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Abstrat

We onsider the haraterization of the nonequilibrium stationary state of a randomly-

driven granular gas in terms of an entropy-prodution based variational formulation.

Enforing spatial homogeneity, we �rst onsider the temporal stability of the sta-

tionary state reahed after a transient. In onnetion, two heuristi albeit physially

motivated andidates for the non-equilibrium entropy prodution are put forward.

It turns out that none of them displays an extremum for the stationary veloity

distribution seleted by the dynamis. Finally, the relevane of the relative Kullbah

entropy is disussed.

Key words: Granular gas; entropy prodution; H-theorem; nonequilibrium

stationary state
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1 Introdution

Apart from being the subjet of intense experimental ativity, granular gases

are also a partiularly fertile testing ground for new theoretial ideas and

problems, espeially within the �eld of nonequilibrium statistial physis. One

suh a problem is the role of entropy prodution as a Lyapunov funtional

for nonequilibrium steady-states. This problem has its roots in the �fties, in
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the works of the Brussels group around Prigogine [1℄ on the minimum entropy

prodution theorem. The limitations of this theorem, that relies essentially on

the linear response formalism (i.e., has a domain of validity that is restrited

to lose-to-equilibrium situations), were rather lear already at that time, and

a �rst extension to far-from-equilibrium situations was proposed under the

form of the phenomenologial �general evolution riterion" of Glansdor� and

Prigogine (see [2℄ and referenes therein).

Sine then, there was steady e�ort, and a huge body of literature, in the searh

for a variational priniple for steady-states that are arbitrarily far from equi-

librium. Several andidates for a �nonequilibrium entropy prodution" with

extremal properties at stationarity were proposed in di�erent ontexts, and

at various levels of oarse-graining of the desription � from the mirosopi

to the phenomenologial ones. Some suess was enountered for Markovian

systems desribed by a master equation for the probability distribution fun-

tion of the mirostates � starting with the pioneering work of Jiu-li et al [3℄,

and intensively studied afterwards (see, e.g., [4,5℄ to ite only a few). Also, a

onnetion between the phase spae ontration rate in dissipative, externally

driven systems and an entropy prodution rate was established in some ases,

see e.g. [6℄ for a ritial disussion. An extension of Jaynes' maximum entropy

inferene priniple (MaxEnt) to nonequilibrium situations was proposed [7℄,

and illustrated reently on several examples [8℄. The resulting piture is, how-

ever, rather onfusing and sometimes even ontraditory (e.g., some of the

above-mentioned papers speak of a �maximum" entropy prodution rate at

stationarity, while others refer to a �minimum").

One of the main di�ulties of nonequilibrium statistial mehanis is the

sarity of solvable models, on the basis of whih one ould, eventually, get

some lari�ation on these ontroversial points. The purpose of the present

work is to onsider suh a solvable model, namely a granular gas modeled as

an assembly of inelasti hard-spheres with onstant restitution oe�ient, in

whih energy is injeted by means of random fores ating independently upon

the partiles. The balane between dissipation and the random kiks allows

the system to reah a nonequilibrium steady-state (NESS). In a Boltzmann

equation desription, one an ompute (in some perturbative expansion) the

single-partile probability distribution funtion (pdf). This model is widely-

used and very suessful in explaining many features of granular systems (see,

e.g., [9,10,11℄). One of the question is thus whether this model is also ap-

propriate in desribing thermodynamial properties of granular systems � in

partiular, the entropy prodution rate and its eventual relationship with the

relaxation to NESS. We propose two heuristi � albeit physially motivated �

andidates for the nonequilibrium entropy prodution rate, as funtionals of

the pdf, and we disuss their extremal properties in NESS. Suh a granular

gas has a strong �built-in" irreversible element at the very level of the grain

dynamis, whih is represented by the inelastiity of the ollisions. However,
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one may ask whether in the limit of a very weak inelastiity (i.e., for steady-

states that are arbitrarily �lose to equilibrium") one ould reover a kind

of �minimum entropy prodution theorem" in a stohasti formulation � an

equivalent of that desribed in [3℄. We will also address this point here.

In the next setion we are introduing the model, and in Se. 3 we study the

nonequilibrium steady-state and its linear stability. Setion 4 is devoted to the

disussion of the nonequilibrium entropy prodution issue, and the behavior

of the relative Kullbak entropy. We onlude in Se. 5 with a brief disussion

of the limitations of this model as far as desribing the thermodynamis.

2 The model

We onsider a granular gas of inelasti hard spheres in dimension d > 2,
uniformly heated by a stohasti thermostat, as desribed in detail in [9,10℄.

The partiles undergo binary inelasti ollisions, modeled through a onstant

restitution oe�ient α ∈ [0, 1] that is meant to haraterize the degree of

inelastiity; the limit α = 1 orresponds to perfetly elasti ollisions, while

α = 0 orresponds to the perfet inelasti ones. Eah partile i (of mass m)

is subjeted to an external Gaussian white noise fore ξi(t); these fores are

unorrelated for di�erent partiles, and homogeneous in spae,

〈ξi,α(t)ξj,β(t′)〉 = m2ξ2
0
δijδαβδ(t− t′) , α, β = 1, ..., d . (1)

We desribe the system at the level of the kineti theory, and for simpliity,

without a�eting the overall onlusions, we shall onentrate on the spatially

homogeneous ase. For the single partile distribution funtion f(r, v1, t) =
f(v1, t), the Boltzmann equation reads then:

∂tf(v1, t) = χI[f, f ] +
ξ2
0

2

∂2

∂v2
1

f(v1, t) . (2)

The extra term (ξ2
0
/2)(∂2/∂v2

1
)f(v1, t) aounts for the hange in the distribu-

tion funtion aused by the random �kiks" the external thermostat is applying

on the grains. It orresponds to an injetion of energy at onstant rate dξ2
0
/2

per unit mass. χ is the pair orrelation funtion at ontat and

I[f, f ] = σd−1

∫

R

d

dv2

∫
dσ̂ θ(σ̂ · v12)(σ̂ · v12)

×
(
1

α2
b−1 − 1

)
f(v1, t)f(v2, t) (3)

represents the inelasti two-partile ollision operator. Here σ is the diameter

of the hard spheres; σ̂ is a unit vetor joining the enters of the partiles at
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ontat; v12 = v1 − v2; θ(...) is the Heaviside step-funtion; and b−1
is an

operator that restitutes the pre-ollisional veloities, i.e.,

b−1
v1 = v

∗∗

1
= v1 −

1 + α

2α
(v12 · σ̂)σ̂ , (4a)

b−1
v2 = v

∗∗

2
= v2 +

1 + α

2α
(v12 · σ̂)σ̂ . (4b)

Note that the post-ollisional veloities are

bv1 = v
∗

1
= v1 −

1 + α

2
(v12 · σ̂)σ̂ , (5a)

bv2 = v
∗

2
= v2 +

1 + α

2
(v12 · σ̂)σ̂ . (5b)

3 Saling solution and stationary state

3.1 Saling solution of Boltzmann's equation

It turns onvenient to introdue the pdf f̃ of resaled veloities c = v/vT :

f(v, t) =
n

vT (t)d
f̃(c, t), (6)

where n is the number partile density and

vT (t) =

√
2kBT (t)

m
(7)

is the thermal veloity assoiated to the kineti temperature of the partiles,

d

2
kBT (t) =

1

n

∫

R

d

dv
m

2
v2f(v, t) (8)

(kB is Boltzmann's onstant).

For inelasti ollisions, f̃(c, t) is di�erent from a Gaussian

φ(c) =
1

πd/2
e−c2 , (9)

and it is ustomary to haraterize its deviation from a Gaussian through a

series development in terms of Sonine polynomials Sn(c
2), whih, in pratie,
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is trunated to the �rst non-zero term [11℄,

f̃(c, t) = φ(c)
[
1 + a2(t)S2(c

2)
]
, (10)

where

S2(c
2) =

1

2
c4 − d+ 2

2
c2 +

d(d+ 2)

8
. (11)

The possible expliit temporal dependene of f̃(c, t) appears through the time-

dependent oe�ient a2(t) of the Sonine polynomial S2(c
2).

For onsisteny of the desription, it is found that the kineti temperature

T (t) and the oe�ient a2(t) obey a set of two oupled nonlinear �rst-order

di�erential equations:

dT (t)

dt
=

mξ2
0

kB
−
√

kB
πm

nχσd−1(1− α2)Sd

d
T 3/2(t)

×
[
1 +

3

16
a2(t) +

9

1024
a2
2
(t)
]
, (12)

da2(t)

dt
+

2mξ2
0

kBT (t)
a2(t) +

√
kBT (t)

πm

4nχσd−1(1− α2)Sd

d(d+ 2)

×
[
1 +

3

16
a2(t) +

9

1024
a2
2
(t)
] [

1 +
d(d+ 2)

8
a2(t)

]

=

√
2kBT (t)

πm

4nχσd−1Sd

d(d+ 2)

[
1− α2

1 + α2
+D1a2(t) +D2a

2

2
(t)

]
.

(13)

Here Sd = 2πd/2/Γ(d/2) is the surfae of the unit-radius sphere in dimension

d, Γ being Euler's Gamma funtion. Equation (12) follows from the de�ni-

tion (8) of the kineti temperature, while Eq. (13) is obtained from the limit

of vanishing veloities of the Boltzmann equation (2), see [12℄. The oe�ients

D1 and D2 are given, respetively, by [12℄:

D1 =
1−2d−d2

8
+

1

8(1+α2)3

[
2(1+α2)2(d2−2d−5)

+4(d−1)(α−1)2(1+α2) + 8(α4+6α2+1)
]
, (14)

D2 =
d(d+2)

64
+

1

32(1+α2)5

[
12α3(1+α2)(d−1)(d−2)

−4α2(1+α4)(24+4d−d2) +4α(1+α6)(d+6)(d−1)

−(1+α8)(26+28d+9d2
]
. (15)
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3.2 Stationary state

In the asymptoti limit, the granular system will reah a stationary state,

that results from the balane between the energy injetion by the external

thermostat, and the energy dissipation through inelasti ollisions between the

partiles. The stationary temperature T0 is thus related both to the restitution

oe�ient α and to the amplitude ξ2
0
of the Gaussian thermostat. Or, to state

it di�erently, in order to ensure a given value of T0 (for a �xed value of α), as
resulting from the stationary form of Eq. (12), one has to tune the amplitude

ξ2
0
of the stohasti thermostat to

ξ2
0
=

nχσd−1(1− α2)Sd

d
√
π

(
kBT0

m

)3/2

×
(
1 +

3

16
a20 +

9

1024
a2
20

)
. (16)

Here a20 is the stationary value of the oe�ient of the �rst orretion to the

Gaussian. Its expression an be obtained from the stationary form of Eq (13)

and it is the solution of the third order nonlinear equation (see e.g. [11℄ for

a disussion onerning the relevane of the orresponding three roots in the

ase of a fore-free system):

(1−α2)
(
1+

3

16
a20+

9

1024
a2
20

) [
1+a20

(d+2)(d+4)

8

]

=
√
2

(
1−α2

1+α2
+D1 a20 +D2 a

2

20

)
. (17)

The oe�ient a20 an be obtained in a losed analytial form through a

Taylor expansion of the above equation. It was however shown in previous

works [12,10℄ that there are some ambiguities from this linearization proedure

that may a�et a20. We therefore hose the linearizing sheme that yields the

losest result to the Monte Carlo simulations of Ref. [12℄:

a20 = −16(1− α2)(1 + α2)(1−
√
2 + α2)

×
{
16
√
2+13+4d(3

√
2+1)+2d2(

√
2−1)

+α2(−75+44d−2d2)−α4
[
16
√
2−3+2d(d+6)(

√
2−1)

]

+α6(−5 + 4d+ 2d2)
}
−1

. (18)

Considering instead the expression derived by van Noije and Ernst in [9℄ would

not alter the following disussion. Note that a20 beomes zero in the elasti

limit α = 1, when the stationary probability distribution reovers trivially the

Gaussian, equilibrium shape.
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The orresponding stationary probability distribution funtion is therefore

f0(v) =
n

vdT0

f̃0(c) =
n

vdT0

φ(c)
[
1 + a20S2(c

2)
]
, (19)

where vT0
=
√
2kBT0/m is the stationary value of the thermal veloity.

3.3 Linear stability analysis of the stationary state

The stability of the aforementioned steady state has not been investigated in

the literature, even if the hydrodynami-like equations have been derived re-

ently for the (dilute) system onsidered here [13℄. A omplete linear stability

analysis (and its eventual omparison with the existing results for the homo-

geneous ooling state [14℄) is a tedious task, and a separate researh subjet

that we shall not address here further. Instead, we shall onsider a simpli�ed

version of it, in whih the homogeneity of the state is not a�eted by the

perturbations. This will by no mean in�uene our general onlusions.

Let us then onsider small deviations of the temperature and of the oe�ient

a2 from their stationary values,

T = T0(1 + δθ) , a2 = a20 + δa2 , (20)

with |δθ| ≪ 1 , |δa2| ≪ |a20|.

The linearized evolution equations of these perturbations result from Eqs. (12)

and (13),

d

dt
(δθ) =−mξ2

0

kBT0

[
3

2
δθ+

3/16+(9/512)a20
1+(3/16)a20+(9/1024)a220

δa2

]
,

(21)

d

dt
(δa2) = − mξ2

0

kBT0

{
a20 δθ +

{
d+ 4

2
+

4

d+ 2

×
[(

1 + a20
d(d+ 2)

8

)(
3

16
+

9

512
a20

)

−
√
2

1−α2
(D1+2D2a20)

] [
1+

3

16
a20+

9

1024
a2
20

]−1
}
δa2

}
.

(22)

In Fig. 1 we have represented the two eigenvalues of the orresponding stability

matrix as a funtion of the restitution oe�ient α, for both d = 2 and d = 3
ases.
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Fig. 1. The eigenvalues of the linear stability matrix for the stationary state as

a funtion of α for d = 2 and d = 3. The eigenvalues are measured in units

t−1

0
= nσd−1χSdvT0

/
√
2π.

One noties that the two eigenvalues are stritly negative for α < 1, whih in-

diates the stability of the stationary state with respet to small perturbations

in the temperature and in the shape of the probability distribution funtion

(in the saling form). We emphasize again that spatial homogeneity has been

enfored here. As expeted, in the elasti limit α = 1 one of the eigenval-

ues beomes zero (while the other one remains negative) � whih orresponds

to the temperature beoming a marginal mode, and to a relaxation of the

distribution funtion to its equilibrium Gaussian shape.

4 Entropy prodution

We now turn to the issue of entropy. For our homogeneous system, we onsider

the Shannon information entropy

S(t) ≡ −kB

∫

R

d

dv1f(v1, t) ln

(
f(v1, t)

ehd

)
(23)

(with Euler's number e and Plank's onstant h, and ehd
the volume of the

semilassial elementary phase-spae ell)." It is known that in the elasti

limit α = 1 (and in the absene of an external drive) this redues to the

8



appropriate expression of the usual thermodynami entropy and leads to the

lassial �H-theorem". We now onsider the time evolution of S(t) as governed
by the Boltzmann equation (2), whih reads

dS

dt
= −kB

∫

R

d

dv1

∂f(v1, t)

∂t
ln

(
f(v1, t)

ehd

)

= −χkB

∫

R

d

dv1I[f, f ] ln

(
f(v1, t)

ehd

)

−kBξ
2

0

2

∫

R

d

dv1

∂2

∂v2
1

f(v1, t) ln

(
f(v1, t)

ehd

)
. (24)

As mentioned in the Introdution, we wish to introdue a heuristi � albeit

physially motivated � entropy prodution funtional that, hopefully, displays

extremal properties in NESS. We shall propose two approahes. But before

proeeding further, we would like to remind the reader the status of dS/dt
within the framework of phenomenologial thermodynamis as disussed in

standard textbooks [15,16,17℄, as well as some of its extensions to stohasti

systems [3,4,5℄. Entropy variations are usually split into two parts:

dS

dt
= σ

irr

+ σ
�ux

, (25)

where σ
irr

> 0 is the entropy prodution arising due to the dissipative pro-

esses that take plae inside the system (that is positively-de�ned aording

to the seond priniple of thermodynamis), while the entropy �ux σ
�ux

=
− ∫V dV∇ · JS aounts for the external fores driving the system into a

nonequilibrium state (the related ontribution is often redued to boundary

terms). The �art" of phenomenologial thermodynamis preisely bears on JS

and on how to deompose it in terms of the energy, partile, momentum,

hemial, et., urrents. This is done, usually, on the basis of the loal equi-

librium hypothesis. In a similar way, σ
irr

often appears as a bilinear form in

the �uxes running through the system and the onjugate a�nities. In the

near-to-equilibrium regime, the �uxes are usually proportional to the onju-

gated a�nities, with the Onsager oe�ients as proportionality fators, and

one reovers Prigogine's minimum theorem for σ
irr

under the hypothesis of

time-reversibility of the underlying mirosopi dynamis.

However, in view of the loal harater of the energy injetion mehanism, as

well as of the spatial homogeneity of the system, the situation is ompletely

di�erent in the ase we are onsidering. Indeed, unlike the above-mentioned

�onventional� NESS, there are neither marosopi, however weak, urrents

running aross the system, nor the related phenomenologial Onsager response

oe�ients. Therefore, the separation into �soure" and ��ow" for the entropy

variation is muh more triky.
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First approah.� A �rst proposed hoie of the �entropy prodution" is

σ
irr

=
kBχσ

d−1

4

∫
dv1dv2dσ̂θ(σ̂ · v12)σ̂ · v12

× (f ∗∗

1
f ∗∗

2
− f1f2) ln

(
f ∗∗

1
f ∗∗

2

f1f2

)
+

ξ2
0

2

∫
dv

(∇vf)
2

f
, (26)

the form of the �rst r.h.s. term being simply hosen by analogy with the elasti-

limit ase. The seond term has been hosen by analogy with standard di�usion

proesses. In those proesses this term vanishes at equilibrium beause the

gradients disappear. Note however that here the di�usion proess happens

in the veloity spae, and thus the vanishing of this term at equilibrium is

not due to the system beoming homogeneous in v-spae, but beause of the

energy soure strength ξ2
0
being tuned to 0. The above σ

irr

appears to be the

sum of two positive de�nite terms, and it is therefore also positive de�nite.

Furthermore, σ
irr

an only be zero at equilibrium, namely when both the energy

soure (the random kiks) and the energy sink (the dissipative ollisions) are

tuned to zero. In that respet, it ful�lls the properties expeted from standard

phenomenologial thermodynamis.

On the other hand, the form of the entropy �ux σ
�ux

is now onstrained to be

σ
�ux

=
kBχσ

d−1

4

∫
dv1dv2dσ̂θ(σ̂ · v12)σ̂ · v12

× f1f2 ln

[
(f ∗∗

1
f ∗∗

2
)(f1f2)

1−α2

(f ∗

1 f
∗

2 )
2−α2

]
, (27)

where we have used the shorthand notations f1,2 = f(v1,2, t), respetively
f ∗∗

1,2 = f(v∗∗

1,2, t) for the distribution funtions orresponding to the pre-ollisional
veloities (4). The above funtional of f is negative for a large lass of trial

funtions, and must de�nitely assume a negative value σ
�ux

∼ −1−α2

ℓ
T

1/2
0

in the steady state (ℓ ∼ 1

χσd−1 is the mean free path). However, aside from

onveying the shrinking of phase spae volumes, we must dismiss σ
irr/�ux

as

relevant andidates for extremum entropy funtionals. Indeed, in the spirit of

phenomenologial thermodynamis, the splitting of dS/dt into σ
irr

and σ
�ux

is

motivated by the desire to isolate the driving proesses (the soure and sink

referred to above) from the irreversible proesses inside the system. However

there is no simple and univoque manner to do so, and de�nitely this �rst

hoie is not aomplishing this physially-motivated requirement. It must be

noted that the last term of eq.(26) ould have also hosen as a part of σ
�ux

,

whih would then have featured both the soure and the sink, at the prie of

abandoning its negative de�niteness.

Seond approah.�We now propose an alternative and perhaps more pragmati

route, whih onsists in isolating as the only driving mehanism the random

kiks provided by the thermostat. The inelasti ollisions, viewed above as an
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energy sink, are now inorporated into a term desribing the system's intrinsi

dissipative mirosopi dynamis. Along those lines we heneforth write that

dS

dt
= σsyst + σext . (28)

The �rst ontribution σsyst orresponds to the entropy prodution inside the

system, i.e., it omes from the hanges of the partiles veloities during the

binary inelasti ollisions,

σsyst =
kBχσ

d−1

2

∫

R

d

dv1

∫

R

d

dv2

∫
dσ̂θ(σ̂ · v12)

× (σ̂ · v12)f1f2 ln

(
f1f2
f ∗

1 f
∗

2

)
, (29)

where we have used the shorthand notation f ∗

1,2 = f(v∗

1,2, t) for the distribu-

tion funtions orresponding to the post-ollisional veloities (5). Of ourse, in

the limit of elasti ollisions α = 1 the expression of σsyst redues to the usual

positive-de�nite expression of the hard-disk gas that enters the H-theorem.

However, in general σsyst does not have a de�nite sign. One an imagine the en-

tropy prodution inside the system as resulting from two antagonist (although

atually undissoiated) mehanisms, namely a generi disordering e�et of any

partile ollisions (e.g., that is also present for elasti hard spheres) in d > 2,
and an ordering e�et due to the inelasti harater of the ollisions (i.e., to

the redution of the translational agitation of the partiles). Depending on the

atual shape of the distribution funtion, one of these two mehanisms may

prevail on the other, thus determining the sign of the instantaneous value of

σsyst.

The seond ontribution σext is determined by the e�et of the thermostat on

the distribution funtion of the partiles of the system. It orresponds to an

energy injetion into the system, and to a disordering e�et of the partiles

veloities (through �random kiking"), and therefore, as expeted, is always a

positively-de�ned quantity,

σext =
kBξ

2

0

2

∫

R

d

dv
1

f(v, t)
[∇vf(v, t)]

2 . (30)

Introduing the dimensionless quantities

σ̃syst,ext =
2σsyst,ext

χσd−1vT0
n2

, (31)

one obtains the expressions for the dimensionless time-dependent entropy pro-
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dution soures:

σ̃syst =

[
T (t)

T0

]1/2 ∫

R

d

dc1

∫

R

d

dc2

∫
dσ̂ θ(σ̂ · c12)

× (σ̂ · c12) f̃(c1, t)f̃(c2, t) ln
[
f̃(c1, t)f̃(c2, t)

f̃(c∗1, t)f̃(c
∗

2, t)

]
, (32)

respetively

σ̃ext =

[
T0

T (t)

]
(1−α2)Sd

2d
√
2π

(
1+

3

16
a2(t)+

9

1024
a2
2
(t)
)

×
∫

R

d

dc
1

f̃(c, t)

[
∇cf̃(c, t)

]2
. (33)

In the stationary regime at temperature T0 one has, obviously, σ̃syst = −σ̃ext ≡
−σ̃0. The quantity σ̃0 is positive and deaying monotonously with α, as illus-
trated in Fig. 2. Note that σ̃0 is nonzero as long as the ollisions are inelasti,

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

PSfrag replacements

α

eσ
0

d = 2

d = 3

Fig. 2. The dimensionless stationary entropy prodution σ̃0 as a funtion of α in

d = 2 and d = 3.

i.e., as long as the stationary probability distribution is non-Gaussian. Note

also the negativity of σ̃syst in the stationary state � the ordering e�et due

to the inelasti harater of the ollisions prevails on the generi disordering

e�et of the ollisions.
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Let us now address the question whether the entropy prodution (as a whole,

or one of its parts σ̃syst or σ̃ext) an play the role of some kind of �nonequi-

librium potential" for the system, i.e., whether or not it an aount for the

linear stability of the stationary state of the system. The partiular ase of

the quasi-elasti limit ε ≡ 1 − α ≪ 1 is espeially interesting, given that

the stationary state is lose to equilibrium. One might then expet a priori

that a �minimum entropy prodution theorem" (in the spirit of the �extended

Prigogine theory� [3℄) might be valid in this ase.

Consider thus small perturbations of the temperature and of the oe�ient a2
around their stationary values, as in Eq. (20). A Taylor development of the

entropy prodution terms σ̃syst and σ̃ext leads to nonzero linear ontributions

in the perturbations δθ and δa2,

σ̃syst − (−σ̃0) = −δθ
(
σ̃0

2

)
+ δa2

∫

R

d

dc1

∫

R

d

dc2

∫
dσ̂

× θ(σ̂ · c12)(σ̂ · c12) f̃0(c1)f̃0(c2)
{[

S2(c
2

1
)

1 + a20S2(c21)
+

× S2(c
2

2
)

1 + a20S2(c22)
− S2(c

∗2

1
)

1 + a20S2(c∗21 )
− S2(c

∗2

2
)

1 + a20S2(c∗22 )

]

+

[
S2(c

2

1
)

1 + a20S2(c
2
1)

+
S2(c

2

2
)

1 + a20S2(c
2
2)

]
ln

[
f̃0(c1)f̃0(c2)

f̃0(c
∗

1)f̃0(c
∗

2)

]}

+O(δθ2, δa2
2
) , (34)

respetively

σ̃ext − (σ̃0) = −δθ(σ̃0) + δa2





3/16+(9/512)a20
1+(3/16)a20+(9/1024)a220

σ̃0

+
(1−α2)Sd

2d
√
2π

(
1+

3

16
a20 +

9

1024
a2
20

)

×
∫

R

d

dc



2
(
∇cf̃0(c)

)
·
[
∇c

(
e−c2S2(c

2)
)]

πd/2f̃0(c)

−
(
∇cf̃0(c)

)2 (
e−c2S2(c

2)
)

πd/2f̃ 2
0 (c)






+O(δθ2, δa2

2
) . (35)

The total entropy prodution σ̃syst + σ̃ext also ontains linear terms in the

perturbations δθ and δa2.

The same holds true even in the quasielasti limit ε ≡ 1 − α ≪ 1, when
one an evaluate expliitly to O(ε2) the expression of the oe�ients of the
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perturbations. More preisely,

σ̃ext − (−σ̃0) = −δθ
(
σ̃0

2

)
− δa2

√
2π

d−1

2

Γ(d/2)

×
[
2(d− 1) a20 +

4d+ 5

8
ε +O(ε2)

]
,

σ̃syst − σ̃0 = −δθ (σ̃0) + δa2

[
3

16
σ̃0 + O(ε2)

]
, (36)

where the stationary values are

σ̃0 =
2
√
2π

d−1

2

Γ(d/2)
ε + O(ε2) , (37)

and

a20 = −
√
2(
√
2− 1)

d− 1
ε + O(ε2) . (38)

The meaning of this result is that the entropy prodution as de�ned above

annot be used for a variational desription of the relaxation of the system

towards the stationary state, not even in the quasi-elasti limit.

One may argue that the hoie of the de�nition of the entropy prodution

inside the system might be inappropriate, sine it refers only to the trans-

lational degrees of freedom, and it does not take into aount properly the

internal degrees of freedom of the partiles � that are, in fat, responsible

for the inelasti harater of the ollisions. The desription of the inelastiity

through a onstant restitution oe�ient α might thus be inompatible with

a thermodynami desription of the system in terms of entropy prodution.

We note that it is known that suh a model, although being a useful approxi-

mation whih aptures important physial e�ets, is in fat inompatible with

basi mehanial laws (see e.g. hapter 3 of Ref. [11℄).

Let us now disuss brie�y another issue that draw attention reently, see

Refs. [18,19℄, namely that of the Kullbak relative entropy, de�ned as

SR(t) =−kB

∫

R

d

dvf(v, t) ln

(
f(v, t)

f0(v)

)

=−kBn

vdT

∫

R

d

dc φ(c)
[
1 + a2S2(c

2)
]
ln

(
vdT0

vdT

1 + a2S2(c
2)

1 + a20S2(c2)

)
. (39)

SR(t) is a measure of the �distane" between the atual pdf f(v, t) and its

stationary pro�le f0(v), and, of ourse, is equal to zero at the stationary

state. Following Ref. [19℄, one an parametrize SR(t) through the two sets of

parameters, {γ1 = a2(t), γ2 = T (t)} for the nonstationary state, respetively
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{γ10 = a20, γ20 = T0} for the sationary pdf. Considering as above (se. 3.3)

small deviations of the temperature and of the oe�ient a2 (that result in a

small deviation δf(v, t) of the pdf ) from their stationary values, one �nds:

δSR ≈−kB
2

∫

R

d

dv
1

f0(v)
[δf(v, t)]2 = −1

2

∑

i,j=1,2

Fijδγ1δγ2 6 0 , (40)

where δγ1 = δa2, δγ2 = T0δθ, and Fij is the positively-de�ned Fisher informa-

tion matrix [20℄,

Fij = kB

∫

R

d

dvf0(v)

(
∂lnf0(v)

∂γi0

) (
∂lnf0(v)

∂γj0

)
. (41)

It looks therefore as if this relative entropy has the required property of ex-

tremum at the steady-state (and monotonous exponential asymptoti relax-

ation towards it). This property has already been demonstrated for other types

of nonequilibrium stohasti systems (e.g., in Ref. [18℄, the one-dimensional

Ornstein-Uhlenbek and Rayleigh proesses, noise-perturbed harmoni osil-

lator, dihotomous noise). The question arises about its relationship with the

thermodynami entropy prodution; in Ref. [19℄ it was shown that in the

ase of the usual Smolukhowski di�usion the Kullbak entropy time-variation

rate oinides with the Shannon entropy prodution rate. However, some fur-

ther ase-study (in partiular, on systems desribed by kineti Boltzmann-

like equations) are neessary before generalizing this important onlusion to

other nonequilibrium situations. In partiular, although very appealing, the

Kullbak entropy does not redue to the usual H-funtional in the limit of

an elasti gas of partiles relaxing to equilibrium. Besides that, omputing

Kullbak entropy requires the knowledge of the steady-state pdf, while the

expeted approah would be to de�ne a proper Lyapunov funtional of the

system from whih to dedue the stationary state.

5 Conlusions

We illustrated on the well-known model of a randomly driven granular gas

with onstant restitution oe�ient the di�ulties that one enounters when

trying to onstrut a variational priniple for NESS based on an �entropy pro-

dution�. Two approahes were proposed for the interpretation of the entropy

balane equation in terms of �soures" and ��ows", but none of them lead to

the formulation of suh a priniple. The main reason for this failure seems to

be the intrinsi irreversible mirosopi dynamis of the granular gas. Model-

ing the internal degrees of freedom of the grains (that are responsible for the

inelastiity of the ollisions) through a onstant restitution oe�ient is thus
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not appropriate for a thermodynami desription. This shows thus a major

limitation of this model. A further step in the rather involved question of the

re�nement of the desription would be the use of random restitution oe�-

ients (as done, e.g., in [21℄). These are meant to desribe the possible �ow of

energy (at the ollision) both towards and from the internal degrees of free-

dom to the translational degrees of freedom. Suh a model, however, annot

be treated analytially, and no simple analyti onlusions an be therefore

drawn on the fate of the orresponding H-funtional. Numerial results are

left for further studies.

Moreover, the problem of the Kullbak relative entropy, its monotonous relax-

ation to the steady-state, and its relationship with the thermodynami entropy

prodution of a nonequilibrium system is a very promising diretion for further

studies.
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