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Abstract 

 
Studying river long-profile development as a response to tectonic and climatic controls requires reliable age-dating of 

paleo-profile remnants preserved as river terraces. Cosmic Ray Exposure (CRE) dating often represents the only 

method available to date river terraces, but the interpretation of cosmogenic nuclide concentrations is complicated by 

pre-depositional inheritance and post-depositional disturbance of the terrace deposits through pedogenesis and surface 

inflation or deflation. Here, we use cosmogenic 10Be measurements to date alluvial terraces in the French western 

Alps, in order to estimate river incision rates and to infer river response to climatic fluctuations and tectonic forcing. 

We assess inheritance by constructing 10Be concentration vs. pebble depth profiles and use a Monte-Carlo technique to 

estimate terrace ages. We find that inheritance is negligible on all terraces, enabling us to date terraces as young as 5 

ky. Terraces that predate the last glaciation experienced intense pedogenesis and wind ablation which led to significant 

scatter in the 10Be concentrations of surface samples. We assess these effects using a model of 10Be ingrowth and show 

that the oldest CRE ages of surface clasts are close to the probable terrace age.  

We study two catchments which have undergone varying degrees of glacial disruption. The Buëch River 

experienced variations in runoff and sediment flux during the last glaciation, as well as occasional ice-dammings of its 

outlet. Its upper terraces record incision rates averaged over 190 ky of ~0.8 mm/yr, consistent with denudation rates 

estimated in the surrounding areas and suggesting long-term stability of river incision rates.  

Climatic forcing is well documented for the Drac River, which was repeatedly dammed by glaciers during 

cold periods. Its postglacial incision history was triggered by an 800-m drop in base level following ice-dam 

disappearance. Long-profile development by knickpoint propagation explains the time-lag of 2-5 ky between this 

base-level drop and terrace abandonment upstream, as well as subsequent peak incision rates of >6 cm/yr followed by 

a gradual decrease in incision rates. The present knickpoint location, ~55 km upstream from the glacial damming site, 

enables us to calculate a fluvial response time of 15-20 ky, controlled by knickpoint propagation rates of several 

meters per year, within the Drac River. 

 

Keywords: Cosmic Ray Exposure dating, river terraces, Alps, river long-profile development 

 

 

1. Introduction 

 

Rivers maintain both the transport of debris generated on mountain slopes and the incision of the 

bedrock, thus creating relief. Both mechanisms regulate erosion on catchment slopes. As the capacity of a 

river to incise bedrock and transport sediments depends on channel gradient, a positive feedback exists 

between bedrock uplift and river incision [1]. Relief is therefore thought to evolve toward a dynamic 

equilibrium between uplift and erosion [1, 2]; such equilibrium is often assumed and used in neotectonic 

studies to infer uplift rates from river incision rate measurements [e.g., 3, 4, 5]. However, except in the 

specific conditions of sustained rock uplift and incision rates and climatic stability, rivers will generally not 

be in dynamic equilibrium and their forms will change over time [2]. Among other parameters, climate 

fluctuations modify river dynamics and long profile evolution. Thus, the long-term incision signature may be 

obscured by climatically-induced departures from equilibrium [6, 7]. Studying the development of fluvial 
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form over time after some initial disturbance, as well as the timescale of this response, may lead to 

significant progress in our understanding of the dynamics of, and controls on, bedrock river behaviour [8]. 

 Our study of western alpine rivers analyses the dynamics of bedrock incision on timescales which 

are ideally suited (1) to assess the long-term, tectonically or isostatically controlled components of incision 

(105 yr), and (2) to study the sensitivity of river incision and long profile development to high-frequency 

climatic events (103-104 yr) in a mountain range which is periodically and extensively glaciated. Climatic 

forcing may, in fact, strongly control erosion and rock-uplift rates that are measured in the Alps over short 

timescales (101-104 yr). 

The Alps are a moderately active mountain range that experienced widespread glaciation during the 

Quaternary. We have investigated the incision record in the adjoining watersheds of the Buëch and Drac 

rivers in SE France (Fig. 1), which exhibit varying degrees of disruption that depend on their distance from 

the centre of the Alpine glacial ice field (Fig. 2). 

The Buëch River experienced successive valley floor widening and narrowing during glacial-

interglacial cycles, probably due to runoff and sediment flux variations [e.g., 7]. Parts of the valley floor 

were abandoned during narrowing events and subsequent river entrenchment, and have been preserved on 

valley flanks as strath terraces. Their ages and elevations above the active channel record river incision rates. 

The older terraces permit to determine the long-term component of incision whereas the youngest one 

documents a climatically-induced fluctuation of the incision rate.  

The analysis of the Drac River terraces documents more precisely the river response to a sudden and 

dramatic disruption: the rapid retreat at the end of the last glaciation of a glacier that dammed the river’s 

lower valley. The fill terraces built upstream from the ice-dam document the response time of the river to this 

base-level fall, while terraces carved during subsequent river entrenchment record the river long-profile 

evolution as it evolves toward a profile shape similar to previous interglacial profiles. The terrace ages also 

help to assess the duration of this relaxation phase.  

To constrain incision rates, accurate absolute dating of the terraces is required. The ages of alpine 

river terraces have traditionally been correlated to the different glacial stages recognized in Western Europe 

[e.g., 9]. Their mode of deposition results in a lack of suitable organic remains, which has prevented absolute 

age determinations based on 14C dating. Moreover, this dating method does not extend to the expected age 

range of some of the terraces. Correlations with specific glacial stages are thus highly speculative and led us 

to conduct cosmic ray exposure (CRE) dating. 

In situ-produced cosmogenic nuclides are now widely used for dating geomorphic surfaces [10, 11]. 

However, the accumulation history of cosmogenic nuclides in terrace surface samples may be highly 

complex. Clast inheritance prior to deposition, soil packing, stirring, aeolian deflation and inflation are some 

of the processes that have to be taken into account when estimating terrace abandonment ages. Techniques 

that have been proposed to assess the inheritance component include sampling profiles of 10Be concentration 

with depth and amalgamating samples [12-14]. Here, we employ a single-clast profiling technique and 

estimate terrace ages and inheritance using a newly developed Monte Carlo approach. The degree of 
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pedogenesis is evaluated by geochemical weathering balance measurements and its effects on age scatter 

tested by numerical modelling.   

 

2. Geological and glacial setting 

  

Our study area is located within the Subalpine Chains, the foreland fold-and-thrust belt of the French 

western Alps (Fig. 1). The Subalpine Chains formed during the Late Miocene by propagation of the orogenic 

front onto the European foreland [15]. They are composed of a folded Mesozoic sequence of marly and 

calcareous sediments, deposited on the former European passive margin, as well as remnants of Cenozoic 

detrital sediments of the Alpine foreland incorporated into the thrust slices.  

Tectonic activity within the western Alps decreased after the structuring of the Subalpine Chains, but 

active tectonics is still documented in some areas. This includes active thrusting along the Subalpine Front, 

folding in the Subalpine Chains, strike-slip faulting in the External Crystalline Massifs (ECMs) [16, 17], and 

extensional inversion of inner Alpine thrusts [e.g., 18]. Recent vertical motions are documented in the 

sediments of the foreland [19, 20] and thrusting of the Digne Nappe and adjacent foreland folding continued 

into the Quaternary [21, 22]. Accelerated Late Cenozoic denudation with rates up to ~1 mm y-1 is recorded 

by fission track data from the ECMs [23, 24] and is corroborated by a significant Late Cainozoic increase in 

sediment accumulation in peri-alpine basins [25]. Present-day differential vertical motions between the 

Subalpine Chains and the ECMs with respect to the foreland are also of the order of 1 mm y-1 [16, 17], 

contrasting with negligible present-day convergence rates of <2 mm y-1 [26]. The present-day tectonic 

activity is poorly understood in the study area, as it lacks a sedimentological record of the deformation as 

well as striking neotectonic features. Microseismicity measured over the last few decades is low and few 

historic earthquakes have been recorded. 

The Drac and Buëch watersheds extend over a bulk area of 3568 km2 and have comparable lengths 

and drainage areas (Drac: 125 km and 2095 km2; Buëch: 70 km and 1473 km2, respectively). The Drac River 

drains the resistant crystalline rocks (granite, gneisses and amphibolites) of the Pelvoux ECM in its 

headwaters before flowing northward into a valley subsequent to an isoclinal structure of the Subalpine 

sedimentary cover. The Buëch River flows exclusively within the Subalpine formations, through complex 

interference structures between Eocene and Miocene folds. Within the study area, the Subalpine sedimentary 

cover is composed of very thick (up to 2000 m) marly formations, interbedded with thin (20 to 80 m) levels 

of highly resistant massive limestones, in addition to thicker (up to 300 m) but softer rhythmic successions of 

marls and marly limestones.  

Both rivers lie off the western margin of the glacial alpine ice field (Fig. 2). Because of its low 

elevation (mean elevation: 1067 m, 4% of relief over 1600 m), the Buëch watershed remained under the 

glaciation threshold during all glacial periods. The mean elevation of the Drac watershed is higher (1487 m, 

39% of relief over 1600 m) and some valley glaciers have been generated in its headwaters. Ice occupation 

of the main trunk valleys, however, occurred mainly by overflows (diffluences) of outlet glaciers of the inner 

alpine ice-field. The Durance glacier spilled into both the Drac and Buëch watersheds through the Bayard 
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and Freyssinouse passes (Fig. 2). During the most intense glaciations (e.g., δ18O isotopic stage 6), the 

Durance glacier dammed the Buëch River outlet and flowed upstream into the lower Buëch valley (Fig. 3). 

The Isère glacier caused similar damming at the Drac-Isère confluence during less intense glacial advances 

(Fig. 2). During stronger glacial invasion, the Drac River experienced additional damming by mountain 

glaciers flowing down the Pelvoux ECM [27, 28]. 

 

3. Formation of terraces  

 

3.1. Buëch River terraces 

The Buëch River preserves both strath and fill terraces (as defined by Bull [29]). The older terraces 

along its lower reaches have been strongly eroded by the Durance ice stream. Similarly, the Freyssinouse 

diffluent ice tongue has eroded some terraces of the Petit Buëch River located along its course. The ice-free 

portion of the Buëch catchment contains three well-preserved terraces (T1b, T2, T3) whose surfaces stand 

20, 80 and 190 m above the present-day valley floor, respectively (Fig. 3). At the catchment scale, terrace 

formation only occurs along the diffluent glacier outwash path, that is, along the present Petit Buëch and 

Lower Buëch rivers, and appears to be strongly controlled by the diffluent glacier meltwater discharge. The 

two upper levels (T3 and T2) are fill terraces characterized by wide and flat straths capped with 50-55 m and 

15-20 m of alluvial deposits, respectively, and thus record phases of aggradation alternating with 

downcutting. The alluvial deposits contain a large proportion of quartzitic and crystalline pebbles. These 

rocks do not crop out in the Buëch watershed: they have been brought in from the Durance catchment by the 

Freyssinouse ice-tongue. Fluvial aggradation is a common phenomenon in front of the alpine glaciers and 

was probably triggered by the inability of rivers to carry the glacial bedload. In this particular case, 

aggradation appears to be triggered mainly by episodic ice damming of the lower river reaches when the 

Durance glacier reached its greatest extents (Fig. 3).  

The lowest level (T1b) terraces are strath terraces. Their deposits are much thinner than those of the 

upper two levels. This lowest level may record a major modification of the Buëch river dynamics driven by 

climate change after the complete disappearance of the Freyssinouse ice tongue [30].  

 

3.2. Drac River terraces 

Most of the Drac River terraces older than the Last Glacial Maximum (LGM) have been covered by 

ice and strongly eroded [28]. We focus therefore on the post-LGM history of the Drac River. Two kinds of 

postglacial terraces can be distinguished (Figs. 4 and 5): high-standing fill terraces that are linked to glacial 

disturbance of the river profile and lower strath terraces cut during postglacial river incision. 

Fill terraces comprise depositional sequences up to 450 m thick that infill a valley network which 

predates the LGM [27, 28]. Repeated glaciations induced several cycles of valley filling and subsequent 

downcutting with superimposition, and led to the present complex of cross-cutting buried drainages. The 

buried valleys exhibit steep V-shaped cross-sections with very narrow bedrock floors (a few tens to a few 

hundreds of metres wide), giving rise to a very irregular bedrock surface (cf. Fig. 5). The depositional facies 
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of the fill sequences generally grade upward from fluvial to transgressive lacustrine and back to fluvial. 

Sediments were trapped upstream of a suite of glacial dams blocking the Drac valley and its tributaries 

during the LGM. Throughout glacial retreat, glacially-dammed and trough lakes were formed in the vicinity 

of the shrinking ice masses and were rapidly filled with sediments. Fill terraces are therefore diachronous, 

the most recent troughs being filled as river entrenchment had begun in the former ice-dam deposits. 

Numerous unpaired strath terraces were abandoned throughout river entrenchment and are cut either 

into bedrock or into buried ancestral valley fill deposits [28]. The strath terraces of the postglacial valley 

were preferentially carved and/or preserved in soft bedrock types (marls). The amount of incised bedrock is 

highly variable along the river, depending on the distance between the present-day river valley and buried 

paleovalley axes (Fig. 5). The eroded bedrock is made up of thick, strongly folded Mezosoic marly 

limestones and marls, thinner series of resistant limestones, and, along some reaches, Paleozoic gneisses and 

Triassic evaporites and basalts. Maximum overall postglacial incision amounts to 450 m; maximum 

entrenchment into bedrock is 370 m.  

 

4. Sampling strategy and concentration-to-age conversion. 

 

4.1. Laboratory methods and single-clast age calculations 

We extracted quartz from granite, gneiss, sandstone or quarzite pebbles. Quartz grains isolation and 

dissolution, 9Be spike addition and alkaline precipitations of Be were performed following [31]. 

Measurements of 10Be concentration were performed on the Tandetron Accelerator Mass Spectrometry 

(AMS) facility at Gif-sur-Yvette, France. The 10Be analyses were calibrated against NIST Standard 

Reference Material 4325. Results are given in table 1. 

Altitudinal and latitudinal variations in cosmogenic nuclide production rate are commonly modelled 

using empirical polynomials [32-34]. At the latitudes and altitudes of our study region, these different 

models do not yield significantly different production rate corrections (less than 4%). We use the calibrated 

high-latitude sea level production rate of 5.75±0.24 atom g-1 y-1 [35] derived from an Austrian landslide 

located in the same latitudinal and altitudinal range as our study area, corrected for latitude and elevation 

using the correction factors of Dunai [33]. Topographic shielding was calculated using Heidbreder 

formulations [36]. Production rates were corrected for depth dissipation in alluvial sediments using: 
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where C(x,t) is the concentration of 10Be as a function of time (t) and depth (x), P0 is the local production rate 

(atom g-1 y-1), λ is the radioactive decay constant (yr-1), C(0) is the inherited cosmogenic nuclide 

concentration at the initiation of the surface exposure episode, ρ is rock density (g cm-3), Fn and Fμ are the 
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neutron and muon contribution to the total production rate, respectively (where Fμ = 0,015 Fn at the surface, 

[37]) and Λn  (~150 g cm²) and Λμ (~1300 g cm²) are the attenuation lengths of neutrons and muons, 

respectively  [38].  

 

4.2 Treatment of inheritance: Profiling technique 

In order to overcome problems of inheritance and disparate exposure histories, we employed 

wherever possible a profiling technique in which 3 to 5 samples up to a depth of 2-3 meters were analysed 

(Table 1). After a detailed inspection of terraces along both rivers, we selected sample sites on terraces with 

flat, horizontal surfaces, where the soil structure did not show any sign of terrace disturbance or deflation. 

Along the Drac River, sampling sites were either quarries or actively eroding terrace edges, where the 

undisturbed nature of the fluvial bedding could be ascertained and where the exposure time of vertical side 

walls is negligible compared to that of the surface. Each clast accumulates some 10Be during exhumation and 

subsequent transport in the catchment prior to its final deposition at the terrace surface. The amount of 

inherited 10Be is specific for each clast and can be assessed statistically in some catchments [12]. Whereas 

this inheritance varies randomly with depth, in situ post depositional cosmogenic accumulation decreases 

exponentially.  

We use a Monte Carlo technique to estimate terrace ages by generating large sets of theoretical 

depth-concentration curves from equation (1), randomly varying inheritance (C(0)), age (t) and soil density 

(ρ). Soil density is allowed to vary between 1.7 and 2.3 g cm-3 as the porosity of the fluvial deposits is highly 

variable in the studied terraces. Models are accepted if they fit all the data points within error. Best-fitting 

models are then defined based on least-squares residuals and define the estimated ‘optimal’ terrace ages. As 

there is a trade-off between the various input variable, more than one best-fit solution can be found. The ages 

of the best-fitting models span an interval indicated in the plots of Fig. 6.  

An upper limit to the amount of inherited 10Be is fixed by the maximum 10Be concentration within 

the deepest sample (the “mineralogical blank”). Inherited 10Be is produced chiefly during the final 

denudation of clasts on catchment slopes. The fluvial transport time is generally low in comparison with the 

denudation time, and systematic downstream increases of inheritance are rarely observed [39]. The set of 

mineralogical blanks can thus be used to evaluate the variability of inheritance throughout the catchment. All 

the mineralogical blank concentrations are very low and comparable to the process blanks treated in the same 

way as the samples. Low inheritance is also evidenced by the good fit of the observed concentrations with a 

purely exponential depth-concentration model (Fig. 6). Inherited 10Be in our samples is equivalent to an in 

situ accumulation of 1.0 to 2.3 ky for a surface undergoing no erosion. 

Because of the low inheritance, we are able to reliably date terraces as young as 4-5 ky (e.g., Drac 6, 

Fig. 7). The low inheritance does not, however, imply exceedingly high erosion rates within the Drac and 

Buëch catchments. Most of the denudation of the crystalline basement probably occurs under ice cover 

during glacial times, as the Pelvoux Massif stands at high elevations, and by catastrophic rock falls following 

glacier retreat. This is evidenced in the Pelvoux ECM by very intense rock-fall activity that led to a 

continuous filling and reshaping of the glacial valleys since the LGM. Most of the clasts have thus probably 
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either been shielded from cosmic rays in scree deposits, or carried within the ice and stored in the thick 

sedimentary bodies of the buried valleys described previously. The fill terraces studied here were located at 

most a few kilometres downstream of the glacier fronts and a few tens of kilometres from clast source areas. 

The younger strath terraces, carved during the subsequent river intrenchment, probably contain a significant 

proportion of clasts removed from river deposits infilling the ancient drainages. The overwhelming majority 

of the clasts within those deposits were buried at depths that prevented 10Be accumulation. 

Field observations of terrace structures provide evidence for the pristine nature of the surfaces. Their 

general flatness precludes transport of clasts over long distances by any natural processes under the 

postglacial climate. No erosion factor is thus applied to the models (Eq. 1). Some terraces, however, have 

been ploughed at a millennial timescale to depths that nowhere exceed 40 cm. Cereal cultivation first appears 

in pollen records within the Drac and Buëch River watersheds around 5 ky BP [40, 41]. Repeated ploughing 

could have induced lateral diffusion of surface clasts and soil deflation, thus producing minimum 

cosmogenic ages. As the terrace surfaces are wide and flat, lateral loss of material is believed to be 

negligible, and anthropogenic disturbances should thus have little effect on concentrations underneath the 

ploughed layer. 

 

4.3. Assessment of deflation on old terraces 

Given that the T2 and T3 terrace levels along the Buëch River were expected to be much older than 

the Drac River terraces, and that inheritance is very low in T1 terrace clasts, this factor is likely negligible in 

T2 and T3. In contrast, we expect post-depositional terrace disturbance to be an important issue on these 

terraces. The profiling technique was therefore replaced by surface sampling of large quartzite cobbles on T2 

and T3 (Table 1). T2 and T3 terrace treads are nearly perfectly flat and are currently disconnected from the 

valley sides; terrace surfaces are flat tens to hundreds of meters away from the sampling sites. The T2 terrace 

remnants were cultivated in historical times. The T3 level terraces are forested, their soils being too poor for 

agricultural use. 

Apparent exposure ages are between 10 and 60 ka for T2 (Buëch 2) and between 143 and 189 ka for 

T3 (Buëch 1). However, field data allow us to better constrain the ages of terrace abandonment. The T3 

terrace level was constructed by alluvium delivered to the Buëch catchment by the Freyssinouse diffluent 

ice-tongue and by ice-damming of the lower valley by the Durance glacier. Thus, T3 must have been formed 

during one of the glacial peaks preceding the apparent age of the most exposed clast (188 ky). The closest 

peak is δ18O stage 6.6, at 190 ky, which corresponds to the onset of the “Riss 2” alpine glaciation.  The next 

older peak is located at the end of an earlier glaciation, at 245 ky (δ18O stage 8.1). As the ages obtained by 

random sampling of the terrace surface range between 140 and 190 ky, deposition of the alluvium likely 

occurred during δ18O stage 6.6. Likewise, the apparent age of sample Buëch 2-1 sets a minimum possible age 

for T2 terrace abandonment. As for T3, this age is slightly younger than the first cold peak of a glaciation 

(δ18O stage 4; 75 ky). T2 likely formed in the same way as T3, at the inception of a glacial cycle.  

We suggest that soil development may be responsible for much of the observed scattering of 

apparent ages on both terraces. In Western Europe, north of the Mediterranean climatic zone, soils evolve 
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toward chromic alisols [42]. Weathering is characterized by a dramatic loss of matter, and several meters of 

surface lowering have been estimated on terraces of similar composition and ages in the nearby Rhône valley 

[43]. Field observations of terrace soils suggest that rapid deflation in the first stages of soil development 

(rhodic cambisol) is triggered by the complete dissolution of carbonates. Depletion in the upper soil horizons 

is then achieved by weathering and disintegration of crystalline clasts, in addition to illuviation of the silty 

matrix. The present-day surfaces are composed of quartzite pebbles supported by a silty matrix of clay 

minerals and detrital quartz grains. The density of quartzite pebbles on the surface is significantly higher than 

in the soil. Thus, the quartzite pebbles that are currently exposed at the surface were initially located at 

shallow but varying depths and were brought to the surface by erosion of the silty matrix. From their 

exhumation onward, they underwent a similar cosmogenic nuclide accumulation history.  

To assess the younging effect of deflation, we conducted geochemical weathering balance 

measurements on the T3 terrace (Buëch 1 sampling site). Soil was sampled in the upper 50 cm below the 

surface and compared to fresh alluvium sampled at a depth of 30 m. Trace element abundances were 

determined by inductively coupled plasma mass spectroscopy (ICP-MS) at the Laboratoire de 

Géodynamique des Chaînes Alpines, Grenoble, France. Major element geochemistry was determined by 

ICP–AES spectrometry at the Centre de Recherches Pétrographiques et Géochimiques, Nancy, France. 

Immobility of the most refractory elements was tested using the element concentration ratio method [e.g. 

44]. Nb, Ta and Th ratios vary the least between soil and alluvium; they are thus considered to have the 

lowest mobility’s. These elements were used to assess the minimum loss of the other elements (Table 2). 

Lambert calcimetry measurements further indicate that the carbonates, which disappeared in the early stages 

of weathering, amount to 50-60 % of the mass of the fresh alluvium. Weathering balance calculations 

indicate that the quartzite environment experienced an additional loss that does not exceed 10 %. At this 

stage of pedogenesis, the dissolution of carbonates thus accounts almost completely for the observed loss of 

matter. The accuracy of the measurements is limited by the structure and porosity of the fresh deposits. The 

terrace deposits are channelized; the size distribution of clasts is heterogeneous from one channel to another 

and the distribution of rock types depends on clast size. It is thus not possible to establish whether the 

channel sampled at depth has the same initial composition as the channel that produced the soil. The porosity 

of the fresh alluvium further enhances deep illuviation of clays, so that the observed element mobility not 

only depends on chemical properties. Finally, the soil density may be different from that of the fresh 

alluvium. 

The effect of pedogenesis on apparent age scattering was evaluated by numerical modelling of 10Be 

ingrowth, using the following constraints (Fig. 8): (1) Deposition of the alluvium likely occurred during δ18O 

stage 6.6, at ~190 ka; (2) We assume that soil development was negligible during the entire “Riss 2” 

glaciation.  The terrace surface was armoured with pebbles at this time so that no wind erosion could occur; 

(3) Close to the surface, most of the pedogenesis probably occurred during Eemian interglacial times (~130-

75 ky B.P.), when the region was densely forested [45]. However, the attenuation of cosmic rays by the 

vegetation cover is considered negligible, as it is nowadays even in densely forested tropical areas [46]; (4) 

The disappearance of the vegetation cover during the last glaciation led to the final exhumation of the 
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quartzite pebbles now scattered at the surface. Pebbles were embedded in a silty soil matrix which was 

readily carried away by wind. Wind ablation stopped at ca ~15 ky B.P. when pine forests began to develop 

[30, 40]; (5) Postglacial pedogenesis did not modify the matrix, which had already been strongly weathered 

during the Eemian interglacial stage.   

Two denudation paths have been tested: the first with an exponentially decreasing dissolution of 

carbonates, and the second with a constant dissolution rate. The rate of dissolution was calibrated using the 

current carbonate dissolution at the Drac 1 sampling site (6% within 12 ky). Using this number, we calculate 

an initial carbonate dissolution rate, corrected for the initial carbonate content of the T3 terrace, of 0.9% per 

ky. 

The modelling results show that pedogenesis on its own can account for most of the observed age 

scatter of the T3 terrace, and that the oldest ages obtained from CRE dating are close estimates of the actual 

terrace age. If we assume that aeolian ablation is responsible for the exhumation of the quartzite pebbles and 

that ablation occurred during the last glaciation, a constant rate of erosion between 20 and 40 mm ky-1 is 

necessary to bring pebbles to the surface with apparent ages as young as Buëch 1-3, dated at ~140 ky.  

The larger age scatter of the Buëch 2 samples (10-60 ky) cannot be explained solely by soil 

development. The terrace from which they were sampled (T2) is much younger than T3, and its alluvial 

sediment composition is similar. At the sampling site, the surface exhibits an immature dry soil and strong 

dissolution features on carbonate pebbles that indicate the development of relatively evolved soils during 

interstadial and postglacial times. The T2 terrace probably experienced more agricultural turbation and 

deforestation than T3, because its soil was more fertile. The soil could have been exposed annually to 

ploughing and wind deflation over the last 5 ky.  

  

5. Discussion: climatic and tectonic controls on river incision 

 

5.1. Buëch River: long-term incision rates and climatic variability  

In order to assess incision rates from the ages and elevations of the T2 and T3 terraces, we consider 

two end-member models (Table 3). A minimum rate (1) is obtained considering that (a) the terrace age is set 

by the end of the glacial peak preceding the age of oldest dated pebble and (b) the rate of incision into the 

alluvial terrace deposits is much higher than the rate of incision into the underlying bedrock. A maximum 

rate (2) is obtained considering that (a) terraces are not older than the oldest dated pebbles and (b) the 

incision rate is constant through the terrace deposits and the underlying bedrock. The results are consistent 

with an approximately constant long-term incision rate of the Buëch River since 190 ky (Fig. 9). As 

aggradation on the T2 and T3 strath terraces stems from ice-damming of its lowest valley, incision probably 

occurs very rapidly in these readily erodible sediments, as observed in the Drac catchment (see below). The 

long-term incision rate of the Buëch River is therefore probably slightly greater than our lower estimate, i.e. 

~0.8 mm yr-1. 

The highest terraces provide a good estimate of the long-term local incision rate integrated over 

several climatic cycles [e.g., 6]; their parallelism with the modern river indicates that this rate was constant 
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along the studied reach. The incision rate is consistent with the denudation rates of 1.0 ± 0.5 mm yr-1 in the 

ECM over the last few My as inferred from fission-track cooling ages [23, 24], suggesting that these rates 

may be constant at a timescale of 105-106 yr. These rates are surprisingly high given the relative tectonic 

quiescence of the western Alps since late Miocene times. However, they are corroborated by sediment flux 

data that also show a significant increase during the Quaternary [25]. Local incision as well as regional 

denudation may be driven by tectonic or isostatic uplift of the mountain range. Coeval downwarping of the 

foreland [19, 20] would argue for an isostatic uplift mechanism, driven by relatively rapid and localised 

Quaternary erosion and relief production within the western Alps. 

The T1b terrace level documents an apparent increase in incision rates from ~1 to 3 mm yr-1 in the 

last several thousand years. Climatic fluctuations may have affected the incision rate either by fluvial 

dynamic forcing or by glacio-isostasy. Fluvial dynamic fluctuations are responsible for strath terrace 

formation along an incising river by successive widening and narrowing of the valley floor [e.g., 29]. 

Various authors have addressed the problem of how the incision rate would evolve coevally. Widening could 

result either from an increase in excess stream power available for lateral bank erosion under constant 

incision rates [47], or by pauses in long-term downcutting [48]. In the latter scenario, the formation of T1b 

may have coincided with strongly reduced incision rates. As incision resumes and T1b is abandoned, the 

Buëch River would have kept pace with rock uplift by accelerated downcutting, as suggested by the post-

abandonment incision rate integrated over the last 8 ky estimated from the Buëch 3 samples. Similar 

Holocene accelerations in apparent incision rates have been observed in other catchments [6, 7] and are 

generally interpreted to reflect the adaptation of the rivers to decreased postglacial sediment fluxes. We 

concur with such a scenario, which implies that periods of slow incision or aggradation with recurrence times 

greater than that elapsed since T1 abandonment should have occurred since the formation of the T2 and T3 

terraces. 

Postglacial isostatic rebound may also have enhanced uplift and incision to some extent in the case 

of rapid shrinking of the ice-cap. It is worth noting that valley glaciers up to 2 km thick extended over the 

inner Alps and that glacier retreat was dramatic around 14 ky cal B.P. [49], so that the effects of isostatic 

rebound could be significant. However, its amplitude has not been quantified so far in the Alps. 

 

5.2 Drac River: response time to glacial disturbance 

The oldest terrace dated along the Drac River is of LGM age (Drac 5). The Drac 5 terrace fills a 

trough lake surrounded by the external moraines of the Séveraisse Glacier (Fig. 4b). Its age suggests that this 

tributary glacier had begun to retreat at the latest after 23 ka B.P. Shrinkage of alpine glaciers is known to 

slightly predate the isotopic LGM and has also been documented for the neighbouring Durance [50] and 

Rhône [51] glaciers.  

The postglacial evolution of the Drac River is mainly controlled by the behaviour of the Isère 

Glacier. At its maximal extent, this major alpine glacier had invaded the lower reaches of the Drac River 

catchment over 20 km and elevated the river base level from 200 m to 1000 m (Fig. 10). If we assume that 

glacier fluctuations are synchronous throughout the Western Alps at the millennial timescale, the Isère 
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glacier would have started to retreat at the latest at 23 ky B.P. The glacier should have withdrawn from the 

Isère-Drac confluence around 14 ky at the latest because it had already liberated the Bourget and Annecy 

lakes, some 70 km upstream, by this time [52]. The dramatic retreat of Alpine glaciers recorded at around 14 

ky can be correlated with a sudden increase in climate warming at this time in Europe [49]. 

Postglacial long profile re-equilibration of the Drac River is dominated by vigorous incision 

triggered by the 800 m base-level drop at the river outlet. The young abandonment age (8-12 ka) of the Drac 

1 terrace indicates that several thousand years elapsed between glacial retreat and the onset of incision in this 

relatively downstream reach. Underlying glacio-lacustrine sediments were eroded at a mean rate greater than 

6 cm y-1 over less than 5.2 ky between the abandonment of the Drac 1 and Drac 7 terraces. Incision rates then 

dropped to 0.8-1.1 cm y-1 in alluvial sediments and marly bedrock over the last 7 ky. The initial lag, sudden 

and exceedingly rapid incision and subsequent relaxation are symptomatic of fluvial incision by knickpoint 

propagation. The knickpoint would originally have been located in the lower valley where the Drac River 

spilled across reaches that had been over-steepened by glacial erosion (Fig. 10). Knickpoint retreat has been 

observed in horizontally-layered heterogeneous lithogies [53, 54] and massive rocks [55] but knickpoint 

preservation during migration is difficult to generate in unconsolidated substrate [56]. In our case, knickpoint 

lips would have propagated from the ice margins upstream across a suite of paleovalley fills. The river later 

encountered the buried bedrock palaeodivides, were the current river exhibits small knickpoints correlated 

with the lithology. 

To detect the propagating knickpoint’s current location along the Drac River, we have projected the 

river profile on a DS plot, that is, a plot of the logarithm of slope against the logarithm of downstream 

distance [57] in Fig.11. Numerous knickpoints break the current river long-profile; all but one correspond to 

lithological discontinuities. This latter knickpoint splits the DS form of the long-profile into two roughly 

straight and parallel segments. This knickpoint is an unstable form, located ~55 km upstream of the Isère 

Glacier tip, within an alluvial reach of the Drac River. Incision rates from dated terrace remnants are lower 

upstream (Drac 8; 3.9-5.3 mm.yr-1) than downstream (Drac 6; 6.4-8.4 mm.yr-1) of this knickpoint, confirming 

our interpretation of this feature as a degraded retreating knickpoint. If generated at the Isère Glacier tip at 

25-18 ky B.P., the knickpoint would have migrated upstream at rates of 2.2-3.0 m y-1. The gradual temporal 

decrease of incision rates and the presence of a relict retreating knickpoint far in the headwaters indicate that 

the Drac River longitudinal profile is about to be graded to the interglacial base level. The river response 

time to glacial-interglacial long-profile disturbance is therefore of the order of ~20 ky.  

 

Conclusions 

 

Our study illustrates the power of CRE dating of alluvial terraces to study river incision and response 

to climate fluctuations, and indicates prospective solutions to the complexities involved in estimating alluvial 

terrace ages from CRE data. We have shown how a combination of depth profiles, numerical modelling and 

geochemical mass balance studies may be used to assess sample inheritance and terrace deflation in order to 

correct the inferred abandonment ages. Inherited 10Be concentrations are remarkably low in all studied 
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terraces and permit reliable dating of terraces as young as 4-5 ky. Older terraces have undergone significant 

mass loss through pedogenesis and aeolian ablation; forward models of 10Be ingrowth show, however, that 

the age of the oldest clast sampled at the surface provides a reliable estimate of the abandonment age. 

The Buëch River terraces record a mean long-term fluvial incision rate of ~0.8 mm y-1 over the last 

190 ky, similar to long-term denudation of the External Crystalline Massifs [23, 24]. This suggests that river 

incision is constant at a time scale of 105-106 y. In more detail, however, the data are consistent with 

significant short-term variations in incision rates driven by climatic fluctuations. The high rates of river 

incision and regional denudation, in the absence of well-expressed tectonic activity, may be maintained by 

the isostatic response to rapid Quaternary erosion and relief production in the western Alps. However, given 

the limited amount of data currently available, dynamic equilibrium sustained by tectonic uplift cannot be 

definitively excluded in this area.  

The 100-km long Drac River experienced base level fluctuations of several hundreds of metres 

amplitude during glacial advances and retreats. Adjustment to the postglacial base level is achieved by 

knickpoint retreat over tens of kilometres through successions of unconsolidated sediment and resistant 

folded bedrock knobs. The time required by the Drac River to achieve re-equilibration of its long-profile at 

(~20 ky) is comparable to the mean duration of the interglacial times during the Quaternary. It thus seems 

unlikely that the Drac River, or any other river located inside the glaciated inner Alps has ever reached 

equilibrium during the Quaternary. Our study therefore shows that care should be taken when using such 

rivers to infer tectonic uplift from river incision. 
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Terrace Sample 10Be/9Be 
10-14

[10Be]  
104 at.g-1

Depth 
cm 

Latitude 
° 

Altitude 
m 

Shielding 
Factor  

Calibration 
factor  

P1 : 
at.g-1.yr-1

Apparent exposure age  
ky 

Drac 1-0 4.858 10.9 ± 1.6  0 44,8565 775 0.9975 1.8470 10.7 10.1 ± 2.1 
Drac 1-2 6.881 8.2 ± 1.3  35 44,8565 775 0.9975 1.8470 6.8 12.1 ± 2.6 
Drac 1-3 4.029 5.1 ± 0.9 75 44,8565 775 0.9975 1.8470 4.0 12.6 ± 2.8 
Drac 1-5 7.595 10.8 ± 1.4 152 44,8565 775 0.9975 1.8470 1.5 72.6  ± 14.3 

VILLARD-JULIEN 

Drac 1-8 1.525 1.7 ± 0.7 292 44,8565 775 0.9975 1.8470 0.3 53.1 ± 20.3 
Drac 5-1 13.37 6.6 ± 1.1 90 44,7489 915 0.9942 2.0815 3.7 17.8 ± 3.9 
Drac 5-3 3.096 2.7 ± 1.3 230 44,7489 915 0.9942 2.0815 0.7 40.7 ± 17.6 CHAUFFAYER 
Drac 5-5 13.66 9.0 ± 1.0 75 44,7489 915 0.9942 2.0815 4.5 20.0 ± 3.7 
Drac 6-1 5.643 3.7 ± 0.5 25 44,6903 950 0.9980 2.1431 8.9 4.2 ± 0.8 
Drac 6-3 1.248 2.5 ± 1.1 72 44,6903 950 0.9980 2.1431 4.8 5.1 ± 1.9 LESTIQUIÈRE 
Drac 6-4 2.446 1.5 ± 1.1 100 44,6903 950 0.9980 2.1431 3.4 4.5 ± 3.0 
Drac 7-1 9.053 5.2 ± 0.6 30 44,9133 475 0.9777 1.4182 5.4 9.6 ± 1.8 
Drac 7-2 1.673 3.2 ± 1.2 55 44,9133 475 0.9777 1.4182 3.9 8.1 ± 2.9 LES ARMANDS 
Drac 7-4 1.394 1.2 ± 0.5 230 44,9133 475 0.9777 1.4182 0.5 27.0 ± 9.6 
Drac 8-1 4.326 9.5 ± 1.4 40 44,6680 1025 0.9945 2.2837 7.8 12.1 ± 2.5 LE TUVE Drac 8-3 11.82 7.1 ± 0.8 70 44,6680 1025 0.9945 2.2837 5.3 13.6 ± 2.5 

BLANK1  0.4692         
Buech 1-1 448.2 227.3  ± 12.5 0 44,5213 965 ~1 2.1655 12.6 189.0 ± 30.2 
Buech 1-2 440.1 212.3  ± 16.3 0 44,5213 965 ~1 2.1655 12.6 176.0 ± 29.7 EYGAUX 
Buech 1-3 259.2 173.7  ± 9.5 0 44,5213 965 ~1 2.1655 12.6 142.8 ± 22.8 
Buech 2-1 124.2 63.2 ± 3.8 0 44,5065 815 0.9696 1.9031 10.7 59.9 ± 9.7 
Buech 2-2 37.63 23.4  ± 2.6 0 44,5065 815 0.9696 1.9031 10.7 22.0 ± 4.1 ASPRES SUR BUECH 
Buech 2-3 20.37 10.8 ± 1.3 0 44,5065 815 0.9696 1.9031 10.7 10.1 ± 1.9 
Buech 3-1 3.447 3.6 ± 0.8 55 44,4570 720 0.9625 1.7509 4.8 7.6 ± 2.0 
Buech 3-4 3.065 3.8 ± 1.0 80 44,4570 720 0.9625 1.7509 3.4 11.1 ± 2.7 LA BATIE-MONTSALEON 
Buech 3-5 1.682 1.0 ± 0.5 224 44,4570 720 0.9625 1.7509 0.6 16.4 ± 5.2 

BLANK2  0.2749         
BLANK3  0.9618         

 
Table 1. 10Be concentration of Drac and Buëch River terrace samples. Analytical uncertainties are based on counting statistics (1σ), and conservative 
assumptions of 5% variability in accelerator response based on a 15 y counting record. Replicate counts errors are the main source of total error fluctuations as 
some samples have ground-level concentrations. 10Be/9BeNIST=2,68.10-11. Sea-level-high-latitude production rate P0 : 5.75 at.g-1.an-1 [33]. P1: P0 corrected from 
shielding factor, latitude, altitude, neutron and muon captures with depth. Shielding factor from [34]. Latitude and altitude factors calibrated from [31]. Soil 
density : 2.0 g. cm-2.  
 



 

ICP-AES 

soil alluvium 

 Wt % 

Enrichment factor

Corrected for LOI

SiO2 79,45 30,72 1.99 

Al2O3 7,84 4,78 1.26 

Fe2O3 3,08 1,94 1.22 

MnO 0,14 0,09 1.20 

MgO 0,5 0,62 0.62 

CaO 0,32 32,79 0,01 

Na2O 0,8 0,47 1,31 

K2O 1,45 0,91 1,23 

TiO2 0,35 0,16 1.69 

P2O5 0,06 < D.S  

Loss on Ignition 5,82 27,31  

with CO2 1,232 22,176  

and H2O 4,588 5,134  

Total 99,81 99,83  

ICP-MS 

Loss on Ignition 6,09 27,28  

 ppm  
232Th (ppm) 4.37 2.07 2.11 
181Ta (ppm) 0,39 0,19 2,01 

 

Table 2. Major and trace elements contents of alluvium and soil at the T3 terrace sampling site, and 

enrichment factors. D.S: detection threshold. CO2 fraction in loss on ignition measured on fresh powder by 

Lambert calcimetry.  
 

 

 

 

  Elevation (m) Age (ky) 
Incision rate 

(mm.yr-1). 

1 140 190 0.74 
T3 

2 190 160 1.19 

1 65 75 0.87 
T2 

2 80 60 1.33 

 

Table 3. Buëch River incision rates infered from CRE dating. 

 18



Figure Captions 
 
Fig. 1. Location of main rivers, dated terraces and major tectonic thrusts within the study area. The Miocene 

subalpine ranges include the Digne thrust sheet and the Vercors and Chartreuse massifs. ECM: External 

Crystalline Massif. 

 

Fig. 2. Late Glacial Maximal extent of alpine glaciers and ice-dammed lakes within the study area. Modified 

from [27]. 

 

Fig. 3. Longitudinal profile of the Buëch River with terrace surfaces projected onto the valley axis, showing 

location of the CRE sampling sites and the relationships between terraces and glacial advances. 

 

Fig. 4. Terraces types encountered along the Drac River; valley cross-sections at two of the CRE sample sites 

(modified from [27]). (A.) Fill terrace generated by an ice-dam located downstream (Drac 1) and strath 

terrace cut into bedrock and fill terrace deposits during subsequent river entrenchment (Drac 7). (B.) Fill 

terrace formed by infilling of the Séveraisse Glacier frontal trough. 1: bedrock. 2: lacustine sediments. 3: 

glacial till (outer unit). 4: glacial till (inner unit). 5: river deposits.  

 

Fig. 5. (A.) Drac River longitudinal profile with terrace and moraine surfaces projected onto the valley axis. 

The CRE sampling sites are indicated, as well as the material incised during river entrenchment. (B.) Detail 

of lithological units incised by the Drac River after the inception of glacier retreat, projected onto the valley 

axis. Glacier profiles show the maximal extent of each glacier during the last glaciation.  

 

Fig. 6.  10Be concentration profiles of the Drac River terraces. Diamonds and error bars: measured 10Be 

contents (sample number indicated). Solid lines: upper and lower accepted concentration profiles. Models are 

accepted if they fit all the data points within error. Best-fit (based on RMS residuals) and accepted age 

ranges are indicated in the lower right (unit: ky). See text for discussion. 

 

Fig. 7. Exposure ages and inheritance for the Drac terraces. Upper diagram shows the sample site location 

along the Drac river valley and incision rates inferred from 10Be ages (arrows with italic numbers). K: 

propagating knickpoint. Lower diagram shows terrace ages (confidence and best-fit intervals) and inherited 
10Be assessed using the concentration profile modelling (Fig. 6). The assessed 10Be inherited concentrations 

are expressed as equivalent inherited 10Be ages, that is, times required to reach these concentrations in the 

case of in situ accumulation at the terrace surfaces. 

 

Fig. 8. Modelling of the cumulative effects of weathering and wind erosion on 10Be age scattering of surficial 

clasts at Buëch T3 terrace. (A.) exhumation path of quarztite pebbles originally buried at 0.5 m and 1.0 m in 

case of linear or decreasing dissolution of carbonates and subsequent matrix erosion at constant rates of 0.2 

cm/ky (path 2) and 0.4 cm/ky (path 3). (B.) Resulting Apparent Surficial Ages (ASA); ASA correspond to 
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the time required to reach the measured 10Be concentration in a pebble remaining at the surface during the 

entire accumulation history. Solid lines: ASA vs. original depth, dashed lines: ASA vs. final depth. Paths: 

linear or decreasing carbonate dissolution during the last interglacial period (130-75 ky), with no erosion 

latter (1,1’); 2, 3: with wind erosion at 0.2 cm/ky (2, 2’) and 0.4 cm/ky (3,3’) during the last glaciation . 

Sample Buëch 1-3 was eroded at a rate exceeding (2). 

 

Fig. 9. Evaluation of the long-term incision rate of the Buëch River. White boxes indicate individual 

measurements of CRE ages with errors; black boxes stand for the triple error overlap of the Buëch 1 samples 

and, at the Buëch 3 sampling site, for the best-fitting profile age interval. The stippled regions labelled ‘A.L’ 

indicate the thickness of the Alluvial Layer of terrace deposits overlaying the bedrock straths at T2 and T3. 

Solid lines: maximum (a) and minimum (b) long-term incision rates. Dashed line (c):  incision rate in the 

case of instantaneous incision of alluvial layer; dashed line (d): in the case of equal incision rate within 

alluvium and underlying bedrock. δ18O isotopic curve in lower panel is after [58]. Dark dashed bars indicate 

isotopic cold stages; lighter shading indicates major European glaciations. 

 

Fig. 10. Post-glacial evolution of the Drac River long profile, inferred from 10Be terrace ages. Inferred 

subsequent river long profiles are indicated by dashed lines and annotated by age. These profiles, as well as 

glacier profiles and incised lithological units are projected onto the valley axis.  

 

Fig. 11. Plot of logarithm of river gradient vs. logarithm of downstream distance (D.S. plot) for the Drac 

River. Inset shows the entire long profile and the location of the studied reaches. Propagating knickpoint 

(solid star) breaks the profile in two segments. Lithological knickpoints (open stars) occur in reaches where 

the river flows over crystalline rocks and Mesozoic sediments (bedrock zone).  
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