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Abstra
t

We 
onsider the 
hara
terization of the nonequilibrium stationary state of a randomly-

driven granular gas in terms of an entropy-produ
tion based variational formulation.

Enfor
ing spatial homogeneity, we �rst 
onsider the temporal stability of the sta-

tionary state rea
hed after a transient. In 
onne
tion, two heuristi
 albeit physi
ally

motivated 
andidates for the non-equilibrium entropy produ
tion are put forward.

It turns out that none of them displays an extremum for the stationary velo
ity

distribution sele
ted by the dynami
s. Finally, the relevan
e of the relative Kullba
h

entropy is dis
ussed.

Key words: Granular gas; entropy produ
tion; H-theorem; nonequilibrium

stationary state

PACS: 05.70.Ln,45.70.-n

1 Introdu
tion

Apart from being the subje
t of intense experimental a
tivity, granular gases

are also a parti
ularly fertile testing ground for new theoreti
al ideas and

problems, espe
ially within the �eld of nonequilibrium statisti
al physi
s. One

su
h a problem is the role of entropy produ
tion as a Lyapunov fun
tional

for nonequilibrium steady-states. This problem has its roots in the �fties, in
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the works of the Brussels group around Prigogine [1℄ on the minimum entropy

produ
tion theorem. The limitations of this theorem, that relies essentially on

the linear response formalism (i.e., has a domain of validity that is restri
ted

to 
lose-to-equilibrium situations), were rather 
lear already at that time, and

a �rst extension to far-from-equilibrium situations was proposed under the

form of the phenomenologi
al �general evolution 
riterion" of Glansdor� and

Prigogine (see [2℄ and referen
es therein).

Sin
e then, there was steady e�ort, and a huge body of literature, in the sear
h

for a variational prin
iple for steady-states that are arbitrarily far from equi-

librium. Several 
andidates for a �nonequilibrium entropy produ
tion" with

extremal properties at stationarity were proposed in di�erent 
ontexts, and

at various levels of 
oarse-graining of the des
ription � from the mi
ros
opi


to the phenomenologi
al ones. Some su

ess was en
ountered for Markovian

systems des
ribed by a master equation for the probability distribution fun
-

tion of the mi
rostates � starting with the pioneering work of Jiu-li et al [3℄,

and intensively studied afterwards (see, e.g., [4,5℄ to 
ite only a few). Also, a


onne
tion between the phase spa
e 
ontra
tion rate in dissipative, externally

driven systems and an entropy produ
tion rate was established in some 
ases,

see e.g. [6℄ for a 
riti
al dis
ussion. An extension of Jaynes' maximum entropy

inferen
e prin
iple (MaxEnt) to nonequilibrium situations was proposed [7℄,

and illustrated re
ently on several examples [8℄. The resulting pi
ture is, how-

ever, rather 
onfusing and sometimes even 
ontradi
tory (e.g., some of the

above-mentioned papers speak of a �maximum" entropy produ
tion rate at

stationarity, while others refer to a �minimum").

One of the main di�
ulties of nonequilibrium statisti
al me
hani
s is the

s
ar
ity of solvable models, on the basis of whi
h one 
ould, eventually, get

some 
lari�
ation on these 
ontroversial points. The purpose of the present

work is to 
onsider su
h a solvable model, namely a granular gas modeled as

an assembly of inelasti
 hard-spheres with 
onstant restitution 
oe�
ient, in

whi
h energy is inje
ted by means of random for
es a
ting independently upon

the parti
les. The balan
e between dissipation and the random ki
ks allows

the system to rea
h a nonequilibrium steady-state (NESS). In a Boltzmann

equation des
ription, one 
an 
ompute (in some perturbative expansion) the

single-parti
le probability distribution fun
tion (pdf). This model is widely-

used and very su

essful in explaining many features of granular systems (see,

e.g., [9,10,11℄). One of the question is thus whether this model is also ap-

propriate in des
ribing thermodynami
al properties of granular systems � in

parti
ular, the entropy produ
tion rate and its eventual relationship with the

relaxation to NESS. We propose two heuristi
 � albeit physi
ally motivated �


andidates for the nonequilibrium entropy produ
tion rate, as fun
tionals of

the pdf, and we dis
uss their extremal properties in NESS. Su
h a granular

gas has a strong �built-in" irreversible element at the very level of the grain

dynami
s, whi
h is represented by the inelasti
ity of the 
ollisions. However,
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one may ask whether in the limit of a very weak inelasti
ity (i.e., for steady-

states that are arbitrarily �
lose to equilibrium") one 
ould re
over a kind

of �minimum entropy produ
tion theorem" in a sto
hasti
 formulation � an

equivalent of that des
ribed in [3℄. We will also address this point here.

In the next se
tion we are introdu
ing the model, and in Se
. 3 we study the

nonequilibrium steady-state and its linear stability. Se
tion 4 is devoted to the

dis
ussion of the nonequilibrium entropy produ
tion issue, and the behavior

of the relative Kullba
k entropy. We 
on
lude in Se
. 5 with a brief dis
ussion

of the limitations of this model as far as des
ribing the thermodynami
s.

2 The model

We 
onsider a granular gas of inelasti
 hard spheres in dimension d > 2,
uniformly heated by a sto
hasti
 thermostat, as des
ribed in detail in [9,10℄.

The parti
les undergo binary inelasti
 
ollisions, modeled through a 
onstant

restitution 
oe�
ient α ∈ [0, 1] that is meant to 
hara
terize the degree of

inelasti
ity; the limit α = 1 
orresponds to perfe
tly elasti
 
ollisions, while

α = 0 
orresponds to the perfe
t inelasti
 ones. Ea
h parti
le i (of mass m)

is subje
ted to an external Gaussian white noise for
e ξi(t); these for
es are

un
orrelated for di�erent parti
les, and homogeneous in spa
e,

〈ξi,α(t)ξj,β(t′)〉 = m2ξ2
0
δijδαβδ(t− t′) , α, β = 1, ..., d . (1)

We des
ribe the system at the level of the kineti
 theory, and for simpli
ity,

without a�e
ting the overall 
on
lusions, we shall 
on
entrate on the spatially

homogeneous 
ase. For the single parti
le distribution fun
tion f(r, v1, t) =
f(v1, t), the Boltzmann equation reads then:

∂tf(v1, t) = χI[f, f ] +
ξ2
0

2

∂2

∂v2
1

f(v1, t) . (2)

The extra term (ξ2
0
/2)(∂2/∂v2

1
)f(v1, t) a

ounts for the 
hange in the distribu-

tion fun
tion 
aused by the random �ki
ks" the external thermostat is applying

on the grains. It 
orresponds to an inje
tion of energy at 
onstant rate dξ2
0
/2

per unit mass. χ is the pair 
orrelation fun
tion at 
onta
t and

I[f, f ] = σd−1

∫

R

d

dv2

∫
dσ̂ θ(σ̂ · v12)(σ̂ · v12)

×
(
1

α2
b−1 − 1

)
f(v1, t)f(v2, t) (3)

represents the inelasti
 two-parti
le 
ollision operator. Here σ is the diameter

of the hard spheres; σ̂ is a unit ve
tor joining the 
enters of the parti
les at
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onta
t; v12 = v1 − v2; θ(...) is the Heaviside step-fun
tion; and b−1
is an

operator that restitutes the pre-
ollisional velo
ities, i.e.,

b−1
v1 = v

∗∗

1
= v1 −

1 + α

2α
(v12 · σ̂)σ̂ , (4a)

b−1
v2 = v

∗∗

2
= v2 +

1 + α

2α
(v12 · σ̂)σ̂ . (4b)

Note that the post-
ollisional velo
ities are

bv1 = v
∗

1
= v1 −

1 + α

2
(v12 · σ̂)σ̂ , (5a)

bv2 = v
∗

2
= v2 +

1 + α

2
(v12 · σ̂)σ̂ . (5b)

3 S
aling solution and stationary state

3.1 S
aling solution of Boltzmann's equation

It turns 
onvenient to introdu
e the pdf f̃ of res
aled velo
ities c = v/vT :

f(v, t) =
n

vT (t)d
f̃(c, t), (6)

where n is the number parti
le density and

vT (t) =

√
2kBT (t)

m
(7)

is the thermal velo
ity asso
iated to the kineti
 temperature of the parti
les,

d

2
kBT (t) =

1

n

∫

R

d

dv
m

2
v2f(v, t) (8)

(kB is Boltzmann's 
onstant).

For inelasti
 
ollisions, f̃(c, t) is di�erent from a Gaussian

φ(c) =
1

πd/2
e−c2 , (9)

and it is 
ustomary to 
hara
terize its deviation from a Gaussian through a

series development in terms of Sonine polynomials Sn(c
2), whi
h, in pra
ti
e,
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is trun
ated to the �rst non-zero term [11℄,

f̃(c, t) = φ(c)
[
1 + a2(t)S2(c

2)
]
, (10)

where

S2(c
2) =

1

2
c4 − d+ 2

2
c2 +

d(d+ 2)

8
. (11)

The possible expli
it temporal dependen
e of f̃(c, t) appears through the time-

dependent 
oe�
ient a2(t) of the Sonine polynomial S2(c
2).

For 
onsisten
y of the des
ription, it is found that the kineti
 temperature

T (t) and the 
oe�
ient a2(t) obey a set of two 
oupled nonlinear �rst-order

di�erential equations:

dT (t)

dt
=

mξ2
0

kB
−
√

kB
πm

nχσd−1(1− α2)Sd

d
T 3/2(t)

×
[
1 +

3

16
a2(t) +

9

1024
a2
2
(t)
]
, (12)

da2(t)

dt
+

2mξ2
0

kBT (t)
a2(t) +

√
kBT (t)

πm

4nχσd−1(1− α2)Sd

d(d+ 2)

×
[
1 +

3

16
a2(t) +

9

1024
a2
2
(t)
] [

1 +
d(d+ 2)

8
a2(t)

]

=

√
2kBT (t)

πm

4nχσd−1Sd

d(d+ 2)

[
1− α2

1 + α2
+D1a2(t) +D2a

2

2
(t)

]
.

(13)

Here Sd = 2πd/2/Γ(d/2) is the surfa
e of the unit-radius sphere in dimension

d, Γ being Euler's Gamma fun
tion. Equation (12) follows from the de�ni-

tion (8) of the kineti
 temperature, while Eq. (13) is obtained from the limit

of vanishing velo
ities of the Boltzmann equation (2), see [12℄. The 
oe�
ients

D1 and D2 are given, respe
tively, by [12℄:

D1 =
1−2d−d2

8
+

1

8(1+α2)3

[
2(1+α2)2(d2−2d−5)

+4(d−1)(α−1)2(1+α2) + 8(α4+6α2+1)
]
, (14)

D2 =
d(d+2)

64
+

1

32(1+α2)5

[
12α3(1+α2)(d−1)(d−2)

−4α2(1+α4)(24+4d−d2) +4α(1+α6)(d+6)(d−1)

−(1+α8)(26+28d+9d2
]
. (15)
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3.2 Stationary state

In the asymptoti
 limit, the granular system will rea
h a stationary state,

that results from the balan
e between the energy inje
tion by the external

thermostat, and the energy dissipation through inelasti
 
ollisions between the

parti
les. The stationary temperature T0 is thus related both to the restitution


oe�
ient α and to the amplitude ξ2
0
of the Gaussian thermostat. Or, to state

it di�erently, in order to ensure a given value of T0 (for a �xed value of α), as
resulting from the stationary form of Eq. (12), one has to tune the amplitude

ξ2
0
of the sto
hasti
 thermostat to

ξ2
0
=

nχσd−1(1− α2)Sd

d
√
π

(
kBT0

m

)3/2

×
(
1 +

3

16
a20 +

9

1024
a2
20

)
. (16)

Here a20 is the stationary value of the 
oe�
ient of the �rst 
orre
tion to the

Gaussian. Its expression 
an be obtained from the stationary form of Eq (13)

and it is the solution of the third order nonlinear equation (see e.g. [11℄ for

a dis
ussion 
on
erning the relevan
e of the 
orresponding three roots in the


ase of a for
e-free system):

(1−α2)
(
1+

3

16
a20+

9

1024
a2
20

) [
1+a20

(d+2)(d+4)

8

]

=
√
2

(
1−α2

1+α2
+D1 a20 +D2 a

2

20

)
. (17)

The 
oe�
ient a20 
an be obtained in a 
losed analyti
al form through a

Taylor expansion of the above equation. It was however shown in previous

works [12,10℄ that there are some ambiguities from this linearization pro
edure

that may a�e
t a20. We therefore 
hose the linearizing s
heme that yields the


losest result to the Monte Carlo simulations of Ref. [12℄:

a20 = −16(1− α2)(1 + α2)(1−
√
2 + α2)

×
{
16
√
2+13+4d(3

√
2+1)+2d2(

√
2−1)

+α2(−75+44d−2d2)−α4
[
16
√
2−3+2d(d+6)(

√
2−1)

]

+α6(−5 + 4d+ 2d2)
}
−1

. (18)

Considering instead the expression derived by van Noije and Ernst in [9℄ would

not alter the following dis
ussion. Note that a20 be
omes zero in the elasti


limit α = 1, when the stationary probability distribution re
overs trivially the

Gaussian, equilibrium shape.
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The 
orresponding stationary probability distribution fun
tion is therefore

f0(v) =
n

vdT0

f̃0(c) =
n

vdT0

φ(c)
[
1 + a20S2(c

2)
]
, (19)

where vT0
=
√
2kBT0/m is the stationary value of the thermal velo
ity.

3.3 Linear stability analysis of the stationary state

The stability of the aforementioned steady state has not been investigated in

the literature, even if the hydrodynami
-like equations have been derived re-


ently for the (dilute) system 
onsidered here [13℄. A 
omplete linear stability

analysis (and its eventual 
omparison with the existing results for the homo-

geneous 
ooling state [14℄) is a tedious task, and a separate resear
h subje
t

that we shall not address here further. Instead, we shall 
onsider a simpli�ed

version of it, in whi
h the homogeneity of the state is not a�e
ted by the

perturbations. This will by no mean in�uen
e our general 
on
lusions.

Let us then 
onsider small deviations of the temperature and of the 
oe�
ient

a2 from their stationary values,

T = T0(1 + δθ) , a2 = a20 + δa2 , (20)

with |δθ| ≪ 1 , |δa2| ≪ |a20|.

The linearized evolution equations of these perturbations result from Eqs. (12)

and (13),

d

dt
(δθ) =−mξ2

0

kBT0

[
3

2
δθ+

3/16+(9/512)a20
1+(3/16)a20+(9/1024)a220

δa2

]
,

(21)

d

dt
(δa2) = − mξ2

0

kBT0

{
a20 δθ +

{
d+ 4

2
+

4

d+ 2

×
[(

1 + a20
d(d+ 2)

8

)(
3

16
+

9

512
a20

)

−
√
2

1−α2
(D1+2D2a20)

] [
1+

3

16
a20+

9

1024
a2
20

]−1
}
δa2

}
.

(22)

In Fig. 1 we have represented the two eigenvalues of the 
orresponding stability

matrix as a fun
tion of the restitution 
oe�
ient α, for both d = 2 and d = 3

ases.
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Fig. 1. The eigenvalues of the linear stability matrix for the stationary state as

a fun
tion of α for d = 2 and d = 3. The eigenvalues are measured in units

t−1

0
= nσd−1χSdvT0

/
√
2π.

One noti
es that the two eigenvalues are stri
tly negative for α < 1, whi
h in-

di
ates the stability of the stationary state with respe
t to small perturbations

in the temperature and in the shape of the probability distribution fun
tion

(in the s
aling form). We emphasize again that spatial homogeneity has been

enfor
ed here. As expe
ted, in the elasti
 limit α = 1 one of the eigenval-

ues be
omes zero (while the other one remains negative) � whi
h 
orresponds

to the temperature be
oming a marginal mode, and to a relaxation of the

distribution fun
tion to its equilibrium Gaussian shape.

4 Entropy produ
tion

We now turn to the issue of entropy. For our homogeneous system, we 
onsider

the Shannon information entropy

S(t) ≡ −kB

∫

R

d

dv1f(v1, t) ln

(
f(v1, t)

ehd

)
(23)

(with Euler's number e and Plan
k's 
onstant h, and ehd
the volume of the

semi
lassi
al elementary phase-spa
e 
ell)." It is known that in the elasti


limit α = 1 (and in the absen
e of an external drive) this redu
es to the
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appropriate expression of the usual thermodynami
 entropy and leads to the


lassi
al �H-theorem". We now 
onsider the time evolution of S(t) as governed
by the Boltzmann equation (2), whi
h reads

dS

dt
= −kB

∫

R

d

dv1

∂f(v1, t)

∂t
ln

(
f(v1, t)

ehd

)

= −χkB

∫

R

d

dv1I[f, f ] ln

(
f(v1, t)

ehd

)

−kBξ
2

0

2

∫

R

d

dv1

∂2

∂v2
1

f(v1, t) ln

(
f(v1, t)

ehd

)
. (24)

As mentioned in the Introdu
tion, we wish to introdu
e a heuristi
 � albeit

physi
ally motivated � entropy produ
tion fun
tional that, hopefully, displays

extremal properties in NESS. We shall propose two approa
hes. But before

pro
eeding further, we would like to remind the reader the status of dS/dt
within the framework of phenomenologi
al thermodynami
s as dis
ussed in

standard textbooks [15,16,17℄, as well as some of its extensions to sto
hasti


systems [3,4,5℄. Entropy variations are usually split into two parts:

dS

dt
= σ

irr

+ σ
�ux

, (25)

where σ
irr

> 0 is the entropy produ
tion arising due to the dissipative pro-


esses that take pla
e inside the system (that is positively-de�ned a

ording

to the se
ond prin
iple of thermodynami
s), while the entropy �ux σ
�ux

=
− ∫V dV∇ · JS a

ounts for the external for
es driving the system into a

nonequilibrium state (the related 
ontribution is often redu
ed to boundary

terms). The �art" of phenomenologi
al thermodynami
s pre
isely bears on JS

and on how to de
ompose it in terms of the energy, parti
le, momentum,


hemi
al, et
., 
urrents. This is done, usually, on the basis of the lo
al equi-

librium hypothesis. In a similar way, σ
irr

often appears as a bilinear form in

the �uxes running through the system and the 
onjugate a�nities. In the

near-to-equilibrium regime, the �uxes are usually proportional to the 
onju-

gated a�nities, with the Onsager 
oe�
ients as proportionality fa
tors, and

one re
overs Prigogine's minimum theorem for σ
irr

under the hypothesis of

time-reversibility of the underlying mi
ros
opi
 dynami
s.

However, in view of the lo
al 
hara
ter of the energy inje
tion me
hanism, as

well as of the spatial homogeneity of the system, the situation is 
ompletely

di�erent in the 
ase we are 
onsidering. Indeed, unlike the above-mentioned

�
onventional� NESS, there are neither ma
ros
opi
, however weak, 
urrents

running a
ross the system, nor the related phenomenologi
al Onsager response


oe�
ients. Therefore, the separation into �sour
e" and ��ow" for the entropy

variation is mu
h more tri
ky.

9



First approa
h.� A �rst proposed 
hoi
e of the �entropy produ
tion" is

σ
irr

=
kBχσ

d−1

4

∫
dv1dv2dσ̂θ(σ̂ · v12)σ̂ · v12

× (f ∗∗

1
f ∗∗

2
− f1f2) ln

(
f ∗∗

1
f ∗∗

2

f1f2

)
+

ξ2
0

2

∫
dv

(∇vf)
2

f
, (26)

the form of the �rst r.h.s. term being simply 
hosen by analogy with the elasti
-

limit 
ase. The se
ond term has been 
hosen by analogy with standard di�usion

pro
esses. In those pro
esses this term vanishes at equilibrium be
ause the

gradients disappear. Note however that here the di�usion pro
ess happens

in the velo
ity spa
e, and thus the vanishing of this term at equilibrium is

not due to the system be
oming homogeneous in v-spa
e, but be
ause of the

energy sour
e strength ξ2
0
being tuned to 0. The above σ

irr

appears to be the

sum of two positive de�nite terms, and it is therefore also positive de�nite.

Furthermore, σ
irr


an only be zero at equilibrium, namely when both the energy

sour
e (the random ki
ks) and the energy sink (the dissipative 
ollisions) are

tuned to zero. In that respe
t, it ful�lls the properties expe
ted from standard

phenomenologi
al thermodynami
s.

On the other hand, the form of the entropy �ux σ
�ux

is now 
onstrained to be

σ
�ux

=
kBχσ

d−1

4

∫
dv1dv2dσ̂θ(σ̂ · v12)σ̂ · v12

× f1f2 ln

[
(f ∗∗

1
f ∗∗

2
)(f1f2)

1−α2

(f ∗

1 f
∗

2 )
2−α2

]
, (27)

where we have used the shorthand notations f1,2 = f(v1,2, t), respe
tively
f ∗∗

1,2 = f(v∗∗

1,2, t) for the distribution fun
tions 
orresponding to the pre-
ollisional
velo
ities (4). The above fun
tional of f is negative for a large 
lass of trial

fun
tions, and must de�nitely assume a negative value σ
�ux

∼ −1−α2

ℓ
T

1/2
0

in the steady state (ℓ ∼ 1

χσd−1 is the mean free path). However, aside from


onveying the shrinking of phase spa
e volumes, we must dismiss σ
irr/�ux

as

relevant 
andidates for extremum entropy fun
tionals. Indeed, in the spirit of

phenomenologi
al thermodynami
s, the splitting of dS/dt into σ
irr

and σ
�ux

is

motivated by the desire to isolate the driving pro
esses (the sour
e and sink

referred to above) from the irreversible pro
esses inside the system. However

there is no simple and univoque manner to do so, and de�nitely this �rst


hoi
e is not a

omplishing this physi
ally-motivated requirement. It must be

noted that the last term of eq.(26) 
ould have also 
hosen as a part of σ
�ux

,

whi
h would then have featured both the sour
e and the sink, at the pri
e of

abandoning its negative de�niteness.

Se
ond approa
h.�We now propose an alternative and perhaps more pragmati


route, whi
h 
onsists in isolating as the only driving me
hanism the random

ki
ks provided by the thermostat. The inelasti
 
ollisions, viewed above as an

10



energy sink, are now in
orporated into a term des
ribing the system's intrinsi


dissipative mi
ros
opi
 dynami
s. Along those lines we hen
eforth write that

dS

dt
= σsyst + σext . (28)

The �rst 
ontribution σsyst 
orresponds to the entropy produ
tion inside the

system, i.e., it 
omes from the 
hanges of the parti
les velo
ities during the

binary inelasti
 
ollisions,

σsyst =
kBχσ

d−1

2

∫

R

d

dv1

∫

R

d

dv2

∫
dσ̂θ(σ̂ · v12)

× (σ̂ · v12)f1f2 ln

(
f1f2
f ∗

1 f
∗

2

)
, (29)

where we have used the shorthand notation f ∗

1,2 = f(v∗

1,2, t) for the distribu-

tion fun
tions 
orresponding to the post-
ollisional velo
ities (5). Of 
ourse, in

the limit of elasti
 
ollisions α = 1 the expression of σsyst redu
es to the usual

positive-de�nite expression of the hard-disk gas that enters the H-theorem.

However, in general σsyst does not have a de�nite sign. One 
an imagine the en-

tropy produ
tion inside the system as resulting from two antagonist (although

a
tually undisso
iated) me
hanisms, namely a generi
 disordering e�e
t of any

parti
le 
ollisions (e.g., that is also present for elasti
 hard spheres) in d > 2,
and an ordering e�e
t due to the inelasti
 
hara
ter of the 
ollisions (i.e., to

the redu
tion of the translational agitation of the parti
les). Depending on the

a
tual shape of the distribution fun
tion, one of these two me
hanisms may

prevail on the other, thus determining the sign of the instantaneous value of

σsyst.

The se
ond 
ontribution σext is determined by the e�e
t of the thermostat on

the distribution fun
tion of the parti
les of the system. It 
orresponds to an

energy inje
tion into the system, and to a disordering e�e
t of the parti
les

velo
ities (through �random ki
king"), and therefore, as expe
ted, is always a

positively-de�ned quantity,

σext =
kBξ

2

0

2

∫

R

d

dv
1

f(v, t)
[∇vf(v, t)]

2 . (30)

Introdu
ing the dimensionless quantities

σ̃syst,ext =
2σsyst,ext

χσd−1vT0
n2

, (31)

one obtains the expressions for the dimensionless time-dependent entropy pro-

11



du
tion sour
es:

σ̃syst =

[
T (t)

T0

]1/2 ∫

R

d

dc1

∫

R

d

dc2

∫
dσ̂ θ(σ̂ · c12)

× (σ̂ · c12) f̃(c1, t)f̃(c2, t) ln
[
f̃(c1, t)f̃(c2, t)

f̃(c∗1, t)f̃(c
∗

2, t)

]
, (32)

respe
tively

σ̃ext =

[
T0

T (t)

]
(1−α2)Sd

2d
√
2π

(
1+

3

16
a2(t)+

9

1024
a2
2
(t)
)

×
∫

R

d

dc
1

f̃(c, t)

[
∇cf̃(c, t)

]2
. (33)

In the stationary regime at temperature T0 one has, obviously, σ̃syst = −σ̃ext ≡
−σ̃0. The quantity σ̃0 is positive and de
aying monotonously with α, as illus-
trated in Fig. 2. Note that σ̃0 is nonzero as long as the 
ollisions are inelasti
,

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

PSfrag replacements

α

eσ
0

d = 2

d = 3

Fig. 2. The dimensionless stationary entropy produ
tion σ̃0 as a fun
tion of α in

d = 2 and d = 3.

i.e., as long as the stationary probability distribution is non-Gaussian. Note

also the negativity of σ̃syst in the stationary state � the ordering e�e
t due

to the inelasti
 
hara
ter of the 
ollisions prevails on the generi
 disordering

e�e
t of the 
ollisions.
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Let us now address the question whether the entropy produ
tion (as a whole,

or one of its parts σ̃syst or σ̃ext) 
an play the role of some kind of �nonequi-

librium potential" for the system, i.e., whether or not it 
an a

ount for the

linear stability of the stationary state of the system. The parti
ular 
ase of

the quasi-elasti
 limit ε ≡ 1 − α ≪ 1 is espe
ially interesting, given that

the stationary state is 
lose to equilibrium. One might then expe
t a priori

that a �minimum entropy produ
tion theorem" (in the spirit of the �extended

Prigogine theory� [3℄) might be valid in this 
ase.

Consider thus small perturbations of the temperature and of the 
oe�
ient a2
around their stationary values, as in Eq. (20). A Taylor development of the

entropy produ
tion terms σ̃syst and σ̃ext leads to nonzero linear 
ontributions

in the perturbations δθ and δa2,

σ̃syst − (−σ̃0) = −δθ
(
σ̃0

2

)
+ δa2

∫

R

d

dc1

∫

R

d

dc2

∫
dσ̂

× θ(σ̂ · c12)(σ̂ · c12) f̃0(c1)f̃0(c2)
{[

S2(c
2

1
)

1 + a20S2(c21)
+

× S2(c
2

2
)

1 + a20S2(c22)
− S2(c

∗2

1
)

1 + a20S2(c∗21 )
− S2(c

∗2

2
)

1 + a20S2(c∗22 )

]

+

[
S2(c

2

1
)

1 + a20S2(c
2
1)

+
S2(c

2

2
)

1 + a20S2(c
2
2)

]
ln

[
f̃0(c1)f̃0(c2)

f̃0(c
∗

1)f̃0(c
∗

2)

]}

+O(δθ2, δa2
2
) , (34)

respe
tively

σ̃ext − (σ̃0) = −δθ(σ̃0) + δa2





3/16+(9/512)a20
1+(3/16)a20+(9/1024)a220

σ̃0

+
(1−α2)Sd

2d
√
2π

(
1+

3

16
a20 +

9

1024
a2
20

)

×
∫

R

d

dc



2
(
∇cf̃0(c)

)
·
[
∇c

(
e−c2S2(c

2)
)]

πd/2f̃0(c)

−
(
∇cf̃0(c)

)2 (
e−c2S2(c

2)
)

πd/2f̃ 2
0 (c)






+O(δθ2, δa2

2
) . (35)

The total entropy produ
tion σ̃syst + σ̃ext also 
ontains linear terms in the

perturbations δθ and δa2.

The same holds true even in the quasielasti
 limit ε ≡ 1 − α ≪ 1, when
one 
an evaluate expli
itly to O(ε2) the expression of the 
oe�
ients of the
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perturbations. More pre
isely,

σ̃ext − (−σ̃0) = −δθ
(
σ̃0

2

)
− δa2

√
2π

d−1

2

Γ(d/2)

×
[
2(d− 1) a20 +

4d+ 5

8
ε +O(ε2)

]
,

σ̃syst − σ̃0 = −δθ (σ̃0) + δa2

[
3

16
σ̃0 + O(ε2)

]
, (36)

where the stationary values are

σ̃0 =
2
√
2π

d−1

2

Γ(d/2)
ε + O(ε2) , (37)

and

a20 = −
√
2(
√
2− 1)

d− 1
ε + O(ε2) . (38)

The meaning of this result is that the entropy produ
tion as de�ned above


annot be used for a variational des
ription of the relaxation of the system

towards the stationary state, not even in the quasi-elasti
 limit.

One may argue that the 
hoi
e of the de�nition of the entropy produ
tion

inside the system might be inappropriate, sin
e it refers only to the trans-

lational degrees of freedom, and it does not take into a

ount properly the

internal degrees of freedom of the parti
les � that are, in fa
t, responsible

for the inelasti
 
hara
ter of the 
ollisions. The des
ription of the inelasti
ity

through a 
onstant restitution 
oe�
ient α might thus be in
ompatible with

a thermodynami
 des
ription of the system in terms of entropy produ
tion.

We note that it is known that su
h a model, although being a useful approxi-

mation whi
h 
aptures important physi
al e�e
ts, is in fa
t in
ompatible with

basi
 me
hani
al laws (see e.g. 
hapter 3 of Ref. [11℄).

Let us now dis
uss brie�y another issue that draw attention re
ently, see

Refs. [18,19℄, namely that of the Kullba
k relative entropy, de�ned as

SR(t) =−kB

∫

R

d

dvf(v, t) ln

(
f(v, t)

f0(v)

)

=−kBn

vdT

∫

R

d

dc φ(c)
[
1 + a2S2(c

2)
]
ln

(
vdT0

vdT

1 + a2S2(c
2)

1 + a20S2(c2)

)
. (39)

SR(t) is a measure of the �distan
e" between the a
tual pdf f(v, t) and its

stationary pro�le f0(v), and, of 
ourse, is equal to zero at the stationary

state. Following Ref. [19℄, one 
an parametrize SR(t) through the two sets of

parameters, {γ1 = a2(t), γ2 = T (t)} for the nonstationary state, respe
tively
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{γ10 = a20, γ20 = T0} for the sationary pdf. Considering as above (se
. 3.3)

small deviations of the temperature and of the 
oe�
ient a2 (that result in a

small deviation δf(v, t) of the pdf ) from their stationary values, one �nds:

δSR ≈−kB
2

∫

R

d

dv
1

f0(v)
[δf(v, t)]2 = −1

2

∑

i,j=1,2

Fijδγ1δγ2 6 0 , (40)

where δγ1 = δa2, δγ2 = T0δθ, and Fij is the positively-de�ned Fisher informa-

tion matrix [20℄,

Fij = kB

∫

R

d

dvf0(v)

(
∂lnf0(v)

∂γi0

) (
∂lnf0(v)

∂γj0

)
. (41)

It looks therefore as if this relative entropy has the required property of ex-

tremum at the steady-state (and monotonous exponential asymptoti
 relax-

ation towards it). This property has already been demonstrated for other types

of nonequilibrium sto
hasti
 systems (e.g., in Ref. [18℄, the one-dimensional

Ornstein-Uhlenbe
k and Rayleigh pro
esses, noise-perturbed harmoni
 os
il-

lator, di
hotomous noise). The question arises about its relationship with the

thermodynami
 entropy produ
tion; in Ref. [19℄ it was shown that in the


ase of the usual Smolukhowski di�usion the Kullba
k entropy time-variation

rate 
oin
ides with the Shannon entropy produ
tion rate. However, some fur-

ther 
ase-study (in parti
ular, on systems des
ribed by kineti
 Boltzmann-

like equations) are ne
essary before generalizing this important 
on
lusion to

other nonequilibrium situations. In parti
ular, although very appealing, the

Kullba
k entropy does not redu
e to the usual H-fun
tional in the limit of

an elasti
 gas of parti
les relaxing to equilibrium. Besides that, 
omputing

Kullba
k entropy requires the knowledge of the steady-state pdf, while the

expe
ted approa
h would be to de�ne a proper Lyapunov fun
tional of the

system from whi
h to dedu
e the stationary state.

5 Con
lusions

We illustrated on the well-known model of a randomly driven granular gas

with 
onstant restitution 
oe�
ient the di�
ulties that one en
ounters when

trying to 
onstru
t a variational prin
iple for NESS based on an �entropy pro-

du
tion�. Two approa
hes were proposed for the interpretation of the entropy

balan
e equation in terms of �sour
es" and ��ows", but none of them lead to

the formulation of su
h a prin
iple. The main reason for this failure seems to

be the intrinsi
 irreversible mi
ros
opi
 dynami
s of the granular gas. Model-

ing the internal degrees of freedom of the grains (that are responsible for the

inelasti
ity of the 
ollisions) through a 
onstant restitution 
oe�
ient is thus
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not appropriate for a thermodynami
 des
ription. This shows thus a major

limitation of this model. A further step in the rather involved question of the

re�nement of the des
ription would be the use of random restitution 
oe�-


ients (as done, e.g., in [21℄). These are meant to des
ribe the possible �ow of

energy (at the 
ollision) both towards and from the internal degrees of free-

dom to the translational degrees of freedom. Su
h a model, however, 
annot

be treated analyti
ally, and no simple analyti
 
on
lusions 
an be therefore

drawn on the fate of the 
orresponding H-fun
tional. Numeri
al results are

left for further studies.

Moreover, the problem of the Kullba
k relative entropy, its monotonous relax-

ation to the steady-state, and its relationship with the thermodynami
 entropy

produ
tion of a nonequilibrium system is a very promising dire
tion for further

studies.
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