupancies

In this Section, we investigate the grand-canonical occupancy distributions.

• Gibbs randomization of sample size. Assume sample size k is now
random, say Kz,n. Assume further that Kz,n has distribution:

P (Kz,n = k) =
zkZk,n (β)

Dβ (z)
n , k ∈ N0.

The randomized version Kz,n of k has generating function

E
(
uKz,n

)
=

(
Dβ (zu)

Dβ (z)

)n

and so Kz,n is a sum of n independent zeta(β, z) integral-valued random vari-
ables with common generating function Dβ (zu) /Dβ (z) .

• Grand-canonical occupancies. Now indexing cell occupancies by z
rather than by k, we can define the joint laws of cell occupancies vector Kz,n :=
(Kz,n (m) ; m = 1, .., n) and Kz,n as

P (Kz,n = kn; Kz,n = k) =
zkZk,n (β)

Dβ (z)n
P (Kk,n = kn)

=
zk

Dβ (z)
n

n∏

m=1

σ−β
km

.
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Observing that Kz,n =
∑n

m=1 Kz,n (m), regardless of the event Kz,n = k, we
get

Proposition 6 For all km ∈ N0, m = 1, .., n

P (Kz,n = kn) =

n∏

m=1

zkmσ−β
km

Dβ (z)
=

n∏

m=1

P (ξz,m = km) .

The law of the ξz,ms depends on z; further, z and κ := E (Kz,n) are easily

seen to be related through κ = nz
D′

β(z)

Dβ(z) (under this model, the expected number

of particles is proportional to n). In this interpretation, P (Kz,n (m) = km) =
P (ξz,m = km) and the law of Kz,n turns out to be a mere product measure.
Note that, if Pz,n =

∑n
m=1 I (Kz,n (m) > 0) denotes the number of occupied

boxes, with kp = (k1, .., kp) ∈ N
p

P (Kz,p = kp; Pz,n = p) =

(
n

p

)
P (ξz,n = 0)

n−p
p∏

q=1

P (ξz,q = kq)

and, with P (ξz,n = 0) = 1/Dβ (z), for p ∈ {0, .., n}

P (Pz,n = p) =

(
n

p

)
P (ξz,n = 0)n−p P (ξz,n > 0)p

giving a binomial distribution for Pz,n. As required, we have P (Pz,n = 0) =

1/Dβ (z)
n

= P (Kz,n = 0). Next, E (Pz,n) = n
(
1 − 1

Dβ(z)

)
.

When n ↗ ∞, β ↗ ∞ while n2−β = γ > 0, the binomial/Poisson ap-

proximation gives Pz,n
d
→
∗

Pz
d
∼ Poisson(γz) . We shall come back to this zero

temperature weak ∗−limit later.

Before that, let us first reconsider the frequency of frequencies problem after
having randomized sample size as described above. Let then

P (Az,n (1) = a1, .., Az,n (k) = ak; Kz,n = k) =

zkZk,n (β)

Dβ (z)
n P (Ak,n (1) = a1, .., Ak,n (k) = ak) =

n!

k∏

i=0

{(
ziσ−β

i

Dβ (z)

)ai

1

ai!

}
= n!

k∏

i=0

{
(P (ξz,1 = i))

ai

ai!

}

be the joint grand-canonical multinomial probability of the event Az,n (1) =
a1, .., Az,n (k) = ak; Kz,n = k. In other words, for all sequences (ai; i ≥ 0)
satisfying the single constraint

∑
i≥0 ai = n :

P (Az,n (1) = a1, .., Az,n (i) = ai, ..) = n! ·

∑
l≥1

lal∏

i=0

{
(P (ξz,1 = i))

ai

ai!

}
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only depends on z. We have Az,n (i) =
∑n

m=1 I (Kz,n (m) = i), so that

E (Az,n (i)) =

n∑

m=1

P (Kz,n (m) = i) =

n∑

m=1

P (ξz,m = i)

= nP (ξz,1 = i) = n
ziσ−β

i

Dβ (z)
.

The expected number of boxes with i particles is n times the probability that
(say) box number 1 has i particles. Next, consistently,

κ := E (Kz,n) =
∑

i≥1

iE (Az,n (i)) = n
∑

i≥1

iziσ−β
i

Dβ (z)
= nzΦ′

β (z) .

Proposition 7 (i) for all sequences (ai; i ≥ 0) satisfying the single constraint∑
i≥0 ai = n :

P (Az,n (1) = a1, .., Az,n (i) = ai, ..) = n! ·

∑
l≥1

lal∏

i=0

{
(P (ξz,1 = i))

ai

ai!

}
.

(ii) in the weak ∗−limit n ↗ ∞, β ↗ ∞ while n2−β = γ > 0, (Az,n (i) ; i ≥ 1)

converges to a sequence of independent random elements with limit law Az (1)
d
∼

Poisson(γz) and Az (i)
d
∼ δ0 when i ≥ 2.

(iii) in the weak ∗−limit, the number of visited boxes Pz,n converges to Pz
d
∼

Poisson(γz) .

Proof: it remains to prove (ii) and (iii). Observing Dβ (z)
n
∼∗ eγz, we

have

P (Az,n (1) = a1, .., Az,n (i) = ai, ..) =
n!(

n −
∑

i≥1 ai

)
!

∑
l≥1

lal∏

i=1

{
(P (ξz,1 = i))

ai

ai!

}

∼∗
n
∑

i≥1
ai

Dβ (z)n
∏

i≥1






(
ziσ−β

i

)ai

ai!




 ∼∗
(γz)

a1 e−γz

a1!

∏

i≥2

{
(0)

ai

ai!

}

=: P∗ (Az (1) = a1, .., Az (i) = ai, ..) .

In the limit, with the convention (0)ai = 1 (ai = 0), Az (i) 6= 0 with some posi-

tive probability only when i = 1 (singletons) and P∗ (Az (1) = a1) =
λ

a1

1
e−λ1

a1!
is

Poisson with intensity λ1 = γz . This (low temperature, large number of boxes)
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asymptotic regime is the one of uniques or singletons. States whose occupan-
cies cannot exceed 1 are currently obtained in a Fermi-Dirac context. To prove

(iii), recall that Pz,n
d
∼Bin

(
n, 1− 1

Dβ(z)

)
with 1− 1

Dβ(z) ∼
β↗∞

z2−β, giving the

Poisson weak ∗−limit already discussed. Note finally that the limiting number

of particles is Kz
d
∼ Poisson(γz) . �
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