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ABSTRACT  

 

The Island of Corsica (France) occupies a unique position in the Western Mediterranean, 

since it has recorded both the Cenozoic Alpine orogenic history of the area as well as 

subsequent extensional collapse and oceanic basin formation. We present 41 new apatite 

fission track (AFT) ages and 23 measurements of track length distributions from Corsica, in 

order to elucidate its Cenozoic thermal and morphological evolution. AFT ages vary from 

10.5±0.8 Ma to 53.8±4.1 Ma and form a clear spatial pattern: oldest ages are encountered in 

the south-west of the island, with a broad band of ages between 20 and 30 Ma running across 

the mountainous central area and ages <20 Ma confined to the eastern half of the island. 

Samples along the western and north-western coasts record km-scale erosional denudation 

linked to rifting in the Ligurian-Provençal Basin, whereas samples from close to the 

extensionally inverted Alpine deformation front record a later cooling phase related to 

Tyrrhenian extension. The eastward-younging pattern of AFT ages suggests the migration of a 

‘wave’ of erosional denudation from west to east across the island, apparently controlled by 

the migrating locus of extension. Our AFT data therefore support models of Mediterranean 

extension controlled by slab roll-back. 

 

1. INTRODUCTION  

 

The island of Corsica occupies a central position within the Western Mediterranean, a region 

characterized by a succession of Cenozoic oceanic basins surrounded by collisional mountain 

belts (Figure 1). Its geological history is unique in that the island has recorded both the Alpine 

collisional orogenic evolution of the area as well as the subsequent extensional collapse and 

basin formation that characterizes the Western Mediterranean. It is therefore particularly well-

suited to study the kinematics and dynamics of extension in a general collisional setting [e.g., 

Jolivet and Faccenna, 2000]. Moreover, the island presents a unique geological framework on 

a relatively small territory, including well-preserved Hercynian basement rocks as well as 

alpine metamorphic units.   

 

The island of Corsica is also morphologically exceptional, in that it has by far the highest 

mean elevation and relief of all Western Mediterranean islands. The origin of the topography 

surrounding the Western Mediterranean basins, long considered to be a relic of pre-
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extensional orogenic events, may in fact be strongly linked to extension, either through 

flexural or thermal mechanisms [e.g., Cloetingh et al., 1992; Lewis et al., 2000]. 

 

Apatite fission-track thermochronology (AFT) has become an invaluable tool to decipher the 

history of cooling and vertical motions in both orogenic and rifted margin settings [e.g., 

Gallagher and Brown, 1997; Gallagher et al., 1998]  and, in the Corsican case, may provide a 

unique opportunity to study the thermal, tectonic and morphological response of the upper 

continental crust to both syn- and post-orogenic extension. Previous AFT studies on Corsica, 

based on the now outdated population dating method, reported ages between 30 and 45 Ma, 

pre-dating major extension [Carpéna et al., 1979; Lucazeau and Mailhé, 1986; Mailhé et al., 

1986]. More recent 40Ar-39Ar thermochronology in northwestern Corsica [Brunet et al., 2000], 

however, showed that these ages must be erroneous because they are older than mica ages of 

33-25 Ma obtained from rocks from the same region. The mica ages are corroborated by a 

recent AFT study of northwestern Corsica [Cavazza et al., 2001], which showed AFT ages as 

young as 14 Ma in this area. 

 

We report 41 new AFT ages, together with 23 measurements of track length distributions, in 

order to obtain a clearer insight into the late-stage cooling history of Corsica and its relation to 

Mediterranean extension. Our AFT ages show a clear link between erosional denudation of 

Corsica and rifting of the Ligurian and Tyrrhenian basins surrounding the island. Moreover, 

the eastward younging pattern of AFT ages suggests that a ‘wave’ of denudation traversed the 

island and was controlled by the migration of the locus of extension. Our data therefore have 

implications for the dynamics of Western Mediterranean extension and are consistent with 

models in which this extension is controlled by slab roll-back. 

 

In the following, we first briefly review the geodynamic and geomorphic setting of Corsica. 

We then present and interpret our data, and discuss the inferences we can draw from it with 

respect to the tectonic and morphologic response of the island to extension in the basins 

surrounding it. 
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2. TECTONIC AND GEOMORPHIC SETTING  

 

2.1. Onshore Geology 

The geological history of Corsica is closely linked to that of the western Alps, of which it 

formed the southward continuation before the opening of the Ligurian-Provençal basin in the 

Oligocene, and to the Tyrrhenian-Apenninic domain after that time. 

 

The island has traditionally been divided into two structural domains which are profoundly 

different not only geologically, but in all geographical respects [e.g., Durand Delga, 1978] 

(Figure 2). The western two-thirds of the island are known as “Hercynian Corsica” and 

consist mainly of a very large granitic batholith. The northeastern part of the island or “Alpine 

Corsica”, in contrast, is built up of both oceanic and continental thrust sheets that are mainly 

characterized by late Mesozoic to Cenozoic High-Pressure / Low-Temperature (HP/LT) 

metamorphism. 

 

Pre-Hercynian remnants are rare in Corsica and are limited to a few occurrences of 

amphibolite-facies polymetamorphic rocks in the south and northwest of the island. These 

have yielded both Late Precambrian (“Pan African”) and Variscan isotopic ages [Rossi et al., 

1995]. Most of Hercynian Corsica is made up of a composite granitoid batholith with 

intrusion ages between 340 and 260 Ma [Cocherie et al., 1984] that continues southward to 

form the basement of Sardinia. This Carboniferous batholith is itself overlain and intruded by 

Permian alkaline and calc-alkaline volcanic and plutonic complexes. The Hercynian basement 

is cut by major NE-SW oriented, late Hercynian, left-lateral strike-slip faults. 

 

Alpine Corsica consists of a complex nappe-stack of mainly oceanic origin, with intercalated 

slices of continental basement, which was thrust westwards onto the continental basement of 

western Corsica (Figure 2; see also Figure 11) [e.g., Durand Delga, 1978; Mattauer et al., 

1981]. HP/LT (blueschist and eclogite facies) metamorphism occurs in all but the structurally 

highest (i.e. Balagne and Nebbio units) nappes. From west to east, and from structurally high 

to lower positions, the most important nappes are the Balagne and Nebbio units, the Tenda 

Massif and the Corte thrust slices, and the “Schistes Lustrés” nappe [e.g., Brunet et al., 2000, 

and references therein; Malavieille et al., 1998]. The Balagne and Nebbio units are made up 

of un-metamorphosed oceanic crust; the westernmost Balagne thrust sheet overlies the 

Hercynian basement and intervening Eocene foreland basin deposits. The Tenda Massif and 
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the Corte thrust slices consist of pieces of continental basement and their Mesozoic cover, 

metamorphosed in blueschist facies conditions. The “Schistes Lustrés” nappe is a stack of 

mainly oceanic units including calcschists, serpentinites, ophiolites and minor continental 

gneisses. Eclogite facies metamorphism is encountered in the Schistes Lustrés nappe, both 

within ophiolitic metabasites as well as in the continental gneissic units [Caron, 1994; Caron 

and Péquignot, 1986; Lahondère, 1996]. 

 

The deformation history of Alpine Corsica involves a first phase of top-to-the-west thrusting 

coeval with the HP/LT metamorphism [Mattauer et al., 1981] . The age of HP/LT 

metamorphism and compressional deformation remains debated; whereas Malavieille et al. 

[1998] favor an Eo-Alpine (Mid-Late Cretaceous) age based on scarce isotopic data, Brunet et 

al. [2000] argue for an Eocene age of peak metamorphism, by comparison with the western 

Alps in continental France [e.g., Rubatto and Hermann, 2001 and references therein]. During 

the Oligocene, the sense of shear reversed to penetrative top-to-the-east extension [Daniel et 

al., 1996; Jolivet et al., 1990]. The contact between the Tenda Massif and the Schistes Lustrés 

nappes was reactivated as an extensional detachment (the East Tenda shear zone), giving rise 

to the present-day structural setting of the Tenda Massif inferred to be a metamorphic core 

complex [Fournier et al., 1991] (cf. Figure 11). Rapid denudation and cooling accompanied 

the extensional collapse of Alpine Corsica and has been dated at 33-25 Ma by 40Ar-39Ar 

thermochronology on white micas [Brunet et al., 2000]. The extensional tectonics led to the 

formation of small extensional basins (e.g. Saint Florent Basin), as well as the much larger 

Aléria Basin on the eastern coastal plain of Corsica [Fournier et al., 1991]. The latter is a 

strongly subsiding basin, filled with over 2 km of Neogene sediments, and continuous with 

the offshore Corsica basin. Sedimentation within these basins started in Burdigalian (~18 Ma) 

times [Ferrandini et al., 1996; Orzag-Sperber and Pilot, 1976]. 

 

2.2 Offshore Extensional Basins 

The Ligurian-Provençal basin, which separates the Corsica-Sardinia block from mainland 

France (Figure 1), started rifting at around 30 Ma, as indicated by syn-rift sediments that 

occur both onshore and offshore on the northern Ligurian (Provençal) margin [Bellaiche et al., 

1976], in the Gulf of Lions [Séranne, 1999] and in the Sardinian rift [Cherchi and Montadert, 

1982]. The center of the basin is underlain by thin oceanic crust [Chamot-Rooke et al., 1999; 

Réhault et al., 1984];  although this crust has not been dated directly, the timing of oceanic 

spreading is constrained by the 30° counter-clockwise rotation of the Corsica-Sardinia block 
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between 21 and 19-16 Ma [Montigny et al., 1981; Réhault et al., 1984; Vigliotti and 

Langenheim, 1995]. The basement of the conjugate Provençal margin of the basin is formed 

by the Paleozoic Maures-Tanneron crystalline massif, unconformably covered by Permian 

sediments and volcanics as well as a Meso-Cenozoic sedimentary sequence.  Both conjugate 

margins of the basin show a clear segmentation, with alternating narrow and wide margin 

segments [Rollet et al., 2002]. The pre-rift tectonic structure of the margin (Hercynian 

basement versus Alpine thrust sheets) appears to strongly control this segmentation [Rollet et 

al., 2002]. 

 

The Tyrrhenian Sea, which separates the Corsica-Sardinia block from the Apennines on the 

Italian mainland, appears to have opened diachronously from North to South. East of Corsica, 

rifting started in the northern Tyrrhenian during Burdigalian (~18 Ma) times [Carmignani et 

al., 1995; Mauffret et al., 1999]. In the southern Tyrrhenian, however, rifting did not start 

until the Tortonian (~9 Ma) and migrated southeastward with time [Kastens et al., 1988; 

Spadini et al., 1995]. Two small oceanic domains, which may have opened since ~3.5 Ma, are 

recognized within the southern Tyrrhenian basin [Kastens et al., 1988]. 

 

Models for the development of these and other extensional basins within the overall 

Mediterranean context of plate convergence have focused on three possible mechanisms: 

buoyancy forces resulting from orogenic thickening of the Alpine-Apenninic lithosphere 

[Dewey, 1988]; rollback of the subducting Ionian-Apulian slab [Jolivet and Faccenna, 2000; 

Malinverno and Ryan, 1986; Royden, 1993];  or break-off and lateral detachment of this slab 

[Carminati et al., 1998]. Although contributions from buoyancy forces and slab break-off 

cannot be excluded [Carmignani et al., 1995; Rollet et al., 2002], the overall continuous 

migration of extension and associated volcanism to the south-east favors a rollback 

mechanism [Jolivet and Faccenna, 2000]. Such a mechanism for basin opening is also 

supported by results from both numerical [Bassi et al., 1997] and analog [Facenna et al., 

1996] modeling experiments. 

 

2.3 Geomorphology 

Corsica is characterized by spectacular relief: although the island has a surface area of less 

than 9000 km2, its highest point (Mt. Cinto) culminates at 2710 m, at a distance of only 24 km 

from the coast and 50 km from the toe of the continental margin. The mean elevation of the 

island is 565 m, and mean relief (on a 2×2 km scale) is ~150 m. Highest relief (> 600 m) is 
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encountered in the north-west of the island and along the central high-elevation ‘backbone’, 

adjacent to the Alpine deformation front. Both maximum and mean elevation, as well as mean 

relief, is significantly higher in Corsica than in any of the other western Mediterranean 

islands. 

 

The morphology of Hercynian Corsica is distinctly different from that of Alpine Corsica, and 

mean elevation and relief are significantly higher in the former than in the latter. Hercynian 

Corsica consists of high-relief mountain massifs, with 20 summits of >2000 m elevation, 

deeply incised by westward-draining linear gorges (Figure 3) that continue offshore into deep 

submarine canyons. Overall, the drainage pattern of western Corsica is characteristic of a 

high-elevation rifted margin with an interior drainage divide and a “gorge-like” escarpment 

[e.g., Seidl et al., 1996]. The southern and central parts of the island show an asymmetric 

morphology, with the drainage divide occurring ~10 km east of highest central peaks and 

corresponding to a steep eastward-facing escarpment adjacent to the eastern Aléria coastal 

plain (Figure 4b). The asymmetry switches toward the north, however (Figure 4a), where the 

eastward-draining Golo River and its tributaries have cut back through the Alpine 

deformation front and deep into the Hercynian massifs. Here the northwest margin is formed 

by a steep westward facing “drainage-divide” escarpment. The tectonic boundary between 

Hercynian and Alpine Corsica is morphologically accentuated by the deep longitudinal 

valleys of the northward-draining Ostriconi River and the middle reach of the east-draining 

Golo River and its tributaries. 

 

 

3. APATITE FISSION-TRACK DATA  

 

3.1. Sampling and Procedures  

We concentrated our sampling campaign on Hercynian Corsica because the lithologies 

exposed in this part of the island are much more suitable for fission-track thermochronology 

than those in Alpine Corsica. We collected 52 samples from the Hercynian granites and 

gneisses, along three approximately east-west oriented profiles, at elevations between sea 

level and 1440 m (Figures 3, 4). Another ten samples were collected from the southern third 

of the island, and sixteen samples from Alpine Corsica (mostly in the northern Cap Corse 

area) and the contact zone between Hercynian and Alpine Corsica. Of these samples, 41 

proved suitable for dating, and we were able to obtain track lengths on 23 of them (Figure 3; 
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Table 1). 

 

Apatites were recovered from whole-rock samples using standard magnetic and heavy liquid 

separation techniques, mounted in epoxy, polished and etched in a 1M HNO3 solution at 20°C 

for 50 s. All samples were dated by the external detector method, using a zeta calibration 

factor for Fish Canyon and Durango age standards [Hurford, 1990]. Samples were irradiated 

at the well-thermalized ORPHEE facility of the Centre d’Etudes Nucléaires in Saclay, France, 

with a nominal fluence of 2.5×1015 neutrons/cm2. Neutron fluences were monitored using 

CN5 and NBS962 dosimeter glasses. All samples were dated by B. Jakni; 22 measurements 

were replicated by E. Labrin. All replicate measurements were within 2σ error of each other 

and all but two within 1σ; the highest-precision measurement of the replicates is reported in 

Table 1. All length measurements were performed by B. Jakni by digitizing the track ends 

using a drawing tube. A detailed description of the procedure as well as data for glass 

standards and zeta calibration values are reported by Jakni [2000]. 

 

3.2. Results and Interpretation  

Apatite fission-track (AFT) data are summarized in Table 1; all ages are quoted as central 

ages with ±1σ uncertainties throughout. AFT ages are all Cenozoic and vary from 10.5±0.8 

Ma (CO56) to 53.8±4.1 Ma (CO48). All but four samples show very low dispersion (D < 

10%, P(χ2) ≥ 90%), suggesting that chemical heterogeneity of the apatites is not a problem in 

the crystalline rocks sampled (Figure 5). Mean Confined Track Lengths (MTL) for our 

samples vary between 12.8±0.2 µm (CO63) and 14.5±0.2 µm (CO12), with standard 

deviations (SD) between 0.5 and 2.0 µm. Many samples have relatively long MTL (> 13.5 

µm) and narrow track-length distributions (SD ≤ 1.5 µm; cf. Figure 7), suggesting relatively 

rapid cooling from 120°C to surface temperatures. 

  

Most of our AFT ages are significantly younger than the Mesozoic-Eocene ages reported for 

Corsican samples by Lucazeau and Mailhé [1986] and Mailhé et al. [1986]. The ages reported 

by these older studies were, however, based on dating by the population method; they are also 

older than high-temperature 40Ar-39Ar white mica ages on samples from similar areas [Brunet 

et al., 2000]. We will therefore not consider them further here. Our data are, in contrast, fully 

compatible with newer data from northwestern Corsica reported by Cavazza et al. [2001] and 

we will incorporate these data in our discussion below. 



 9

 

There is no clear relationship between sample age and elevation (Figure 6); although some 

individual groups of samples (e.g., Figure 4a, b) provide consistent age-elevation patterns 

suggesting denudation rates of 100-400 m/My, there are other groups (e.g., samples from Cap 

Corse or the Tenda massif) that show negative age-elevation trends. 

 

In contrast to the apparent lack of correlation between sample age and elevation, the 

geographical spread in ages and track-length distributions shows a very clear pattern (Figure 

7). AFT ages ≥ 30 Ma are only encountered in the southwest of the island. The oldest of these 

samples (CO48, CO59, CO60) have Eocene (> 40 Ma) AFT ages and MTL between 12.7 and 

13.5 µm, with MTL increasing with increasing AFT age. Two samples with intermediate ages 

of 30-35 Ma (CO62, CO63) have low MTL (12.8 – 13.0 µm) and relatively wide track-length 

distributions (SD = 1.7 – 2.0 µm). AFT ages between 20 and 30 Ma are encountered within a 

crescent-shaped band running from the northwest coast of the island, between the Gulfs of St. 

Florent and Ajaccio toward the Gulf of Sta. Manza in the southeast. These samples have MTL 

between 13.3 and 14.1 µm, with relatively narrow (SD < 1.8 µm) track length distributions. 

AFT ages younger than 20 Ma are only encountered east of the crescent-shaped band defined 

above, and AFT ages significantly younger than 15 Ma are concentrated around the Alpine 

detachment and within Alpine Corsica (Cap Corse region). Samples with AFT ages between 

15 and 20 Ma (CO12, CO16, CO27) have MTL > 14 µm and narrow track length 

distributions. MTL tends to decrease for samples with AFT ages <15 Ma (CO3, CO55, CO69, 

CO76), which show MTL between 13.5 and 13.8 µm and SD 1.3 – 2.0 µm. 

 

A plot of MTL versus AFT age (Figure 8) also shows a distinct trend in the data: MTL 

increases with AFT age for samples with ages > 40 Ma, is low for samples with ages between 

30-35 Ma, and rises again to form an (ill-defined) peak for samples with AFT ages between 

15-23 Ma. This pattern resembles the characteristic ‘boomerang’ trend of samples exhumed 

from different depths and paleo-temperatures by a single rapid cooling event [e.g. Gallagher 

et al., 1998]. Such trends have been described from other rifted margins [e.g., Gallagher and 

Brown, 1997; Omar et al., 1989] and the MTL peak dating the cooling event was shown to 

correspond to the age of continental break-up on these margins. In our case, the ages 

corresponding to the peak in MTL overlap with the timing of oceanic spreading in the 

Ligurian-Provençal basin (cf. Section 2.2). 
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In order to explore the Cenozoic cooling history of the regions defined above in more detail, 

we have used the confined fission track length distribution of selected samples to infer time-

temperature paths. We use a genetic algorithm for the inversion [Gallagher, 1995] that is 

based on the annealing model established for Durango apatite by Laslett et al. [1987]. The 

relationship between the time-temperature history of a sample and its annealing history as 

expressed by the track length distribution is dependent on the chemical composition of the 

apatites analyzed [Carlson et al., 1999; Green et al., 1986], which may vary strongly even for 

crystalline basement samples [O'Sullivan and Parrish, 1995]. Chemical composition was 

analyzed for only one sample in the present study; [Cl] / [F] ratios vary between 0 and 0.1 in 

this sample [Jakni, 2000]. The close clustering of single-grain ages in most of our samples 

argues against significant chemical variation. As we do not dispose of other compositional 

data, we refrain from using newer multi-kinetic annealing models [Ketcham et al., 1999]. In 

our interpretation of the modeled thermal histories, we keep in mind, however, the possible 

artifacts inherent in the Laslett et al. [1987] parameterization, specifically the apparent 

underestimation of low-temperature annealing that often leads the model to predict spurious 

late-stage cooling [e.g., Corrigan, 1993; cf. review by Ketcham et al., 1999]. 

 

Figure 9 shows results of the inversion. A sample from the oldest group of ages encountered 

in SW Corsica (CO62) shows slow and monotonous cooling (≤ 2.5 °C My-1) through the 

apatite Partial Annealing Zone (PAZ; 60 – 110 °C) between ~40 and ~7 Ma, with an apparent 

increase in cooling rates during cooling from <60 °C to surface temperatures in the last 7 Ma. 

However, late Chattian to Burdigalian (~25-18 Ma) sedimentary deposits crop out at several 

locations in SW Corsica [e.g. Bonifacio Basin, Orzag-Sperber and Pilot, 1976; Vazzio 

conglomerate, Ferrandini et al., 1999], as well as volcanics dated at ~19 Ma [Ottaviana-Spella 

et al., 1996]. These deposits clearly show that SW Corsican samples were close to the surface 

around the Oligocene-Miocene boundary (e.g., ~25-20 Ma). Although the volcanic and 

sedimentary deposits are obviously erosional remnants, Neogene erosion has probably not 

been more than a few hundred meters. We therefore prefer to interpret the apparent late 

cooling event recorded by this and other samples as a model artifact caused by the 

underestimation of low-temperature annealing in the Laslett et al. [1987] algorithm used. 

 

The thermal history of samples from the 20-25 Ma age group, widely encountered in western 

and northwestern Corsica (Figure 7) and represented by sample CO36, is radically different 

from that of older samples. These samples show rapid cooling of up to 9 °C My-1 through the 
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apatite PAZ between ~27 and ~18 Ma, coinciding with the time of continental rifting and 

subsequent oceanic spreading in the Ligurian-Provençal Basin. Again, the inversion predicts a 

subsequent phase of stability followed by rapid late (<4-7 Ma) cooling to surface 

temperatures, but we do not consider this part of the predicted cooling history to be reliable. 

 

Samples with AFT ages <20 Ma from the central part of the island and the contact zone 

between Alpine and Hercynian Corsica (e.g., CO27, CO76), show similar cooling histories as 

those from the 20-25 Ma age group, with rapid cooling at ~10 °C My-1 through the apatite 

PAZ. The phase of rapid cooling, however, occurs later in these samples; between 18-13 Ma 

for samples with AFT ages of 15-20 Ma (e.g., CO27) and between 15-8 Ma for samples with 

AFT ages <15 Ma (e.g., CO76). Rapid cooling within these samples appears to coincide with 

subsidence and the deposition of thick Burdigalian to Serravalian deposits in the eastern 

coastal plain and Corsica Basin [Orzag-Sperber and Pilot, 1976] as well as in the smaller 

Saint-Florent half-graben [Ferrandini et al., 1996]. 

 

In order to translate these cooling histories into denudation histories, we need to have an 

estimate of the thermal gradient. Heat flow data from Corsica have been reported by Lucazeau 

and Mailhé [1986; see also Della Vedova et al., 1995]. Although heat flow values are 

relatively high (varying from 76±10 mW m-2 for Hercynian Corsica to 81±19 mW m-2 for 

Alpine Corsica), geothermal gradients for Hercynian Corsica are modest (varying from 26 to 

31 °C km-1) because of the high thermal conductivity of the Hercynian granites (2.5 – 3.0 W 

m-1 °C-1) [Lucazeau and Mailhé, 1986]. Using these geothermal gradient values and a mean 

surface temperature of 16°C [e.g., http://www.meteo.fr/temps/monde/climats/station/ 

254.htm], the amount of denudation associated with rapid cooling of the samples CO36, 

CO27 and CO76 varies between a minimum of 1.9-2.3 km (assuming that samples cooled 

only to the top of the PAZ at 60 °C during this phase), with subsequent slower denudation of 

1.3-1.5 km, and a maximum of 3.4-4.0 km (assuming that samples cooled down to surface 

temperatures during the rapid cooling phase). Denudation rates associated with the rapid 

cooling phase are in the order of 290-380 m My-1. 
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4. DISCUSSION  

 

The AFT ages and track length distributions encountered in Corsica show clear spatial trends 

that we interpret to reflect cooling and denudation of Corsica in response to extension and 

subsequent continental break-up in the Ligurian-Provençal and Tyrrhenian basins. Significant 

cooling and km-scale denudation of Corsica appears to have occurred during Miocene times. 

In contrast to the crystalline basement massifs of the Alpine and Pyrenean orogens [e.g., 

Bigot-Cormier et al., 2003; Bogdanoff et al., 2000; Fitzgerald et al., 1999; Seward et al., 

1999], however, the Corsican AFT data do not require an important phase of Late Miocene – 

Pliocene (3-5 Ma) cooling. 

 

The spatial trends in the data can be visualized by plotting AFT ages as a function of distance 

to the major Ligurian-Provençal and Tyrrhenian extensional domains. Figure 10 shows AFT 

ages as a function of distance to the Ligurian-Provençal margin (taken as the orthogonal 

distance between each sample and the limit between extended continental and “transitional” 

crust as mapped by Rollet et al. [2002]), and as a function of distance to the Alpine 

detachment. Samples close to the Ligurian-Provençal margin have ages close to the age of 

Ligurian-Provençal break-up except, intriguingly, for sample CO48 which was collected from 

closest to the margin and has the oldest AFT age in our dataset. This sample may have been 

collected from a down-faulted block that suffered little denudation Other AFT ages 

significantly older than rifting are only encountered at distances >80 km from the margin, 

although other samples far from the margin have AFT ages close to or younger than break-up. 

This pattern resembles those reported from other rifted margins around the world [Gallagher 

and Brown, 1997] but includes additional complexity. 

 

The relationship to Tyrrhenian rifting is demonstrated in the lower plot of Figure 10, which 

shows an increase in AFT ages with distance from the Alpine detachment. Eastward younging 

of 40Ar-39Ar ages across the Alpine detachment has been demonstrated by Brunet et al. 

[2000]; our data confirm this trend but also show that the eastward younging is true at the 

scale of the whole island, including the Hercynian basement of western Corsica. 

 

The migration of the locus of extension from west to east (that is, from the Liguro-Provençal 

basin in the Late Oligocene to the Apennines in Quaternary times) has been described 

previously [e.g., Carmignani et al., 1995; Jolivet and Faccenna, 2000], but whether there was 
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a jump with a time gap between the rifting episodes west and east of Corsica or whether the 

eastward migration was more continuous has been unclear.  Our data suggest that a ‘wave’ of 

denudation migrated across the island and continues into the Apennines of mainland Italy, 

where rapid denudation occurred between 6-4 Ma near the Tyrrhenian coast and at <2 Ma in 

central Italy [Abbate et al., 1999; Balestrieri et al., 2003]. Such a continuous migration of 

denudation related to extensional tectonics is compatible with models that relate 

Mediterranean extension to roll-back of the subducting Ionian-Apulian slab [e.g., Brunet et 

al., 2000; Jolivet and Faccenna, 2000]. We will discuss the relationship between the thermal 

and denudation history of Corsica and rifting in the Ligurian and Tyrrhenian domains in more 

detail below. 

 

4.1. Rifted margin uplift and denudation associated with Ligurian-Provençal rifting 

 

The pattern of AFT ages, which are similar to the age of continental break-up close to the 

margin with older ages encountered further inland (Figure 10a), is characteristic of rapid 

denudation of a high-elevation rifted margin in response to surface uplift and / or base-level 

fall induced by rifting [e.g., Gallagher and Brown, 1997; van der Beek et al., 1995]. Although 

most of the AFT ages in western and northwestern Corsica are close to the age of break-up, 

the modeling of track length distributions shows that cooling, presumably caused by erosional 

denudation, started at the onset of rifting, at around 27 Ma (e.g., CO36, Figure 9). This timing 

for the onset of rapid rift-related denudation is consistent with results from other basement 

massifs surrounding the Ligurian-Provençal basin, e.g. the Maures-Tanneron Massif 

[Morillon, 1997; Jakni, 2000] or the Eastern Pyrenees [Maurel et al., 2002]. 

 

An intriguing issue concerns the older fission-track ages in southwestern Corsica. The AFT 

isochrones cut through the Hercynian structure, suggesting that it had little influence on 

patterns of denudation at this scale. The age pattern is continuous, however, with samples 

from northern Sardinia [F. Bigot-Cormier, G. Poupeau, and Ph. Rossi, unpublished data] that 

also show Paleogene AFT ages.  

 

Lateral variation in AFT ages on rifted margins has been argued to reflect a thermal and 

denudational response to rift propagation, either continuously or in pulses [e.g., Omar and 

Steckler, 1995; O'Sullivan et al., 1995]. It has been argued that the Ligurian-Provençal rift 

propagated from SW to NE [Guieu and Roussel, 1990], which would be in accord with the 
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age pattern observed on Corsica. Within the Maures-Tanneron Massif on the conjugate 

Provençal margin, however, the trend in AFT ages is opposite, from Miocene (~20-25 Ma) 

ages in the SW to Mesozoic (> 100 Ma) ages in the NE [Jakni, 2000] and is therefore in 

contradiction with a simple rift-propagation scenario. Alternatively, the age trend could be 

related to lateral variations in thermal structure of the upper crust and therefore in the 

temperature at which the samples resided before Cenozoic denudation. However, the only 

obvious trend in present-day heat flow across Corsica is from West to East, with lowest heat 

flow values (~64 mW m-2) recorded west of Ajaccio and highest values (~81 mW m-2) in 

Alpine Corsica [Lucazeau and Mailhé, 1986]. Variations in thermal structure may therefore 

be invoked to explain the anomalously old age of sample CO48 from west of Ajaccio, in 

comparison with the other samples from the southwestern age group, but cannot explain the 

North-South variation in ages between different age groups. 

 

The inversion of confined track length distributions suggests that the cooling and denudation 

history of the southwestern samples is profoundly different from that of the other Corsican 

samples, since the southwestern samples do not record any acceleration in cooling related to 

rifting. This feature suggests that the southwestern part of Corsica, together with northern 

Sardinia, reacted differently to rifting than western and northwestern Corsica. Southwestern 

Corsica and northern Sardinia lie adjacent to the Sardinia rift, an aborted branch of the 

Ligurian-Provençal rift system that continues northward along the southwestern coast of 

Corsica [Ferrandini et al., 1999; Rollet et al., 2002; Rossi et al., 1998]. Apparently, this 

aborted rift caused much less denudation of its flanks than the main branch of the system in 

which extension reached the stage of continental break-up. Significant differences in the 

amounts of rift flank denudation between aborted rifts and similarly aged rifted margins have 

been reported from other systems as well, notably in the East African / Ethiopian rift versus 

the Red Sea and Gulf of Aden [e.g., Abbate et al., 2002; Foster and Gleadow, 1996; Menzies 

et al., 1997; Mock et al., 2001]. 

 

The lateral variations in age patterns are spatially consistent with the lateral segmentation of 

the margin as mapped from offshore seismic data [Rollet et al., 2002]. They also clearly 

demonstrate the asymmetry of the conjugate margins of the Ligurian-Provençal basin: when 

rotated back to their pre-drift position, the >30 Ma ages in southwestern Corsica lie adjacent 

to <25 Ma ages in the Maures Massif west of Saint Tropez on the conjugate margin, whereas 

<25 Ma ages in western and northwestern Corsica lie adjacent to ages >60 Ma in the 
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Tanneron Massif east of Saint Tropez [Jakni, 2000; Morillon, 1997]. These contrasts in AFT 

ages across the margin appear to be consistent with lateral variations in margin width, with 

older AFT ages (and less onshore margin denudation) corresponding to wide margin segments 

and younger AFT ages (more margin denudation) corresponding to narrow segments. It 

therefore appears that margin segmentation, which itself is probably caused by the inheritance 

of major tectonic discontinuities [Rollet et al., 2002] has controlled the denudation history of 

the onshore parts of both conjugate margins of the Ligurian-Provençal basin. 

 

A remaining question concerns the pre-rift topography of western Corsica, and the associated 

question of whether rifting in the Ligurian-Provençal basin caused uplift of its margins. To 

unequivocally demonstrate surface uplift related to rifting requires a marker of pre-rift 

elevation [e.g., Abbott et al., 1997; Brown, 1991; van der Beek et al., 1994], which is non-

existent in the basement rocks of Hercynian Corsica. The oldest sediments encountered are 

Chattian (syn-rift) in the Ajaccio region [Ferrandini et al., 1999] and Burdigalian (post-rift) in 

northern and southern Corsica [Ferrandini et al., 1996; Orzag-Sperber and Pilot, 1976]. These 

shallow marine sediments are located close to sea level, indicating little post-rift vertical 

motions of the Corsican coastline. In northern Corsica, Eocene shallow marine sediments crop 

out below the thrust contact of the Balagne Nappe at elevations between sea level and ~700 m 

(Figure 11), suggesting that the integrated Cenozoic vertical motions due to thrust loading, 

rift-related uplift and erosional unloading are close to zero in that area. 

 

We can attempt to infer the paleo-elevation and uplift history by combining the fission-track 

and geomorphic data. The morphology of Hercynian Corsica, characterized by deep gorges 

incising a high-elevation plateau west of the drainage divide, is characteristic of pre-existing 

high elevation and a pre-existing inland drainage divide on the margin [Kooi and Beaumont, 

1994; van der Beek et al., 2002]. The relatively ‘flat’ AFT age pattern, with ages close to the 

age of break-up extending up to the present-day drainage divide (Figure 10a) appears to 

corroborate this inference, as AFT ages associated with flank uplift and a retreating 

escarpment would show younging away from the margin [Brown et al., 2002; van der Beek 

and Braun, 2002]. Significant pre-existing topography can also be inferred from the 

continuous, although limited, detrital flux from the south that is recorded by Provence 

platform sediments from mid-Cretaceous to Oligocene times [Guieu and Roussel, 1990]. 
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On the other hand, the along-strike variation in denudation histories that appears consistent 

with margin segmentation is most easily explained as being caused by differential rift-related 

vertical motions along the different margin segments. Moreover, we will show below that 

there is evidence from the sedimentary record of northern and eastern Corsica for Neogene 

surface uplift of at least some of the central Corsican ranges. Therefore, the quantification of 

rift-related tectonic surface uplift in Hercynian Corsica remains problematic. 

 

4.2. Tectonic and erosional denudation related to Tyrrhenian extension 

 

The pattern of increasing AFT ages with distance from the Alpine-Hercynian contact zone, 

which was reactivated as an extensional detachment since Oligocene times [e.g., Brunet et al., 

2000; Fournier et al., 1991], clearly demonstrates the influence of Tyrrhenian extension on 

denudation patterns in Corsica. At first sight, it may be tempting to interpret this pattern as 

being controlled by tectonic exhumation along the Alpine detachment, the slope in the age – 

distance plot giving an estimate for the rate of extension [e.g., Foster and John, 1999]. 

However, the pattern of increasing AFT ages extends well beyond the recognized footwall of 

the detachment (e.g., the Tenda Massif), suggesting that denudation was not solely tectonic in 

origin. There are a number of other arguments that favor erosional denudation as the main 

origin for cooling of the central and eastern Corsican samples. We will develop these below. 

 

The relationships between the tectonic structures and the uplift and exhumation history is 

clearest in northern Corsica because of the presence of the Saint Florent basin, which acts as a 

marker of deformation, and because the thermochronologic dataset is most extensive in this 

area. Figure 11 shows a simplified tectonic map of northern Corsica as well as a southwest-

northeast cross-section. Our AFT ages between 15.7±1.4 and 22.3±2.2 Ma from this region 

are coherent with those of Cavazza et al. [2001], which lie between 13.8±1.6 and 19.2±1.0 

Ma. The figure shows that there is no significant jump in thermochronologic ages across the 

Alpine detachment, for neither high- (40Ar-39Ar) nor low- (AFT) temperature systems. The 
40Ar-39Ar ages suggest that both the footwall and the hangingwall of the detachment were 

exhumed rapidly from ~30 Ma onward, tectonic denudation of the hangingwall probably 

occurring through penetrative ductile extension [Daniel et al., 1996; Jolivet et al., 1990]. 

 

Sample CO18 is a mylonitic gneiss cobble from the central part of the St. Florent Basin fill 

and has an AFT age of 17.6±2.4 Ma. Its most probable source is the East Tenda shear zone. 
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This age falls within the stratigraphic age of the basin fill (18-12 Ma; Ferrandini et al. [1996]) 

and overlaps with AFT ages of 15.4±2.0 – 22.3±2.2 Ma from the eastern Tenda Massif as 

well as with AFT ages of 17.3±1.1 – 20.9±3.9 Ma from the Nebbio and Schistes Lustrés 

nappes underlying the basin. This concordance in ages, together with MTL ≥14 µm in 

samples from the Eastern Tenda Massif (e.g., CO12, CO14) indicates very rapid erosional 

denudation of both the footwall and hangingwall of the East Tenda shear zone between ~20 – 

15 Ma. 

 

Whether the 40Ar-39Ar and AFT ages plotted in Figure 11 represent continuous extensional 

denudation from ~30-15 Ma or rather two phases of denudation, with an intervening 

tectonically quiet phase between ~25 and ~18 Ma is not clear at present, in spite of the 

relatively large thermochronological dataset. In order to solve this question, more data will be 

required, especially from systems with intermediate closure temperatures (e.g., 40Ar-39Ar on 

K-feldspar, zircon fission track).  

 

Although an important part of the St. Florent Basin fill has its probable source in the Tenda 

Massif, volcanic fragments which have the Mt. Cinto Massif as a probable source are also 

abundant [Ferrandini et al., 1996]. At present, the Mt Cinto massif is drained by the Golo 

River and its tributary the Asco River (Figure 3), which flow around the south of the Tenda 

massif and are disconnected from the St. Florent basin. It thus appears that drainage has been 

diverted by surface uplift of the Tenda Massif postdating 12 Ma. The St. Florent Basin itself 

is folded into an open syncline (Figure 11); this deformation must also have taken place after 

12 Ma. 

 

Our samples from Cap Corse (e.g., CO3, CO4, CO74) have AFT ages between 12.3±2.9 and 

13.7±1.3 Ma, consistent with a single sample from Cavazza et al. [2001] dated at 15.7±1.1 

Ma. These samples suggest that the eastern seaboard of Corsica may record a relatively young 

final stage of denudation, post-dating the main phase of denudation more to the west by a few 

million years. These AFT ages are coherent with the existence of thick Serravalian (14-11 

Ma) deposits in the Corsica basin and on the eastern coastal plain [Orzag-Sperber and Pilot, 

1976] and suggest that this final phase of cooling and denudation is related to opening of the 

Tyrrhenian basin. Surface and rock uplift affecting Alpine Corsica at that time is suggested by 

the folding of Cap Corse into a broad anticline and the cessation of supply of material with a 

provenance from the Mt. Cinto Massif in the eastern coastal plain [Durand Delga, 1978]. Late 
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deformation and denudation of Alpine Corsica may therefore be related to rift-shoulder uplift 

associated with Tyrrhenian extension. Geomorphic evidence in the form of uplifted and 

deformed fluvial terraces [Conchon, 1975; Durand Delga, 1978], as well as geodetic data 

[Lenôtre et al., 1996], suggest that this uplift is still active. A deep seismic sounding profile 

across Corsica indicates that the lithosphere thins from ~80 km in the west to no more than 40 

km in the east [Bethoux et al., 1999]. The late-stage and present-day uplift of eastern Corsica 

may therefore be supported thermally and / or dynamically, in a similar manner to that 

envisaged for the Catalan Coastal Ranges by Lewis et al. [2000]. 

 
 
5. CONCLUSIONS  
 

Our AFT data provide clear evidence for large-scale Neogene cooling and erosional 

denudation of Corsica, related to rifting in the Ligurian-Provençal and Tyrrhenian basins. In 

more detail, the model we envisage would have Hercynian Corsica sitting at a pre-existing 

elevation of at least one kilometer before the onset of rifting in the Liguro-Provençal Basin, 

with a pre-existing drainage divide close to the present-day divide. This pre-existing 

topography would have been inherited from the Alpine orogenic phase that saw the 

overthrusting of the Alpine Nappe pile onto the western Corsican Hercynian basement. 

Rifting and continental break-up in the Ligurian-Provençal Basin triggered km-scale 

denudation of western Corsica driven by a major base-level drop, possibly rift-related vertical 

motions, and the individualization of margin segments. Denudation pathways toward the 

newly-formed oceanic basin appear to have been much more efficient than toward the aborted 

Sardinian rift branch. 

 

At the same time (i.e. ~30 Ma), extensional tectonic denudation started along the inverted 

Alpine orogenic front, both within the footwall and the hangingwall, as indicated by 40Ar-39Ar 

data [Brunet et al., 2000]. The AFT data suggest that from 18-20 Ma onward, surface uplift 

and erosional denudation affected the Tenda Massif in the footwall of the extensional 

detachment, its denudational detritus being trapped partly in the hanging-wall Saint Florent 

Basin. The locus of extension and rift-related uplift migrated further east at ~14-12 Ma, when 

sedimentation shut down in the Saint Florent Basin while it accelerated in the Corsica Basin 

and eastern coastal plain. At this time, surface uplift and denudation started to affect Alpine 

Corsica, leading to uplift and denudation of the Cap Corse area and the diversion of large 

eastward-draining rivers.  
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The eastward-younging pattern of AFT ages suggests the migration of a ‘wave’ of denudation 

from west to east across the island, which appears controlled by a continuously migrating 

locus of extension. Our data therefore support models of Mediterranean extension controlled 

by slab roll-back. 
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FIGURE CAPTIONS 
 
Figure 1. A) Tectonic setting of Corsica within the western Mediterranean, showing 

tectonic elements that were active during the Neogene. Abbreviations: Ba: 
Balearic islands; C: Corsica; MT: Maures - Tanneron Massif; Sa: Sardinia; Si: 
Sicily. Modified from Rollet et al. [2002] and Jolivet and Faccenna [2000]. B) 
Schematic crustal-scale cross-sections across the Ligurian-Provençal Basin, 
Corsica, the Northern Tyrrhenian Basin and the Apennines (trace of cross 
sections indicated in A). Compiled and modified from Carmignani et al. 
[2000], Gueguen et al. [1997], Brunet et al. [2000] and Rollet et al. [2002]. 

Figure 2. Simplified tectonic map of Corsica, showing locations referred to in text. V: 
Vazzio conglomerate. Box shows location of more detailed map in Figure 11. 

Figure 3. 75-m resolution Digital Terrain Model of Corsica, showing sample locations as 
well as main river valleys referred to in text. Eastings / Northings refer to the 
Institut Géographique National Lambert-IV grid for Corsica. Dashed white 
line delineates the drainage divide between basins that drain to the Ligurian 
and Tyrrhenian seas, respectively.  

Figure 4. Maximum, mean and minimum elevations along two 20-km wide swaths 
across (a) northern and (b) central Corsica. AFT ages for samples lying within 
swaths are indicated. Inset shows location of swaths, as well as location of 
structural cross-section shown in Figure 11. Half arrows indicate position of 
Alpine detachment. 

Figure 5. Radial plots for representative samples from each of the age groups defined in 
Figure 7. 

Figure 6. Relationship between fission-track age and sample elevation. Note that the 
three Eocene-age samples (CO48, CO59, CO60) are not included in this plot to 
avoid clutter; all three of these samples were collected close to sea level. 

Figure 7. Distribution of AFT ages and representative horizontal confined track length 
distributions. Thin line with teeth represents Alpine deformation front 
(detachment). Names of large gulfs quoted in text are given in italics. 

Figure 8. Plot of apatite fission-track age versus mean confined track length for all 
samples for which track length data were collected in this study. Note that 
vertical error bars represent standard deviation of track-length distribution 
rather than formal error on mean track length. 

Figure 9. Time-temperature histories of selected samples calculated by inversion of 
track-length distributions. The shaded lines in the Time / Temperature plots 
represent solutions that statistically fit the observed data (sample age and track-
length distribution); black line is overall ‘best-fit’ solution for the sample. Note 
varying timescales in these plots. Top and base of apatite Partial Annealing 
Zone (PAZ; 60 – 110 °C), within which the thermal histories are well resolved, 
are shown as dashed horizontal lines. Monte Carlo boxes, within which tie 
points of Time / temperature histories are constrained to lie, are indicated in 
dark shading. Upper panels for each plot compare the observed track-length 
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distribution (shown as histogram) with the predicted probability density 
function (shown as thick line). P(χ2) is the Chi-square probability that the 
observed and predicted track-length distributions (for the best-fit solution) are 
similar. Other notations as in Table 1, except N = number of track lengths 
measured. 

Figure 10. AFT ages as a function of distance from the margin (upper plot) and distance 
from the Alpine detachment (lower plot). Distance from margin is calculated 
as orthogonal distance between sample and the limit between thinned 
continental and “transitional” crust as mapped by Rollet et al. [2002] Note 
inverted x-axis for lower plot so that both profiles are aligned from West (left) 
to East (right); negative distances in lower plot are for samples from Alpine 
Corsica (east of the detachment). 

Figure 11. Structural map and cross-section of Northern Corsica, showing relationships 
between the main tectonic units, and their relationship with thermochronologic 
ages. White arrows indicate Neogene extensional kinematic indicators 
measured by Daniel et al. [1996], Fournier et al. [1991], and Malavieille et al. 
[1998] Roman typeset numbers represent AFT ages (bold: this study; plain: 
from Cavazza et al [2001]), italic numbers are mica Ar-Ar ages from Brunet et 
al. [2000]. Map and cross section modified from Malavieille et al. [1998] and 
Rossi et al. [1994]. 
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